SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Barnacka A.) "

Sökning: WFRF:(Barnacka A.)

  • Resultat 1-50 av 72
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Acharya, B. S., et al. (författare)
  • Introducing the CTA concept
  • 2013
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 43, s. 3-18
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The Cherenkov Telescope Array (CTA) is a new observatory for very high-energy (VHE) gamma rays. CTA has ambitions science goals, for which it is necessary to achieve full-sky coverage, to improve the sensitivity by about an order of magnitude, to span about four decades of energy, from a few tens of GeV to above 100 TeV with enhanced angular and energy resolutions over existing VHE gamma-ray observatories. An international collaboration has formed with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America. In 2010 the CTA Consortium completed a Design Study and started a three-year Preparatory Phase which leads to production readiness of CTA in 2014. In this paper we introduce the science goals and the concept of CTA, and provide an overview of the project. (C) 2013 Elsevier B.V. All rights reserved.
  •  
2.
  • Actis, M., et al. (författare)
  • Design concepts for the Cherenkov Telescope Array CTA : an advanced facility for ground-based high-energy gamma-ray astronomy
  • 2011
  • Ingår i: Experimental astronomy. - : Springer. - 0922-6435 .- 1572-9508. ; 32:3, s. 193-316
  • Tidskriftsartikel (refereegranskat)abstract
    • Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.
  •  
3.
  • Algaba, Juan-Carlos, et al. (författare)
  • Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign
  • 2021
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 911:1
  • Forskningsöversikt (refereegranskat)abstract
    • In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations for a weakly accreting supermassive black hole of mass ∼6.5 × 109 M o˙. The EHTC also partnered with several international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at high energies, making it possible to combine core flux constraints with the more spatially precise very long baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the basic source properties, but conclude that a structured jet is necessary to explain M87's spectrum. We can exclude that the simultaneous γ-ray emission is produced via inverse Compton emission in the same region producing the EHT mm-band emission, and further conclude that the γ-rays can only be produced in the inner jets (inward of HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and secondaries cannot yet be excluded.
  •  
4.
  • Abramowski, A., et al. (författare)
  • The 2010 very high energy gamma-RAY flare and 10 years of multi-wavelength observations of M 87
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 746:2, s. 151-
  • Tidskriftsartikel (refereegranskat)abstract
    • The giant radio galaxy M 87 with its proximity (16 Mpc), famous jet, and very massive black hole ((3-6) x 10(9) M-circle dot) provides a unique opportunity to investigate the origin of very high energy (VHE; E > 100 GeV) gamma-ray emission generated in relativistic outflows and the surroundings of supermassive black holes. M 87 has been established as a VHE gamma-ray emitter since 2006. The VHE gamma-ray emission displays strong variability on timescales as short as a day. In this paper, results from a joint VHE monitoring campaign on M 87 by the MAGIC and VERITAS instruments in 2010 are reported. During the campaign, a flare at VHE was detected triggering further observations at VHE (H.E.S.S.), X-rays (Chandra), and radio (43 GHz Very Long Baseline Array, VLBA). The excellent sampling of the VHE gamma-ray light curve enables one to derive a precise temporal characterization of the flare: the single, isolated flare is well described by a two-sided exponential function with significantly different flux rise and decay times of tau(rise)(d) = (1.69 +/- 0.30) days and tau(decay)(d) = (0.611 +/- 0.080) days, respectively. While the overall variability pattern of the 2010 flare appears somewhat different from that of previous VHE flares in 2005 and 2008, they share very similar timescales (similar to day), peak fluxes (Phi(>0.35 TeV) similar or equal to (1-3) x 10(-11) photons cm(-2) s(-1)), and VHE spectra. VLBA radio observations of 43 GHz of the inner jet regions indicate no enhanced flux in 2010 in contrast to observations in 2008, where an increase of the radio flux of the innermost core regions coincided with a VHE flare. On the other hand, Chandra X-ray observations taken similar to 3 days after the peak of the VHE gamma-ray emission reveal an enhanced flux from the core (flux increased by factor similar to 2; variability timescale <2 days). The long-term (2001-2010) multi-wavelength (MWL) light curve of M 87, spanning from radio to VHE and including data from Hubble Space Telescope, Liverpool Telescope, Very Large Array, and European VLBI Network, is used to further investigate the origin of the VHE gamma-ray emission. No unique, common MWL signature of the three VHE flares has been identified. In the outer kiloparsec jet region, in particular in HST-1, no enhanced MWL activity was detected in 2008 and 2010, disfavoring it as the origin of the VHE flares during these years. Shortly after two of the three flares (2008 and 2010), the X-ray core was observed to be at a higher flux level than its characteristic range (determined from more than 60 monitoring observations: 2002-2009). In 2005, the strong flux dominance of HST-1 could have suppressed the detection of such a feature. Published models for VHE gamma-ray emission from M 87 are reviewed in the light of the new data.
  •  
5.
  • Abramowski, A., et al. (författare)
  • Simultaneous multi-wavelength campaign on PKS 2005-489 in a high state
  • 2011
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 533, s. A110-
  • Tidskriftsartikel (refereegranskat)abstract
    • The high-frequency peaked BL Lac object PKS 2005-489 was the target of a multi-wavelength campaign with simultaneous observations in the TeV gamma-ray (H.E.S.S.), GeV gamma-ray (Fermi/LAT), X-ray (RXTE, Swift), UV (Swift) and optical (ATOM, Swift) bands. This campaign was carried out during a high flux state in the synchrotron regime. The flux in the optical and X-ray bands reached the level of the historical maxima. The hard GeV spectrum observed with Fermi/LAT connects well to the very high energy (VHE, E > 100 GeV) spectrum measured with H.E.S.S. with a peak energy between similar to 5 and 500 GeV. Compared to observations with contemporaneous coverage in the VHE and X-ray bands in 2004, the X-ray flux was similar to 50 times higher during the 2009 campaign while the TeV gamma-ray flux shows marginal variation over the years. The spectral energy distribution during this multi-wavelength campaign was fit by a one zone synchrotron self-Compton model with a well determined cutoff in X-rays. The parameters of a one zone SSC model are inconsistent with variability time scales. The variability behaviour over years with the large changes in synchrotron emission and small changes in the inverse Compton emission does not warrant an interpretation within a one-zone SSC model despite an apparently satisfying fit to the broadband data in 2009.
  •  
6.
  • Abdalla, H., et al. (författare)
  • HESS and MAGIC observations of a sudden cessation of a very-high-energy gamma-ray flare in PKS 1510-089 in May 2016
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 648
  • Tidskriftsartikel (refereegranskat)abstract
    • The flat spectrum radio quasar (FSRQ) PKS 1510-089 is known for its complex multiwavelength behaviour and it is one of only a few FSRQs detected in very-high-energy (VHE, E>100 GeV) gamma rays. The VHE gamma -ray observations with H.E.S.S. and MAGIC in late May and early June 2016 resulted in the detection of an unprecedented flare, which revealed, for the first time, VHE gamma -ray intranight variability for this source. While a common variability timescale of 1.5 h has been found, there is a significant deviation near the end of the flare, with a timescale of similar to 20 min marking the cessation of the event. The peak flux is nearly two orders of magnitude above the low-level emission. For the first time, a curvature was detected in the VHE gamma -ray spectrum of PKS 1510-089, which can be fully explained by the absorption on the part of the extragalactic background light. Optical R-band observations with ATOM revealed a counterpart of the gamma -ray flare, even though the detailed flux evolution differs from the VHE gamma -ray light curve. Interestingly, a steep flux decrease was observed at the same time as the cessation of the VHE gamma -ray flare. In the high-energy (HE, E> 100 MeV) gamma -ray band, only a moderate flux increase was observed with Fermi-LAT, while the HE gamma -ray spectrum significantly hardens up to a photon index of 1.6. A search for broad-line region (BLR) absorption features in the gamma -ray spectrum indicates that the emission region is located outside of the BLR. Radio very-long-baseline interferometry observations reveal a fast-moving knot interacting with a standing jet feature around the time of the flare. As the standing feature is located similar to 50 pc from the black hole, the emission region of the flare may have been located at a significant distance from the black hole. If this is indeed a true correlation, the VHE gamma rays must have been produced far down in the jet, where turbulent plasma crosses a standing shock.
  •  
7.
  • Abdalla, H., et al. (författare)
  • TeV Emission of Galactic Plane Sources with HAWC and HESS
  • 2021
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 917:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The High Altitude Water Cherenkov (HAWC) observatory and the High Energy Stereoscopic System (H.E.S.S.) are two leading instruments in the ground-based very-high-energy gamma-ray domain. HAWC employs the water Cherenkov detection (WCD) technique, while H.E.S.S. is an array of Imaging Atmospheric Cherenkov Telescopes (IACTs). The two facilities therefore differ in multiple aspects, including their observation strategy, the size of their field of view, and their angular resolution, leading to different analysis approaches. Until now, it has been unclear if the results of observations by both types of instruments are consistent: several of the recently discovered HAWC sources have been followed up by IACTs, resulting in a confirmed detection only in a minority of cases. With this paper, we go further and try to resolve the tensions between previous results by performing a new analysis of the H.E.S.S. Galactic plane survey data, applying an analysis technique comparable between H.E.S.S. and HAWC. Events above 1 TeV are selected for both data sets, the point-spread function of H.E.S.S. is broadened to approach that of HAWC, and a similar background estimation method is used. This is the first detailed comparison of the Galactic plane observed by both instruments. H.E.S.S. can confirm the gamma-ray emission of four HAWC sources among seven previously undetected by IACTs, while the three others have measured fluxes below the sensitivity of the H.E.S.S. data set. Remaining differences in the overall gamma-ray flux can be explained by the systematic uncertainties. Therefore, we confirm a consistent view of the gamma-ray sky between WCD and IACT techniques.
  •  
8.
  • Aliu, E., et al. (författare)
  • Long-term TeV and X-ray Observations of the Gamma-ray Binary HESS J0632+057
  • 2014
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 780:2
  • Tidskriftsartikel (refereegranskat)abstract
    • HESS J0632+057 is the only gamma-ray binary known so far whose position in the sky allows observations with ground-based observatories in both thenorthern and southern hemispheres. Here we report on long-term observations of HESS J0632+057 conducted with the Very Energetic Radiation Imaging Telescope Array System and High Energy Stereoscopic System Cherenkov telescopes and the X-ray satellite Swift, spanning a time range from 2004 to 2012 and covering most of the system's orbit. The very-high-energy (VHE) emission is found to be variable and is correlated with that at X-ray energies. An orbital period of 315(-4)(+6) days is derived from the X-ray data set, which is compatible with previous results, P = (321 +/- 5) days. The VHE light curve shows a distinct maximum at orbital phases close to 0.3, or about 100 days after periastron passage, which coincides with the periodic enhancement of the X-rayemission. Furthermore, the analysis of the TeV data shows for the first time a statistically significant (> 6.5 sigma) detection at orbital phases 0.6-0.9. Theobtained gamma-ray and X-ray light curves and the correlation of the source emission at these two energy bands are discussed in the context of the recent ephemeris obtained for the system. Our results are compared to those reported for other gamma-ray binaries.
  •  
9.
  • Abdalla, H., et al. (författare)
  • Searching for TeV Gamma-Ray Emission from SGR 1935+2154 during Its 2020 X-Ray and Radio Bursting Phase
  • 2021
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 919:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetar hyperflares are the most plausible explanation for fast radio bursts (FRBs)-enigmatic powerful radio pulses with durations of several milliseconds and high brightness temperatures. The first observational evidence for this scenario was obtained in 2020 April when an FRB was detected from the direction of the Galactic magnetar and soft gamma-ray repeater SGR 1935+2154. The FRB was preceded by two gamma-ray outburst alerts by the BAT instrument aboard the Swift satellite, which triggered follow-up observations by the High Energy Stereoscopic System (H.E.S.S.). H.E.S.S. observed SGR 1935+2154 for 2 hr on 2020 April 28. The observations are coincident with X-ray bursts from the magnetar detected by INTEGRAL and Fermi-GBM, thus providing the first very high energy gamma-ray observations of a magnetar in a flaring state. High-quality data acquired during these follow-up observations allow us to perform a search for short-time transients. No significant signal at energies E > 0.6 TeV is found, and upper limits on the persistent and transient emission are derived. We here present the analysis of these observations and discuss the obtained results and prospects of the H.E.S.S. follow-up program for soft gamma-ray repeaters.
  •  
10.
  • Abdalla, H., et al. (författare)
  • An extreme particle accelerator in the Galactic plane : HESS J1826-130
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 644, s. 1-8
  • Tidskriftsartikel (refereegranskat)abstract
    • The unidentified very-high-energy (VHE; E > 0.1 TeV) gamma -ray source, HESS J1826-130, was discovered with the High Energy Stereoscopic System (HESS) in the Galactic plane. The analysis of 215 h of HESS data has revealed a steady gamma -ray flux from HESS J1826-130, which appears extended with a half-width of 0.21 degrees +/- 0.02 (stat)degrees stat degrees +/- 0.05 (sys)degrees sys degrees . The source spectrum is best fit with either a power-law function with a spectral index Gamma = 1.78 +/- 0.10(stat) +/- 0.20(sys) and an exponential cut-off at 15.2 (+5.5)(-3.2) -3.2+5.5 TeV, or a broken power-law with Gamma (1) = 1.96 +/- 0.06(stat) +/- 0.20(sys), Gamma (2) = 3.59 +/- 0.69(stat) +/- 0.20(sys) for energies below and above E-br = 11.2 +/- 2.7 TeV, respectively. The VHE flux from HESS J1826-130 is contaminated by the extended emission of the bright, nearby pulsar wind nebula, HESS J1825-137, particularly at the low end of the energy spectrum. Leptonic scenarios for the origin of HESS J1826-130 VHE emission related to PSR J1826-1256 are confronted by our spectral and morphological analysis. In a hadronic framework, taking into account the properties of dense gas regions surrounding HESS J1826-130, the source spectrum would imply an astrophysical object capable of accelerating the parent particle population up to greater than or similar to 200 TeV. Our results are also discussed in a multiwavelength context, accounting for both the presence of nearby supernova remnants, molecular clouds, and counterparts detected in radio, X-rays, and TeV energies.
  •  
11.
  • Abdalla, H., et al. (författare)
  • Search for Dark Matter Annihilation Signals from Unidentified Fermi-LAT Objects with HESS
  • 2021
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 918:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Cosmological N-body simulations show that Milky Way-sized galaxies harbor a population of unmerged dark matter (DM) subhalos. These subhalos could shine in gamma-rays and eventually be detected in gamma-ray surveys as unidentified sources. We performed a thorough selection among unidentified Fermi-Large Area Telescope Objects (UFOs) to identify them as possible tera-electron-volt-scale DM subhalo candidates. We search for very-high-energy (E greater than or similar to 100 GeV) gamma-ray emissions using H.E.S.S. observations toward four selected UFOs. Since no significant very-high-energy gamma-ray emission is detected in any data set of the four observed UFOs or in the combined UFO data set, strong constraints are derived on the product of the velocity-weighted annihilation cross section sigma v by the J factor for the DM models. The 95% confidence level observed upper limits derived from combined H.E.S.S. observations reach sigma vJ values of 3.7 x 10(-5) and 8.1 x 10(-6) GeV(2 )cm(-2 )s(-1) in the W (+) W (-) and tau (+) tau (-) channels, respectively, for a 1 TeV DM mass. Focusing on thermal weakly interacting massive particles, the H.E.S.S. constraints restrict the J factors to lie in the range 6.1 x 10(19)-2.0 x 10(21) GeV(2 )cm(-5) and the masses to lie between 0.2 and 6 TeV in the W (+) W (-) channel. For the tau (+) tau (-) channel, the J factors lie in the range 7.0 x 10(19)-7.1 x 10(20) GeV(2 )cm(-5) and the masses lie between 0.2 and 0.5 TeV. Assuming model-dependent predictions from cosmological N-body simulations on the J-factor distribution for Milky Way-sized galaxies, the DM models with masses >0.3 TeV for the UFO emissions can be ruled out at high confidence level.
  •  
12.
  • Abramowski, A., et al. (författare)
  • HESS J1943+213 : a candidate extreme BL Lacertae object
  • 2011
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 529, s. A49-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The H. E. S. S. Cherenkov telescope array has been surveying the Galactic plane for new VHE (>100 GeV) gamma-ray sources. Aims. We report on a newly detected point-like source, HESS J1943+213. This source coincides with an unidentified hard X-ray source IGR J19443+2117, which was proposed to have radio and infrared counterparts. Methods. We combine new H. E. S. S., Fermi/LAT and Nancay Radio Telescope observations with pre-existing non-simultaneous multi-wavelength observations of IGR J19443+2117 and discuss the likely source associations as well as the interpretation as an active galactic nucleus, a gamma-ray binary or a pulsar wind nebula. Results. HESS J1943+213 is detected at the significance level of 7.9 sigma (post-trials) at RA(J2000) = 19(h)43(m)55(s) +/- 1(stat)(s) +/- 1(sys)(s), Dec(J2000) = +21 degrees 18'8 '' +/- 17(stat)'' +/- 20(sys)''. The source has a soft spectrum with photon index Gamma = 3.1 +/- 0.3(stat) +/- 0.2(sys) and a flux above 470 GeV of (1.3 +/- 0.2(stat) +/- 0.3(sys)) x 10(-12) cm(-2) s(-1). There is no Fermi/LAT counterpart down to a flux limit of 6 x 10(-9) cm(-2) s(-1) in the 0.1-100 GeV energy range (95% confidence upper limit calculated for an assumed power-law model with a photon index Gamma = 2.0). The data from radio to VHE gamma-rays do not show any significant variability. Conclusions. The lack of a massive stellar counterpart disfavors the binary hypothesis, while the soft VHE spectrum would be very unusual in case of a pulsar wind nebula. In addition, the distance estimates for Galactic counterparts places them outside of the Milky Way. All available observations favor an interpretation as an extreme, high-frequency peaked BL Lac object with a redshift z > 0.14. This would be the first time a blazar is detected serendipitously from ground-based VHE observations, and the first VHE AGN detected in the Galactic Plane.
  •  
13.
  • Abdalla, H., et al. (författare)
  • Evidence of 100 TeV gamma-ray emission from HESS J1702-420 : A new PeVatron candidate
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 653
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. The identification of PeVatrons, hadronic particle accelerators reaching the knee of the cosmic ray spectrum (few x 10(15) eV), is crucial to understand the origin of cosmic rays in the Galaxy. We provide an update on the unidentified source HESS J1702-420, a promising PeVatron candidate. Methods. We present new observations of HESS J1702-420 made with the High Energy Stereoscopic System (H.E.S.S.), and processed using improved analysis techniques. The analysis configuration was optimized to enhance the collection area at the highest energies. We applied a threedimensional likelihood analysis to model the source region and adjust non thermal radiative spectral models to the gamma-ray data. We also analyzed archival Fermi Large Area Telescope data to constrain the source spectrum at gamma-ray energies >10 GeV. Results. We report the detection of gamma-rays up to 100 TeV from a specific region of HESS J1702-420, which is well described by a new source component called HESS J1702-420A that was separated from the bulk of TeV emission at a 5:4 sigma confidence level. The power law gamma-ray spectrum of HESS J1702-420A extends with an index of Gamma = 1:53 +/- 0:19(stat) +/- 0:20(sys) and without curvature up to the energy band 64 113 TeV, in which it was detected by H.E.S.S. at a 4:0 sigma confidence level. This makes HESS J1702-420A a compelling candidate site for the presence of extremely high energy cosmic rays. With a flux above 2 TeV of (2:08 +/- 0:49(stat) +/- 0:62(sys)) x 10(-13) cm(-2) s(-1) and a radius of (0:06 +/- 0:02(stat) +/- 0:03(sys))degrees, HESS J1702-420A is outshone - below a few tens of TeV - by the companion HESS J1702-420B. The latter has a steep spectral index of = 2:62 +/- 0:10(stat) +/- 0:20(sys) and an elongated shape, and it accounts for most of the low-energy HESS J1702-420 flux. Simple hadronic and leptonic emission models can be well adjusted to the spectra of both components. Remarkably, in a hadronic scenario, the cut-o ff energy of the particle distribution powering HESS J1702-420A is found to be higher than 0:5 PeV at a 95% confidence level. Conclusions. For the first time, H.E.S.S. resolved two components with significantly di fferent morphologies and spectral indices, both detected at >5 sigma confidence level, whose combined emissions result in the source HESS J1702-420. We detected HESS J1702-420A at a 4:0 sigma confidence level in the energy band 64 113 TeV, which brings evidence for the source emission up to 100 TeV. In a hadronic emission scenario, the hard gamma-ray spectrum of HESS J1702-420A implies that the source likely harbors PeV protons, thus becoming one of the most solid PeVatron candidates detected so far in H.E.S.S. data. However, a leptonic origin of the observed TeV emission cannot be ruled out either.
  •  
14.
  • Abdalla, H., et al. (författare)
  • LMC N132D : A mature supernova remnant with a power-law gamma-ray spectrum extending beyond 8 TeV
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 655
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Supernova remnants (SNRs) are commonly thought to be the dominant sources of Galactic cosmic rays up to the knee of the cosmic-ray spectrum at a few PeV. Imaging Atmospheric Cherenkov Telescopes have revealed young SNRs as very-high-energy (VHE, >100 GeV) gamma-ray sources, but for only a few SNRs the hadronic cosmic-ray origin of their gamma-ray emission is indisputably established. In all these cases, the gamma-ray spectra exhibit a spectral cutoff at energies much below 100 TeV and thus do not reach the PeVatron regime. Aims. The aim of this work was to achieve a firm detection for the oxygen-rich SNR LMC N132D in the VHE gamma-ray domain with an extended set of data, and to clarify the spectral characteristics and the localization of the gamma-ray emission from this exceptionally powerful gamma-ray-emitting SNR. Methods. We analyzed 252 h of High Energy Stereoscopic System (H.E.S.S.) observations towards SNR N132D that were accumulated between December 2004 and March 2016 during a deep survey of the Large Magellanic Cloud, adding 104 h of observations to the previously published data set to ensure a > 5 sigma detection. To broaden the gamma-ray spectral coverage required for modeling the spectral energy distribution, an analysis of Fermi-LAT Pass 8 data was also included. Results. We unambiguously detect N132D at VHE with a significance of 5.7 sigma. We report the results of a detailed analysis of its spectrum and localization based on the extended H.E.S.S. data set. The joint analysis of the extended H.E.S.S and Fermi-LAT data results in a spectral energy distribution in the energy range from 1.7 GeV to 14.8 TeV, which suggests a high luminosity of N132D at GeV and TeV energies. We set a lower limit on a gamma-ray cutoff energy of 8 TeV with a confidence level of 95%. The new gamma-ray spectrum as well as multiwavelength observations of N132D when compared to physical models suggests a hadronic origin of the VHE gamma-ray emission. Conclusions. SNR N132D is a VHE gamma-ray source that shows a spectrum extending to the VHE domain without a spectral cutoff at a few TeV, unlike the younger oxygen-rich SNR Cassiopeia A. The gamma-ray emission is best explained by a dominant hadronic component formed by diffusive shock acceleration. The gamma-ray properties of N132D may be affected by an interaction with a nearby molecular cloud that partially lies inside the 95% confidence region of the source position.
  •  
15.
  • Abdalla, H., et al. (författare)
  • Revealing x-ray and gamma ray temporal and spectral similarities in the GRB 190829A afterglow
  • 2021
  • Ingår i: Science. - : American Association of Advancement in Science. - 0036-8075 .- 1095-9203. ; 372:6546, s. 1081-1085
  • Tidskriftsartikel (refereegranskat)abstract
    • Gamma-ray bursts (GRBs), which are bright flashes of gamma rays from extragalactic sources followed by fading afterglow emission, are associated with stellar core collapse events. We report the detection of very- high-energy (VHE) gamma rays from the afterglow of GRB 190829A, between 4 and 56 hours after the trigger, using the High Energy Stereoscopic System (H.E.S.S.). The low luminosity and redshift of GRB 190829A reduce both internal and external absorption, allowing determination of its intrinsic energy spectrum. Between energies of 0.18 and 3.3 tera-electron volts, this spectrum is described by a power law with photon index of 2.07 +/- 0.09, similar to the x-ray spectrum. The x-ray and VHE gamma- ray light curves also show similar decay profiles. These similar characteristics in the x-ray and gamma-ray bands challenge GRB afterglow emission scenarios.
  •  
16.
  • Abdallah, H., et al. (författare)
  • Search for dark matter annihilation in the Wolf-Lundmark-Melotte dwarf irregular galaxy with HESS
  • 2021
  • Ingår i: Physical Review D. - : American Physical Society. - 2470-0010 .- 2470-0029. ; 103:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We search for an indirect signal of dark matter through very high-energy gamma rays from the Wolf-Lundmark-Melotte (WLM) dwarf irregular galaxy. The pair annihilation of dark matter particles would produce Standard Model particles in the final state such as gamma rays, which might be detected by ground-based Cherenkov telescopes. Dwarf irregular galaxies represent promising targets as they are dark matter dominated objects with well-measured kinematics and small uncertainties on their dark matter distribution profiles. In 2018, the five-telescopes of the high energy stereoscopic system observed the dwarf irregular galaxy WLM for 18 hours. We present the first analysis based on data obtained from an imaging atmospheric Cherenkov telescope for this subclass of dwarf galaxy. As we do not observe any significant excess in the direction of WLM, we interpret the result in terms of constraints on the velocity-weighted cross section for dark matter pair annihilation as a function of the dark matter particle mass for various continuum channels, as well as the prompt gamma gamma emission. For the tau+tau- channel, the limits reach a value of about 4 x 10-22 cm3 s-1 for a dark matter particle mass of 1 TeV. For the prompt gamma gamma channel, the upper limit reaches a value of about 5 x 10-24 cm3 s-1 for a mass of 370 GeV. These limits represent an improvement of up to a factor 200, with respect to previous results for the dwarf irregular galaxies for TeV dark matter search.
  •  
17.
  • Abramowski, A., et al. (författare)
  • Discovery of the VHE gamma-ray source HESS J1832-093 in the vicinity of SNR G22.7-0.2
  • 2015
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 446:2, s. 1163-1169
  • Tidskriftsartikel (refereegranskat)abstract
    • The region around the supernova remnant (SNR) W41 contains several TeV sources and has prompted the HESS Collaboration to perform deep observations of this field of view. This resulted in the discovery of the new very high energy (VHE) source HESS J1832-093, at the position RA = 18(h)32(m)50(s) +/- 3(stat)(s) +/- 2(syst)(s), Dec = -9 degrees 22'36 '' +/- 32(stat)'' +/- 20(syst)'' (J2000), spatially coincident with a part of the radio shell of the neighbouring remnant G22.7-0.2. The photon spectrum is well described by a power law of index Gamma = 2.6 +/- 0.3(stat) +/- 0.1(syst) and a normalization at 1 TeV of Phi(0) = (4.8 +/- 0.8(stat) +/- 1.0(syst)) x 10(-13) cm(-2) s(-1) TeV-1. The location of the gamma-ray emission on the edge of the SNR rim first suggested a signature of escaping cosmic rays illuminating a nearby molecular cloud. Then a dedicated XMM-Newton observation led to the discovery of a new X-ray point source spatially coincident with the TeV excess. Two other scenarios were hence proposed to identify the nature of HESS J1832-093. Gamma-rays from inverse Compton radiation in the framework of a pulsar wind nebula scenario or the possibility of gamma-ray production within a binary system are therefore also considered. Deeper multiwavelength observations will help to shed new light on this intriguing VHE source.
  •  
18.
  • Abramowski, A., et al. (författare)
  • Search for dark matter annihilation signatures in HESS observations of dwarf spheroidal galaxies
  • 2014
  • Ingår i: Physical Review D. - 1550-7998 .- 1550-2368. ; 90:11, s. 112012-
  • Tidskriftsartikel (refereegranskat)abstract
    • Dwarf spheroidal galaxies of the Local Group are close satellites of the Milky Way characterized by a large mass-to-light ratio and are not expected to be the site of nonthermal high-energy gamma-ray emission or intense star formation. Therefore they are among the most promising candidates for indirect dark matter searches. During the last years the High Energy Stereoscopic System (H.E.S.S.) of imaging atmospheric Cherenkov telescopes observed five of these dwarf galaxies for more than 140 hours in total, searching for TeV gamma-ray emission from annihilation of dark matter particles. The new results of the deep exposure of the Sagittarius dwarf spheroidal galaxy, the first observations of the Coma Berenices and Fornax dwarves and the reanalysis of two more dwarf spheroidal galaxies already published by the H.E.S.S. Collaboration, Carina and Sculptor, are presented. In the absence of a significant signal new constraints on the annihilation cross section applicable to weakly interacting massive particles (WIMPs) are derived by combining the observations of the five dwarf galaxies. The combined exclusion limit depends on the WIMP mass and the best constraint is reached at 1-2 TeV masses with a cross-section upper bound of similar to 3.9 x 10(-24) cm(3) s(-1) at a 95% confidence level.
  •  
19.
  • Abramowski, A., et al. (författare)
  • A multiwavelength view of the flaring state of PKS 2155-304 in 2006
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 539, s. A149-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Multiwavelength (MWL) observations of the blazar PKS 2155-304 during two weeks in July and August 2006, the period when two exceptional flares at very high energies (VHE, E greater than or similar to 100 GeV) occurred, provide a detailed picture of the evolution of its emission. The complete data set from this campaign is presented, including observations in VHE gamma-rays (H.E.S. S.), X-rays (RXTE, Chandra, Swift XRT), optical (Swift UVOT, Bronberg, Watcher, ROTSE), and in the radio band (NRT, HartRAO, ATCA). Optical and radio light curves from 2004 to 2008 are compared to the available VHE data from this period, to put the 2006 campaign into the context of the long-term evolution of the source. Aims. The data set offers a close view of the evolution of the source on different time scales and yields new insights into the properties of the emission process. The predictions of synchrotron self-Compton (SSC) scenarios are compared to the MWL data, with the aim of describing the dominant features in the data down to the hour time scale. Methods. The spectral variability in the X-ray and VHE bands is explored and correlations between the integral fluxes at different wavelengths are evaluated. SSC modelling is used to interpret the general trends of the varying spectral energy distribution. Results. The X-ray and VHE gamma-ray emission are correlated during the observed high state of the source, but show no direct connection with longer wavelengths. The long-term flux evolution in the optical and radio bands is found to be correlated and shows that the source reaches a high state at long wavelengths after the occurrence of the VHE flares. Spectral hardening is seen in the Swift XRT data. Conclusions. The nightly averaged high-energy spectra of the non-flaring nights can be reproduced by a stationary one-zone SSC model, with only small variations in the parameters. The spectral and flux evolution in the high-energy band during the night of the second VHE flare is modelled with multi-zone SSC models, which can provide relatively simple interpretations for the hour time-scale evolution of the high-energy emission, even for such a complex data set. For the first time in this type of source, a clear indication is found for a relation between high activity at high energies and a long-term increase in the low frequency fluxes.
  •  
20.
  • Abramowski, A., et al. (författare)
  • Constraints on an Annihilation Signal from a Core of Constant Dark Matter Density around the Milky Way Center with HESS
  • 2015
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 114:8
  • Tidskriftsartikel (refereegranskat)abstract
    • An annihilation signal of dark matter is searched for from the central region of the Milky Way. Data acquired in dedicated on-off observations of the Galactic center region with H.E.S.S. are analyzed for this purpose. No significant signal is found in a total of similar to 9 h of on-off observations. Upper limits on the velocity averaged cross section, , for the annihilation of dark matter particles with masses in the range of similar to 300 GeV to similar to 10 TeV are derived. In contrast to previous constraints derived from observations of the Galactic center region, the constraints that are derived here apply also under the assumption of a central core of constant dark matter density around the center of the Galaxy. Values of that are larger than 3 x 10(-24) cm(3)/s are excluded for dark matter particles with masses between similar to 1 and similar to 4 TeV at 95% C.L. if the radius of the central dark matter density core does not exceed 500 pc. This is the strongest constraint that is derived on for annihilating TeV mass dark matter without the assumption of a centrally cusped dark matter density distribution in the search region.
  •  
21.
  • Abramowski, A., et al. (författare)
  • Detection of very-high-energy gamma-ray emission from the vicinity of PSR B1706-44 and G 343.1-2.3 with HESS
  • 2011
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 528, s. A143-
  • Tidskriftsartikel (refereegranskat)abstract
    • The gamma-ray pulsar PSR B1706-44 and the adjacent supernova remnant (SNR) candidate G 343.1-2.3 were observed by H. E. S. S. during a dedicated observation campaign in 2007. As a result of this observation campaign, a new source of very-high-energy (VHE; E > 100 GeV) gamma-ray emission, H.E.S.S. J1708-443, was detected with a statistical significance of 7 sigma, although no significant point-like emission was detected at the position of the energetic pulsar itself. In this paper, the morphological and spectral analyses of the newly-discovered TeV source are presented. The centroid of H. E. S. S. J1708-443 is considerably offset from the pulsar and located near the apparent center of the SNR, at alpha(J2000) = 17(h)08(m)11(s) +/- 17(s) and delta(J2000) = -44 degrees 20' +/- 4'. The source is found to be significantly more extended than the H. E. S. S. point spread function (similar to 0.1 degrees), with an intrinsic Gaussian width of 0.29 degrees +/- 0.04 degrees. Its integral flux between 1 and 10 TeV is similar to 3.8 x 10(-1)2 ph cm(-2) s(-1), equivalent to 17% of the Crab Nebula flux in the same energy range. The measured energy spectrum is well-fit by a power law with a relatively hard photon index Gamma = 2.0 +/- 0.1(stat) +/-0.2(sys). Additional multi-wavelength data, including 330 MHz VLA observations, were used to investigate the VHE gamma-ray source's possible associations with the pulsar wind nebula of PSR B1706-44 and/or with the complex radio structure of the partial shell-type SNR G 343.1-2.3.
  •  
22.
  • Abramowski, A., et al. (författare)
  • Diffuse Galactic gamma-ray emission with HESS
  • 2014
  • Ingår i: Physical Review D. - 1550-7998 .- 1550-2368. ; 90:12, s. Article ID: 122007-
  • Tidskriftsartikel (refereegranskat)abstract
    • Diffuse gamma-ray emission is the most prominent observable signature of celestial cosmic-ray interactions at high energies. While already being investigated at GeVenergies over several decades, assessments of diffuse gamma-ray emission at TeVenergies remain sparse. After completion of the systematic survey of the inner Galaxy, the H.E.S.S. experiment is in a prime position to observe large-scale diffuse emission at TeVenergies. Data of the H.E.S.S. Galactic Plane Survey are investigated in regions off known gamma-ray sources. Corresponding gamma-ray flux measurements were made over an extensive grid of celestial locations. Longitudinal and latitudinal profiles of the observed gamma-ray fluxes show characteristic excess emission not attributable to known gamma-ray sources. For the first time large-scale gamma-ray emission along the Galactic plane using imaging atmospheric Cherenkov telescopes has been observed. While the background subtraction technique limits the ability to recover modest variation on the scale of the H.E.S.S. field of view or larger, which is characteristic of the inverse Compton scatter-induced Galactic diffuse emission, contributions of neutral pion decay as well as emission from unresolved gamma-ray sources can be recovered in the observed signal to a large fraction. Calculations show that the minimum gamma-ray emission from pi(0) decay represents a significant contribution to the total signal. This detection is interpreted as a mix of diffuse Galactic gamma-ray emission and unresolved sources.
  •  
23.
  • Abramowski, A., et al. (författare)
  • Discovery of hard-spectrum gamma- ray emission from the BL Lacertae object 1ES 0414+009
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 538, s. A103-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. 1ES 0414+009 (z = 0.287) is a distant high-frequency- peaked BL Lac object, and has long been considered a likely emitter of very-highenergy (VHE, E > 100 GeV) gamma-rays due to its high X-ray and radio flux. Aims. Observations in the VHE gamma-ray band and across the electromagnetic spectrum can provide insights into the origin of highly energetic particles present in the source and the radiation processes at work. Because of the distance of the source, the gamma-ray spectrum might provide further limits on the level of the extragalactic background light (EBL). Methods. We report observations made between October 2005 and December 2009 with H. E. S. S., an array of four imaging atmospheric Cherenkov telescopes. Observations at high energies (HE, 100 MeV-100 GeV) with the Fermi-LAT instrument in the first 20 months of its operation are also reported. To complete the multi-wavelength picture, archival UV and X-ray observations with the Swift satellite and optical observations with the ATOM telescope are also used. Results. Based on the observations with H.E.S.S., 1ES 0414+009 is detected for the first time in the VHE band. An excess of 224 events is measured, corresponding to a significance of 7.8 sigma. The photon spectrum of the source is well described by a power law, with photon index of Gamma(VHE) = 3.45 +/- 0.25(stat) +/- 0.20(syst). The integral flux above 200 GeV is (1.88 +/- 0.20(stat) +/- 0.38(syst)) x10(-12) cm(-2) s(-1). Observations with the Fermi-LAT in the first 20 months of operation show a flux between 200 MeV and 100 GeV of (2.3 +/- 0.2(stat)) x 10(-9) erg cm(-2) s(-1), and a spectrum well described by a power-law function with a photon index Gamma(HE) = 1.85 +/- 0.18. Swift/XRT observations show an X-ray flux between 2 and 10 keV of (0.8-1) x 10(-11) erg cm(-2) s(-1), and a steep spectrum Gamma(X) = (2.2-2.3). Combining X-ray with optical-UV data, a fit with a log-parabolic function locates the synchrotron peak around 0.1 keV. Conclusions. Although the GeV-TeV observations do not provide better constraints on the EBL than previously obtained, they confirm a low density of the EBL, close to the lower limits from galaxy counts. The absorption-corrected HE and VHE gamma-ray spectra are both hard and have similar spectral indices (approximate to 1.86), indicating no significant change of slope between the HE and VHE gamma-ray bands, and locating the gamma-ray peak in the SED above 1-2 TeV. As for other TeV BL Lac objects with the gamma-ray peak at such high energies and a large separation between the two SED humps, this average broad-band SED represents a challenge for simple one-zone synchrotron self-Compton models, requiring a high Doppler factor and very low B-field.
  •  
24.
  • Abramowski, A., et al. (författare)
  • DISCOVERY OF THE HARD SPECTRUM VHE gamma-RAY SOURCE HESS J1641-463
  • 2014
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 794:1, s. L1-
  • Tidskriftsartikel (refereegranskat)abstract
    • This Letter reports the discovery of a remarkably hard spectrum source, HESS J1641-463, by the High Energy Stereoscopic System (H.E.S.S.) in the very high energy (VHE) domain. HESS J1641-463 remained unnoticed by the usual analysis techniques due to confusion with the bright nearby source HESS J1640-465. It emerged at a significance level of 8.5 standard deviations after restricting the analysis to events with energies above 4 TeV. It shows a moderate flux level of phi(E > 1TeV) = (3.64 +/- 0.44(stat)+/- 0.73(sys)) x 10(-13) cm(-2) s(-1), corresponding to 1.8% of the Crab Nebula flux above the same energy, and a hard spectrum with a photon index of Gamma = 2.07 +/- 0.11(stat)+/- 0.20(sys). It is a point-like source, although an extension up to a Gaussian width of sigma = 3 arcmin cannot be discounted due to uncertainties in the H.E.S.S. point-spread function. The VHE gamma-ray flux of HESS J1641-463 is found to be constant over the observed period when checking time binnings from the year-by-year to the 28 minute exposure timescales. HESS J1641-463 is positionally coincident with the radio supernova remnant SNR G338.5+0.1. No X-ray candidate stands out as a clear association; however, Chandra and XMM-Newton data reveal some potential weak counterparts. Various VHE gamma-ray production scenarios are discussed. If the emission from HESS J1641-463 is produced by cosmic ray protons colliding with the ambient gas, then their spectrum must extend close to 1 PeV. This object may represent a source population contributing significantly to the galactic cosmic ray flux around the knee.
  •  
25.
  • Abramowski, A., et al. (författare)
  • Discovery of the Hard Spectrum VHE γ-Ray Source HESS J1641–463
  • 2014
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 794:1, s. Article ID: L1-
  • Tidskriftsartikel (refereegranskat)abstract
    • This Letter reports the discovery of a remarkably hard spectrum source, HESS J1641-463, by the High Energy Stereoscopic System (H.E.S.S.) in the very high energy (VHE) domain. HESS J1641-463 remained unnoticed by the usual analysis techniques due to confusion with the bright nearby source HESS J1640-465. It emerged at a significance level of 8.5 standard deviations after restricting the analysis to events with energies above 4 TeV. It shows a moderate flux level of phi(E > 1TeV) = (3.64 +/- 0.44(stat)+/- 0.73(sys)) x 10(-13) cm(-2) s(-1), corresponding to 1.8% of the Crab Nebula flux above the same energy, and a hard spectrum with a photon index of Gamma = 2.07 +/- 0.11(stat)+/- 0.20(sys). It is a point-like source, although an extension up to a Gaussian width of sigma = 3 arcmin cannot be discounted due to uncertainties in the H.E.S.S. point-spread function. The VHE gamma-ray flux of HESS J1641-463 is found to be constant over the observed period when checking time binnings from the year-by-year to the 28 minute exposure timescales. HESS J1641-463 is positionally coincident with the radio supernova remnant SNR G338.5+0.1. No X-ray candidate stands out as a clear association; however, Chandra and XMM-Newton data reveal some potential weak counterparts. Various VHE gamma-ray production scenarios are discussed. If the emission from HESS J1641-463 is produced by cosmic ray protons colliding with the ambient gas, then their spectrum must extend close to 1 PeV. This object may represent a source population contributing significantly to the galactic cosmic ray flux around the knee.
  •  
26.
  • Abramowski, A., et al. (författare)
  • Flux upper limits for 47 AGN observed with HESS in 2004-2011
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 564, s. A9-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. About 40% of the observation time of the High Energy Stereoscopic System (H.E.S.S.) is dedicated to studying active galactic nuclei (AGN), with the aim of increasing the sample of known extragalactic very-high-energy (VHE, E > 100 GeV) sources and constraining the physical processes at play in potential emitters. Aims. H.E.S.S. observations of AGN, spanning a period from April 2004 to December 2011, are investigated to constrain their gamma-ray fluxes. Only the 47 sources without significant excess detected at the position of the targets are presented. Methods. Upper limits on VHE fluxes of the targets were computed and a search for variability was performed on the nightly time scale. Results. For 41 objects, the flux upper limits we derived are the most constraining reported to date. These constraints at VHE are compared with the flux level expected from extrapolations of Fermi-LAT measurements in the two-year catalog of AGN. The H.E.S.S. upper limits are at least a factor of two lower than the extrapolated Fermi-LAT fluxes for 11 objects Taking into account the attenuation by the extragalactic background light reduces the tension for all but two of them, suggesting intrinsic curvature in the high-energy spectra of these two AGN. Conclusions. Compilation efforts led by current VHE instruments are of critical importance for target-selection strategies before the advent of the Cherenkov Telescope Array (CTA).
  •  
27.
  • Abramowski, A., et al. (författare)
  • H.E.S.S. detection of TeV emission from the interaction region between the supernova remnant G349.7+0.2 and a molecular cloud
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 574, s. 1-7
  • Tidskriftsartikel (refereegranskat)abstract
    • G349.7+0.2 is a young Galactic supernova remnant (SNR) located at the distance of 11.5 kpc and observed across the entire electromagnetic spectrum from radio to high energy (HE; 0.1 GeV < E < 100 GeV) gamma-rays. Radio and infrared observations indicate that the remnant is interacting with a molecular cloud. In this paper, the detection of very high energy (VHE, E > 100 GeV) gamma-ray emission coincident with this SNR with the High Energy Stereoscopic System (HESS.) is reported. This makes it one of the farthest Galactic SNR ever detected in this domain. An integral flux F(E > 400 GeV) = (6.5 +/- 1.1(stat) +/- 1.3(syst)) x 10-11 ph cm(-2) s(-1) corresponding to similar to 0.7% of that of the Crab Nebula and to a luminosity of similar to 10(34) erg s(-1) above the same energy threshold, and a steep photon index Gamma(VHE) = 2.8 +/- 0.27(stat) +/- 0.20(syst) are measured. The analysis of more than 5 yr of Fermi-LAT data towards this source shows a power-law like spectrum with a best-fit photon index Gamma(HE) = 2.2 +/- 0.04.2(stat-0.31sys)(+0.13), The combined gamma-ray spectrum of 0349.7+0.2 can be described by either a broken power law (I3PL) or a power law with exponential (or sub exponential) cutoff (PLC). In the former case, the photon break energy is found at E-br,E-gamma = 551(-30)(+70) GeV, slightly higher than what is usually observed in the HE/VHE gamma-ray emitting middle-aged SNRs known to be interacting with molecular clouds. In the latter case. the exponential (respectively sub-exponential) cutoff energy is measured at E-cat,E-gamma = 1.4(-0.55)(+1.6) (respectively 0.35(-0.21)(+0.75)) TeV. A pion decay process resulting from the interaction of the accelerated protons and nuclei with the dense surrounding medium is clearly the preferred scenario to explain the gamma-ray emission. The BPL with a spectral steepening of 0.5-1 and the PLC provide equally good fits to the data. The product or the average gas density and the total energy content of accelerated protons and nuclei amounts to nu W-p similar to 5 x 10(51) erg cm(-3)
  •  
28.
  • Abramowski, A., et al. (författare)
  • H.E.S.S. reveals a lack of TeV emission from the supernova remnant Puppis A : (Research Note)
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 575
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Puppis A is an interesting similar to 4 kyr-old supernova remnant (SNR) that shows strong evidence of interaction between the forward shock and a molecular cloud. It has been studied in detail from radio frequencies to high-energy (HE, 0.1-100 GeV) gamma-rays. An analysis of the Fermi-LAT data has shown extended HE gamma-ray emission with a 0.2-100 GeV spectrum exhibiting no significant deviation from a power law, unlike most of the GeV-emitting SNRs known to be interacting with molecular clouds. This makes it a promising target for imaging atmospheric Cherenkov telescopes (IACTs) to probe the gamma-ray emission above 100 GeV.Aims. Very-high-energy (VHE, E >= 0.1 TeV) gamma-ray emission from Puppis A has been, for the first time, searched for with the High Energy Stereoscopic System (HESS.).Methods. Stereoscopic imaging of Cherenkov radiation from extensive air showers is used to reconstruct the direction and energy of the incident gamma-rays in order to produce sky images and source spectra. The profile likelihood method is applied to find constraints on the existence of a potential break or cutoff in the photon spectrum.Results. The analysis of the HESS. data does not reveal any significant emission towards Puppis A. The derived upper limits on the differential photon flux imply that its broadband gamma-ray spectrum must exhibit a spectral break or cutoff. By combining Fermi-LAT and HESS. measurements, the 99% confidence-level upper limits on such a cutoff are found to be 450 and 280 GeV, assuming a power law with a simple exponential and a sub-exponential cutoff, respectively. It is concluded that none of the standard limitations (age, size, radiative losses) on the particle acceleration mechanism, assumed to be continuing at present, can explain the lack of VHE signal. The scenario in which particle acceleration has ceased some time ago is considered as an alternative explanation. The HE/VHE spectrum of Puppis A could then exhibit a break of non-radiative origin (as observed in several other interacting SNRs, albeit at somewhat higher energies), owing to the interaction with dense and neutral material, in particular towards the NE region.
  •  
29.
  • Abramowski, A., et al. (författare)
  • HESS constraints on dark matter annihilations towards the sculptor and carina dwarf galaxies
  • 2011
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 34:8, s. 608-616
  • Tidskriftsartikel (refereegranskat)abstract
    • The Sculptor and Carina dwarf spheroidal galaxies were observed with the H.E.S.S. Cherenkov telescope array between January 2008 and December 2009. The data sets consist of a total of 11.8 h and 14.811 of high quality data, respectively. No gamma-ray signal was detected at the nominal positions of these galaxies above 220 GeV and 320 GeV, respectively. Upper limits on the gamma-ray fluxes at 95% CL assuming two forms for the spectral energy distribution (a power law shape and one derived from dark matter annihilation) are obtained at the level of 10(-13)-10(-12) cm(-2) s(-1) in the TeV range. Constraints on the velocity weighted dark matter particle annihilation cross section for both Sculptor and Carina dwarf galaxies range from 10(-21) cm(3) s(-1) down to similar to 10(-2)2 cm(3) s(-1) on the dark matter halo model used. Possible enhancements of the gamma-ray flux are studied: the Sommerfeld effect, which is found to exclude some dark matter particle masses, the internal Bremsstrahlung and clumps in the dark-matter halo distributions. (C) 2010 Elsevier B.V. All rights reserved.
  •  
30.
  • Abramowski, A., et al. (författare)
  • HESS J1640-465-an exceptionally luminous TeV gamma-ray supernova remnant
  • 2014
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 439:3, s. 2828-2836
  • Tidskriftsartikel (refereegranskat)abstract
    • The results of follow-up observations of the TeV gamma-ray source HESS J1640-465 from 2004 to 2011 with the High Energy Stereoscopic System (HESS) are reported in this work. The spectrum is well described by an exponential cut-off power law with photon index Gamma = 2.11 +/- 0.09(stat) +/- 0.10(sys), and a cut-off energy of E-2 = 6.0(-1.2)(+2.0) TeV. The TeV emission is significantly extended and overlaps with the northwestern part of the shell of the SNR G338.3-0.0. The new HESS results, a re-analysis of archival XMM-Newton data and multiwavelength observations suggest that a significant part of the gamma-ray emission from HESS J1640-465 originates in the supernova remnant shell. In a hadronic scenario, as suggested by the smooth connection of the GeV and TeV spectra, the product of total proton energy and mean target density could be as high as W(p)n(H) similar to 4 x 10(52)(d/10kpc)(2) erg cm(-3).
  •  
31.
  • Abramowski, A., et al. (författare)
  • HESS J1818-154, a new composite supernova remnant discovered in TeV gamma rays and X-rays
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 562, s. 562-
  • Tidskriftsartikel (refereegranskat)abstract
    • Composite supernova remnants (SNRs) constitute a small subclass of the remnants of massive stellar explosions where non-thermal radiation is observed from both the expanding shell-like shock front and from a pulsar wind nebula (PWN) located inside of the SNR. These systems represent a unique evolutionary phase of SNRs where observations in the radio, X-ray, and gamma-ray regimes allow the study of the co-evolution of both these energetic phenomena. In this article, we report results from observations of the shell-type SNR G15.4+0.1 performed with the High Energy Stereoscopic System (H. E. S. S.) and XMM-Newton. A compact TeV gamma-ray source, HESS J1818-154, located in the center and contained within the shell of G15.4+0.1 is detected by H. E. S. S. and featurs a spectrum best represented by a power-law model with a spectral index of -2.3 +/- 0.3(stat) +/- 0.2(sys) and an integral flux of F(>0.42 TeV) = (0.9 +/- 0.3(stat) +/- 0.2(sys)) x 10(-12) cm(-2) s(-1). Furthermore, a recent observation with XMM-Newton reveals extended X-ray emission strongly peaked in the center of G15.4+0.1. The X-ray source shows indications of an energy-dependent morphology featuring a compact core at energies above 4 keV and more extended emission that fills the entire region within the SNR at lower energies. Together, the X-ray and VHE gamma-ray emission provide strong evidence of a PWN located inside the shell of G15.4+0.1 and this SNR can therefore be classified as a composite based on these observations. The radio, X-ray, and gamma-ray emission from the PWN is compatible with a one-zone leptonic model that requires a low average magnetic field inside the emission region. An unambiguous counterpart to the putative pulsar, which is thought to power the PWN, has been detected neither in radio nor in X-ray observations of G15.4+0.1.
  •  
32.
  • Abramowski, A., et al. (författare)
  • HESS OBSERVATIONS OF THE GLOBULAR CLUSTERS NGC 6388 AND M15 AND SEARCH FOR A DARK MATTER SIGNAL
  • 2011
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 735:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations of the globular clusters (GCs) NGC 6388 and M15 were carried out by the High Energy Stereoscopic System array of Cherenkov telescopes for a live time of 27.2 and 15.2 hr, respectively. No gamma-ray signal is found at the nominal target position of NGC 6388 and M15. In the primordial formation scenario, GCs are formed in a dark matter (DM) halo and DM could still be present in the baryon-dominated environment of GCs. This opens the possibility of observing a DM self-annihilation signal. The DM content of the GCs NGC 6388 and M15 is modeled taking into account the astrophysical processes that can be expected to influence the DM distribution during the evolution of the GC: the adiabatic contraction of DM by baryons, the adiabatic growth of a black hole in the DM halo, and the kinetic heating of DM by stars. Ninety-five percent confidence level exclusion limits on the DM particle velocity-weighted annihilation cross section are derived for these DM halos. In the TeV range, the limits on the velocity-weighted annihilation cross section are derived at the 10(-25) cm(3) s(-1) level and a few 10(-24) cm(3) s(-1) for NGC 6388 and M15, respectively.
  •  
33.
  • Abramowski, A., et al. (författare)
  • Long-term monitoring of PKS2155-304 with ATOM and HESS:investigation of optical/gamma-ray correlations in different spectral states
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 571
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper we report on the analysis of all the available optical and very high-energy gamma-ray (> 200 GeV) data for the BL Lac object PKS 2155-304, collected simultaneously with the ATOM and H.E.S.S. telescopes from 2007 until 2009. This study also includes X-ray (RXTE, Swift) and high-energy gamma-ray (Fermi-LAT) data. During the period analysed, the source was transitioning from its flaring to quiescent optical states, and was characterized by only moderate flux changes at different wavelengths on the timescales of days and months. A flattening of the optical continuum with an increasing optical flux can be noted in the collected dataset, but only occasionally and only at higher flux levels. We did not find any universal relation between the very high-energy gamma-ray and optical flux changes on the timescales from days and weeks up to several years. On the other hand, we noted that at higher flux levels the source can follow two distinct tracks in the optical flux-colour diagrams, which seem to be related to distinct gamma-ray states of the blazar. The obtained results therefore indicate a complex scaling between the optical and gamma-ray emission of PKS 2155 304, with different correlation patterns holding at different epochs, and a gamma-ray flux depending on the combination of an optical flux and colour rather than a flux alone.
  •  
34.
  • Abramowski, A., et al. (författare)
  • Search for a Dark Matter Annihilation Signal from the Galactic Center Halo with HESS
  • 2011
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 106:16, s. 161301-
  • Tidskriftsartikel (refereegranskat)abstract
    • A search for a very-high-energy (VHE; >= 100 GeV) gamma-ray signal from self-annihilating particle dark matter (DM) is performed towards a region of projected distance r similar to 45-150 pc from the Galactic center. The background-subtracted gamma-ray spectrum measured with the High Energy Stereoscopic System (H.E.S.S.) gamma-ray instrument in the energy range between 300 GeV and 30 TeV shows no hint of a residual gamma-ray flux. Assuming conventional Navarro-Frenk-White and Einasto density profiles, limits are derived on the velocity-weighted annihilation cross section as a function of the DM particle mass. These are among the best reported so far for this energy range and in particular differ only little between the chosen density profile parametrizations. In particular, for the DM particle mass of similar to 1 TeV, values for above 3 x 10(-25) cm(3) s(-1) are excluded for the Einasto density profile.
  •  
35.
  • Abramowski, A., et al. (författare)
  • Search for dark matter annihilation signals from the Fornax galaxy cluster with H.E.S.S.
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 750:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Fornax galaxy cluster was observed with the High Energy Stereoscopic System for a total live time of 14.5 hr, searching for very high energy (VHE; E > 100GeV) gamma-rays from dark matter (DM) annihilation. No significant signal was found in searches for point-like and extended emissions. Using several models of the DM density distribution, upper limits on the DM velocity-weighted annihilation cross-section as a function of the DM particle mass are derived. Constraints are derived for different DM particle models, such as those arising from Kaluza-Klein and supersymmetric models. Various annihilation final states are considered. Possible enhancements of the DM annihilation gamma-ray flux, due to DM substructures of the DM host halo, or from the Sommerfeld effect, are studied. Additional gamma-ray contributions from internal bremsstrahlung and inverse Compton radiation are also discussed. For a DM particle mass of 1 TeV, the exclusion limits at 95% of confidence level reach values of (95% C.L.) similar to 10(-23) cm(3) s(-1), depending on the DM particle model and halo properties. Additional contribution from DM substructures can improve the upper limits on by more than two orders of magnitude. At masses around 4.5 TeV, the enhancement by substructures and the Sommerfeld resonance effect results in a velocity-weighted annihilation cross-section upper limit at the level of (95% C.L.) similar to 10(-26) cm(3) s(-1).
  •  
36.
  • Abramowski, A., et al. (författare)
  • Search for Lorentz Invariance breaking with a likelihood fit of the PKS 2155-304 flare data taken on MJD 53944
  • 2011
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 34:9, s. 738-747
  • Tidskriftsartikel (refereegranskat)abstract
    • Several models of Quantum Gravity predict Lorentz Symmetry breaking at energy scales approaching the Planck scale (similar to 10(19) GeV). With present photon data from the observations of distant astrophysical sources, it is possible to constrain the Lorentz Symmetry breaking linear term in the standard photon dispersion relations. Gamma Ray Bursts (GRB) and flaring Active Galactic Nuclei (AGN) are complementary to each other for this purpose, since they are observed at different distances in different energy ranges and with different levels of variability. Following a previous publication of the High Energy Stereoscopic System (H.E.S.S.) collaboration [1], a more sensitive event-by-event method consisting of a likelihood fit is applied to PKS 2155-304 flare data of MJD 53944 (July 28, 2006) as used in the previous publication. The previous limit on the linear term is improved by a factor of similar to 3 up to M(QG)(1), > 2.1 X 10(1B) GeV and is currently the best result obtained with blazars. The sensitivity to the quadratic term is lower and provides a limit of M(QG)(q) > 6.4 x 10(10) GeV, which is the best value obtained so far with an AGN and similar to the best limits obtained with GRB. (C) 2011 Elsevier B.V. All rights reserved.
  •  
37.
  • Abramowski, A., et al. (författare)
  • Search for TeV Gamma-ray Emission from GRB 100621A, an extremely bright GRB in X-rays, with HESS
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 565, s. 1-6
  • Tidskriftsartikel (refereegranskat)abstract
    • The long gamma-ray burst (GRB) 100621A, at the time the brightest X-ray transient ever detected by Swift-XRT in the 0.3-10 keV range, has been observed with the H.E.S.S. imaging air Cherenkov telescope array, sensitive to gamma radiation in the very-high-energy (VHE, >100 GeV) regime. Due to its relatively small redshift of z similar to 0.5, the favourable position in the southern sky and the relatively short follow-up time (<700 s after the satellite trigger) of the H.E.S.S. observations, this GRB could be within the sensitivity reach of the HESS. instrument. The analysis of the HESS. data shows no indication of emission and yields an integral flux upper limit above similar to 380 GeV of 4.2 x 10(-12) cm(-2) s(-1) s (95% confidence level), assuming a simple Band function extension model. A comparison to a spectral-temporal model, normalised to the prompt flux at sub-MeV energies, constraints the existence of a temporally extended and strong additional hard power law, as has been observed in the other bright X-ray GRB 130427A. A comparison between the HESS. upper limit and the contemporaneous energy output in X-rays constrains the ratio between the X-ray and VHE gamma-ray fluxes to be greater than 0.4. This value is an important quantity for modelling the afterglow and can constrain leptonic emission scenarios, where leptons are responsible for the X-ray emission and might produce VHE gamma rays.
  •  
38.
  • Abramowski, A., et al. (författare)
  • TeV gamma-ray observations of the young synchrotron-dominated SNRs G1.9+0.3 and G330.2+1.0 with HESS
  • 2014
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 441:1, s. 790-799
  • Tidskriftsartikel (refereegranskat)abstract
    • The non-thermal nature of the X-ray emission from the shell-type supernova remnants (SNRs) G1.9+0.3 and G330.2+1.0 is an indication of intense particle acceleration in the shock fronts of both objects. This suggests that the SNRs are prime candidates for very-high-energy (VHE; E > 0.1 TeV) gamma-ray observations. G1.9+0.3, recently established as the youngest known SNR in the Galaxy, also offers a unique opportunity to study the earliest stages of SNR evolution in the VHE domain. The purpose of this work is to probe the level of VHE gamma-ray emission from both SNRs and use this to constrain their physical properties. Observations were conducted with the H. E. S. S. (High Energy Stereoscopic System) Cherenkov Telescope Array over a more than six-year period spanning 2004-2010. The obtained data have effective livetimes of 67 h for G1.9+0.3 and 16 h for G330.2+1.0. The data are analysed in the context of the multiwavelength observations currently available and in the framework of both leptonic and hadronic particle acceleration scenarios. No significant gamma-ray signal from G1.9+0.3 or G330.2+1.0 was detected. Upper limits (99 per cent confidence level) to the TeV flux from G1.9+0.3 and G330.2+1.0 for the assumed spectral index Gamma = 2.5 were set at 5.6 x 10(-1)3 cm(-2) s(-1) above 0.26 TeV and 3.2 x 10(-12) cm(-2) s(-1) above 0.38 TeV, respectively. In a one-zone leptonic scenario, these upper limits imply lower limits on the interior magnetic field to B-G1.9 greater than or similar to 12 mu G for G1.9+0.3 and to B-G330 greater than or similar to 8 mu G for G330.2+1.0. In a hadronic scenario, the low ambient densities and the large distances to the SNRs result in very low predicted fluxes, for which the H.E.S.S. upper limits are not constraining.
  •  
39.
  • Abramowski, A., et al. (författare)
  • THE 2012 FLARE OF PG 1553+113 SEEN WITH HESS AND FERMI-LAT
  • 2015
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 802:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Very high energy (VHE, E > 100 GeV)gamma-ray flaring activity of the high-frequency peaked BL Lac object PG 1553 + 113 has been detected by the H.E.S.S. telescopes. The flux of the source increased by a factor of 3 during the nights of 2012 April 26 and 27 with respect to the archival measurements with a hint of intra-night variability. No counterpart of this event has been detected in the Fermi-Large Area Telescope data. This pattern is consistent with VHE gamma(-)ray flaring being caused by the injection of ultrarelativistic particles, emitting.-rays at the highest energies. The dataset offers a unique opportunity to constrain the redshift of this source at z = 0.49 +/- 0.04 using a novel method based on Bayesian statistics. The indication of intra-night variability is used to introduce a novel method to probe for a possible Lorentz invariance violation (LIV), and to set limits on the energy scale at which Quantum Gravity (QG) effects causing LIV may arise. For the subluminal case, the derived limits are E-QG,E- 1 > 4.10 x 10(17) GeV and E-QG,E- 2 > 2.10 x 10(10) GeV for linear and quadratic LIV effects, respectively.
  •  
40.
  • Abramowski, A., et al. (författare)
  • The exceptionally powerful TeV gamma-ray emitters in the Large Magellanic Cloud
  • 2015
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 347:6220, s. 406-412
  • Tidskriftsartikel (refereegranskat)abstract
    • The Large Magellanic Cloud, a satellite galaxy of the Milky Way, has been observed with the High Energy Stereoscopic System (H.E.S.S.) above an energy of 100 billion electron volts for a deep exposure of 210 hours. Three sources of different types were detected: the pulsar wind nebula of the most energetic pulsar known, N 157B; the radio-loud supernova remnant N 132D; and the largest nonthermal x-ray shell, the superbubble 30 Dor C. The unique object SN 1987A is, unexpectedly, not detected, which constrains the theoretical framework of particle acceleration in very young supernova remnants. These detections reveal the most energetic tip of a g-ray source population in an external galaxy and provide via 30 Dor C the unambiguous detection of g-ray emission from a superbubble.
  •  
41.
  • Collaboration, H. E. S. S., et al. (författare)
  • HESS observations of the Crab during its March 2013 GeV gamma-ray flare
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 562, s. Article ID: UNSP L4-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. On March 4, 2013 the Fermi-EAT and AGILE reported a flare from the direction of the Crab nebula in which the high-energy (HE; E > 100 MeV) flux was six times above its quiescent level. Simultaneous observations in other energy bands give us hints about the emission processes during the flare episode and the physics of pulsar wind nebulae in general. Aims. We search for variability in the emission of the Crab nebula at very-high energies (VHF,; E > 100 GeV), using contemporaneous data taken with the H.E.S.S. array of Cherenkov telescopes. Methods. Observational data taken with the H.E.S.S. instrument on five consecutive days during the flare were analysed for the flux and spectral shape of the emission from the Crab nebula. Night-wise light curves are presented with energy thresholds of 1 TeV and 5 TeV. Results. The observations conducted with H.E.S.S. on March 6 to March 10, 2013 show no significant changes in the flux. They limit the variation in the integral flux above 1 TeV to less than 63% and the integral flux above 5 TeV to less than 78% at a 95% confidence level.
  •  
42.
  • Abdalla, H., et al. (författare)
  • Probing the Magnetic Field in the GW170817 Outflow Using HESS Observations
  • 2020
  • Ingår i: Astrophysical Journal Letters. - : Institute of Physics Publishing (IOPP). - 2041-8205 .- 2041-8213. ; 894:2, s. 1-5
  • Tidskriftsartikel (refereegranskat)abstract
    • The detection of the first electromagnetic counterpart to the binary neutron star (BNS) merger remnant GW170817 established the connection between short gamma-ray bursts and BNS mergers. It also confirmed the forging of heavy elements in the ejecta (a so-called kilonova) via the r-process nucleosynthesis. The appearance of nonthermal radio and X-ray emission, as well as the brightening, which lasted more than 100 days, were somewhat unexpected. Current theoretical models attempt to explain this temporal behavior as either originating from a relativistic off-axis jet or a kilonova-like outflow. In either scenario, there is some ambiguity regarding how much energy is transported in the nonthermal electrons versus the magnetic field of the emission region. Combining the Very Large Array (radio) and Chandra (X-ray) measurements with observations in the GeV-TeV domain can help break this ambiguity, almost independently of the assumed origin of the emission. Here we report for the first time on deep H.E.S.S. observations of GW170817/GRB 170817A between 124 and 272 days after the BNS merger with the full H.E.S.S. array of telescopes, as well as on an updated analysis of the prompt (<5 days) observations with the upgraded H.E.S.S. phase-I telescopes. We discuss implications of the H.E.S.S. measurement for the magnetic field in the context of different source scenarios.
  •  
43.
  • Abramowski, A., et al. (författare)
  • A new SNR with TeV shell-type morphology : HESS J1731-347
  • 2011
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 531, s. A81-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. The recent discovery of the radio shell-type supernova remnant (SNR), G353.6-0.7, in spatial coincidence with the unidentified TeV source HESS J1731-347 has motivated further observations of the source with the High Energy Stereoscopic System (HESS) Cherenkov telescope array to test a possible association of the gamma-ray emission with the SNR. Methods. With a total of 59 h of observation, representing about four times the initial exposure available in the discovery paper of HESS J1731-347, the gamma-ray morphology is investigated and compared with the radio morphology. An estimate of the distance is derived by comparing the interstellar absorption derived from X-rays and the one obtained from (12)CO and HI observations. Results. The deeper gamma-ray observation of the source has revealed a large shell-type structure with similar position and extension (r similar to 0.25 degrees) as the radio SNR, thus confirming their association. By accounting for the HESS angular resolution and projection effects within a simple shell model, the radial profile is compatible with a thin, spatially unresolved, rim. Together with RX J1713.7-3946, RX J0852.0-4622 and SN 1006, HESS J1731-347 is now the fourth SNR with a significant shell morphology at TeV energies. The derived lower limit on the distance of the SNR of 3.2 kpc is used together with radio and X-ray data to discuss the possible origin of the gamma-ray emission, either via inverse Compton scattering of electrons or the decay of neutral pions resulting from proton-proton interaction.
  •  
44.
  • Abramowski, A., et al. (författare)
  • Constraints on the gamma-ray emission from the cluster-scale AGN outburst in the Hydra A galaxy cluster
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 545, s. A103-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. In some galaxy clusters, powerful active galactic nuclei (AGN) have blown bubbles with cluster scale extent into the ambient medium. The main pressure support of these bubbles is not known to date, but cosmic rays are a viable possibility. For such a scenario copious gamma-ray emission is expected as a tracer of cosmic rays from these systems. Aims. Hydra A, the closest galaxy cluster hosting a cluster scale AGN outburst, located at a redshift of 0.0538, is investigated for being a gamma-ray emitter with the High Energy Stereoscopic System (H.E.S.S.) array and the Fermi Large Area Telescope (Fermi-LAT). Methods. Data obtained in 20.2 h of dedicated H. E. S. S. observations and 38 months of Fermi-LAT data, gathered by its usual all-sky scanning mode, have been analyzed to search for a gamma-ray signal. Results. No signal has been found in either data set. Upper limits on the gamma-ray flux are derived and are compared to models. These are the first limits on gamma-ray emission ever presented for galaxy clusters hosting cluster scale AGN outbursts. Conclusions. The non-detection of Hydra A in gamma-rays has important implications on the particle populations and physical conditions inside the bubbles in this system. For the case of bubbles mainly supported by hadronic cosmic rays, the most favorable scenario, which involves full mixing between cosmic rays and embedding medium, can be excluded. However, hadronic cosmic rays still remain a viable pressure support agent to sustain the bubbles against the thermal pressure of the ambient medium. The largest population of highly-energetic electrons, which are relevant for inverse-Compton gamma-ray production is found in the youngest inner lobes of Hydra A. The limit on the inverse-Compton gamma-ray flux excludes a magnetic field below half of the equipartition value of 16 mu G in the inner lobes.
  •  
45.
  • Abramowski, A., et al. (författare)
  • Discovery of extended VHE gamma-ray emission from the vicinity of the young massive stellar cluster Westerlund 1
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 537, s. A114-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. Results obtained in very-high-energy (VHE; E >= 100 GeV) gamma-ray observations performed with the H.E.S.S. telescope array are used to investigate particle acceleration processes in the vicinity of the young massive stellar cluster Westerlund 1 (Wd 1). Methods. Imaging of Cherenkov light from gamma-ray induced particle cascades in the Earth's atmosphere is used to search for VHE gamma rays from the region around Wd 1. Possible catalogued counterparts are searched for and discussed in terms of morphology and energetics of the H.E.S.S. source. Results. The detection of the degree-scale extended VHE gamma-ray source HESS J1646-458 is reported based on 45 h of H.E.S.S. observations performed between 2004 and 2008. The VHE gamma-ray source is centred on the nominal position of Wd 1 and detected with a total statistical significance of similar to 20 sigma. The emission region clearly extends beyond the H.E.S.S. point-spread function (PSF). The differential energy spectrum follows a power law in energy with an index of Gamma = 2.19 +/- 0.08(stat) +/- 0.20(sys) and a flux normalisation at 1 TeV of Phi(0) = (9.0 +/- 1.4(stat) +/- 1.8(sys)) x 10(-12) TeV-1 cm(-2) s(-1). The integral flux above 0.2 TeV amounts to (5.2 +/- 0.9) x 10(-11) cm(-2) s(-1). Conclusions. Four objects coincident with HESS J1646-458 are discussed in the search of a counterpart, namely the magnetar CXOU J164710.2-455216, the X-ray binary 4U 1642-45, the pulsar PSR J1648-4611 and the massive stellar cluster Wd 1. In a single-source scenario, Wd 1 is favoured as site of VHE particle acceleration. Here, a hadronic parent population would be accelerated within the stellar cluster. Beside this, there is evidence for a multi-source origin, where a scenario involving PSR J1648-4611 could be viable to explain parts of the VHE gamma-ray emission of HESS J1646-458.
  •  
46.
  • Abramowski, A., et al. (författare)
  • Discovery of gamma-ray emission from the extragalactic pulsar wind nebula N 157B with HESS
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 545, s. Article ID: L2-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the significant detection of the first extragalactic pulsar wind nebula (PWN) detected in gamma rays, N 157B, located in the large Magellanic Cloud (LMC). Pulsars with high spin-down luminosity are found to power energised nebulae that emit gamma rays up to energies of several tens of TeV. N 157B is associated with PSR J0537-6910, which is the pulsar with the highest known spin-down luminosity. The High Energy Stereoscopic System telescope array observed this nebula on a yearly basis from 2004 to 2009 with a dead-time corrected exposure of 46 h. The gamma-ray spectrum between 600 GeV and 12 TeV is well-described by a pure power-law with a photon index of 2.8 +/- 0.2(stat) +/- 0.3(syst) and a normalisation at 1 TeV of (8.2 +/- 0.8(stat) +/- 2.5(syst)) x 10(-13) cm(-2) s(-1) TeV-1. A leptonic multi-wavelength model shows that an energy of about 4 x 10(49) erg is stored in electrons and positrons. The apparent efficiency, which is the ratio of the TeV gamma-ray luminosity to the pulsar's spin-down luminosity, 0.08% +/- 0.01%, is comparable to those of PWNe found in the Milky Way. The detection of a PWN at such a large distance is possible due to the pulsar's favourable spin-down luminosity and a bright infrared photon-field serving as an inverse-Compton-scattering target for accelerated leptons. By applying a calorimetric technique to these observations, the pulsar's birth period is estimated to be shorter than 10 ms.
  •  
47.
  • Abramowski, A., et al. (författare)
  • Discovery of the source HESS J1356-645 associated with the young and energetic PSR J1357-6429
  • 2011
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 533, s. A103-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Several newly discovered very-high-energy (VHE; E > 100 GeV) gamma-ray sources in the Galaxy are thought to be associated with energetic pulsars. Among them, middle-aged (greater than or similar to 10(4) yr) systems exhibit large centre-filled VHE nebulae, offset from the pulsar position, which result from the complex relationship between the pulsar wind and the surrounding medium, and reflect the past evolution of the pulsar. Aims. Imaging Atmospheric Cherenkov Telescopes (IACTs) have been successful in revealing extended emission from these sources in the VHE regime. Together with radio and X-ray observations, this observational window allows one to probe the energetics and magnetic field inside these large-scale nebulae. Methods. H.E.S.S., with its large field of view, angular resolution of less than or similar to 0.1 degrees and unprecedented sensitivity, has been used to discover a large population of such VHE sources. In this paper, the H. E. S. S. data from the continuation of the Galactic Plane Survey (-80 degrees < l < 60 degrees, vertical bar b vertical bar < 3 degrees), together with the existing multi-wavelength observations, are used. Results. A new VHE gamma-ray source was discovered at RA (J2000) = 13(h)56(m)00(s), Dec (J2000) = -64 degrees 30'00 '' with a 2' statistical error in each coordinate, namely HESS J1356-645. The source is extended, with an intrinsic Gaussian width of (0.20 +/- 0.02)degrees. Its integrated energy flux between 1 and 10 TeV of 8 x 10(-12) erg cm(-2) s(-1) represents similar to 11% of the Crab Nebula flux in the same energy band. The energy spectrum between 1 and 20 TeV is well described by a power law dN/dE proportional to E-Gamma with photon index Gamma = 2.2 +/- 0.2(stat) +/- 0.2(sys). The inspection of archival radio images at three frequencies and the analysis of X-ray data from ROSAT/PSPC and XMM-Newton/MOS reveal the presence of faint non-thermal diffuse emission coincident with HESS J1356-645. Conclusions. HESS J1356-645 is most likely associated with the young and energetic pulsar PSR J1357-6429 (d = 2.4 kpc, tau(c) = 7.3 kyr and (E) over dot = 3.1 x 10(36) erg s(-1)), located at a projected distance of similar to 5 pc from the centroid of the VHE emission. HESS J1356-645 and its radio and X-ray counterparts would thus represent the nebula resulting from the past history of the PSR J1357-6429 wind. In a simple one-zone model, constraints on the magnetic field strength in the nebula are obtained from the flux of the faint and extended X-ray emission detected with ROSAT and XMM-Newton. Fermi-LAT upper limits in the high-energy ( HE; 0.1-100 GeV) domain are also used to constrain the parent electron spectrum. From the low magnetic field value inferred from this approach (similar to 3-4 mu G), HESS J1356-645 is thought to share many similarities with other known gamma-ray emitting nebulae, such as Vela X, as it exhibits a large-scale nebula seen in radio, X-rays and VHE gamma-rays.
  •  
48.
  • Abramowski, A., et al. (författare)
  • Discovery of VHE emission towards the Carina arm region with the HESS telescope array : HESSJ1018-589
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 541, s. A5-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Carina arm region, containing the supernova remnant SNRG284.3-1.8, the high-energy (HE; E > 100 MeV) binary 1FGL J1018.6-5856 and the energetic pulsar PSRJ1016-5857 and its nebula, has been observed with the H. E. S. S. telescope array. The observational coverage of the region in very-high-energy (VHE; E > 0.1TeV) gamma-rays benefits from deep exposure (40 h) of the neighboring open cluster Westerlund 2. The observations have revealed a new extended region of VHE gamma-ray emission. The new VHE source HESS J1018-589 shows a bright, point-like emission region positionally coincident with SNRG284.3-1.8 and 1FGL J1018.6-5856 and a diffuse extension towards the direction of PSRJ1016-5857. A soft (Gamma = 2.7 +/- 0.5(stat)) photon index, with a differential flux at 1 TeV of N-0 = (4.2 +/- 1.1) x 10(-13) TeV-1 cm(-2) s(-1) is found for the point-like source, whereas the total emission region including the diffuse emission region is well fit by a power-law function with spectral index Gamma = 2.9 +/- 0.4(stat) and differential flux at 1 TeV of N-0 = (6.8 +/- 1.6) x 10(-1)3 TeV-1 cm(-2) s(-1). This H. E. S. S. detection motivated follow-up X-ray observations with the XMM-Newton satellite to investigate the origin of the VHE emission. The analysis of the XMM-Newton data resulted in the discovery of a bright, non-thermal point-like source (XMMU J101855.4-58564) with a photon index of Gamma = 1.65 +/- 0.08 in the center of SNRG284.3-1.8, and a thermal, extended emission region coincident with its bright northern filament. The characteristics of this thermal emission are used to estimate the plasma density in the region as n approximate to 0.5 cm(-3) (2.9 kpc/d)(2). The position of XMMUJ101855.4-58564 is compatible with the position reported by the Fermi-LAT collaboration for the binary system 1FGL J1018.6-5856 and the variable Swift XRT source identified with it. The new X-ray data are used alongside archival multi-wavelength data to investigate the relationship between the VHE gamma-ray emission from HESS J1018-589 and the various potential counterparts in the Carina arm region.
  •  
49.
  • Abramowski, A., et al. (författare)
  • Discovery of VHE gamma-ray emission and multi-wavelength observations of the BL Lacertae object 1RXSJ101015.9-311909
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 542, s. A94-
  • Tidskriftsartikel (refereegranskat)abstract
    • 1RXS J101015.9-311909 is a galaxy located at a redshift of z = 0.14 hosting an active nucleus (called AGN) belonging to the class of bright BL Lac objects. Observations at high (HE, E > 100 MeV) and very high (VHE, E > 100 GeV) energies provide insights into the origin of very energetic particles present in such sources and the radiation processes at work. We report on results from VHE observations performed between 2006 and 2010 with the H. E. S. S. instrument, an array of four imaging atmospheric Cherenkov telescopes. H. E. S. S. data have been analysed with enhanced analysis methods, making the detection of faint sources more significant. VHE emission at a position coincident with 1RXS J101015.9-311909 is detected with H. E. S. S. for the first time. In a total good-quality livetime of about 49 h, we measure 263 excess counts, corresponding to a significance of 7.1 standard deviations. The photon spectrum above 0.2 TeV can be described by a power-law with a photon index of Gamma = 3.08 +/- 0.42(stat) +/- 0.20(sys). The integral flux above 0.2 TeV is about 0.8% of the flux of the Crab nebula and shows no significant variability over the time reported. In addition, public Fermi/LAT data are analysed to search for high energy emission from the source. The Fermi/LAT HE emission in the 100 MeV to 200 GeV energy range is significant at 8.3 standard deviations in the chosen 25-month dataset. UV and X-ray contemporaneous observations with the Swift satellite in May 2007 are also reported, together with optical observations performed with the atom telescope located at the H. E. S. S. site. Swift observations reveal an absorbed X-ray flux of F(0.3-7) keV = 1.04(-0.05)(+0.04) x 10(-11) erg cm(-2) s(-1) in the 0.3-7 keV range. Finally, all the available data are used to study the multi-wavelength properties of the source. The spectral energy distribution (SED) can be reproduced using a simple one-zone Synchrotron Self Compton (SSC) model with emission from a region with a Doppler factor of 30 and a magnetic field between 0.025 and 0.16 G. These parameters are similar to those obtained for other sources of this type.
  •  
50.
  • Abramowski, A., et al. (författare)
  • HESS observations of the Carina nebula and its enigmatic colliding wind binary Eta Carinae
  • 2012
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 424:1, s. 128-135
  • Tidskriftsartikel (refereegranskat)abstract
    • The massive binary system Eta Carinae and the surrounding H ii complex, the Carina nebula, are potential particle acceleration sites from which very high energy (VHE; E= 100 GeV) ?-ray emission could be expected. This paper presents data collected during VHE ?-ray observations with the HESS telescope array from 2004 to 2010, which cover a full orbit of Eta Carinae. In the 33.1-h data set no hint of significant ?-ray emission from Eta Carinae has been found and an upper limit on the ?-ray flux of (99 per cent confidence level) is derived above the energy threshold of 470 GeV. Together with the detection of high energy (HE; 0.1 =E= 100 GeV) ?-ray emission by the Fermi Large Area Telescope up to 100 GeV, and assuming a continuation of the average HE spectral index into the VHE domain, these results imply a cut-off in the ?-ray spectrum between the HE and VHE ?-ray range. This could be caused either by a cut-off in the accelerated particle distribution or by severe ?? absorption losses in the wind collision region. Furthermore, the search for extended ?-ray emission from the Carina nebula resulted in an upper limit on the ?-ray flux of (99 per cent confidence level). The derived upper limit of 23 on the cosmic ray enhancement factor is compared with results found for the old-age mixed-morphology supernova remnant W28.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 72

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy