SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bengtsson Torbjörn 1955 ) "

Sökning: WFRF:(Bengtsson Torbjörn 1955 )

  • Resultat 1-50 av 86
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Bengtsson, Torbjörn, 1955-, et al. (författare)
  • Plantaricin NC8 αβ exerts potent antimicrobial activity against Staphylococcus spp. and enhances the effects of antibiotics
  • 2020
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of conventional antibiotics has substantial clinical efficacy, however these vital antimicrobial agents are becoming less effective due to the dramatic increase in antibiotic-resistant bacteria. Novel approaches to combat bacterial infections are urgently needed and bacteriocins represent a promising alternative. In this study, the activities of the two-peptide bacteriocin PLNC8 αβ were investigated against different Staphylococcus spp. The peptide sequences of PLNC8 α and β were modified, either through truncation or replacement of all L-amino acids with D-amino acids. Both L- and D-PLNC8 αβ caused rapid disruption of lipid membrane integrity and were effective against both susceptible and antibiotic resistant strains. The D-enantiomer was stable against proteolytic degradation by trypsin compared to the L-enantiomer. Of the truncated peptides, β1-22, β7-34 and β1-20 retained an inhibitory activity. The peptides diffused rapidly (2 min) through the bacterial cell wall and permeabilized the cell membrane, causing swelling with a disorganized peptidoglycan layer. Interestingly, sub-MIC concentrations of PLNC8 αβ substantially enhanced the effects of different antibiotics in an additive or synergistic manner. This study shows that PLNC8 αβ is active against Staphylococcus spp. and may be developed as adjuvant in combination therapy to potentiate the effects of antibiotics and reduce their overall use.
  •  
3.
  • Abrikossova, Natalia, et al. (författare)
  • Effects of gadolinium oxide nanoparticles on the oxidative burst from human neutrophil granulocytes
  • 2012
  • Ingår i: Nanotechnology. - Bristol, United Kingdom : IOP Publishing Ltd.. - 0957-4484 .- 1361-6528. ; 23:27
  • Tidskriftsartikel (refereegranskat)abstract
    • We have previously shown that gadolinium oxide (Gd2O3) nanoparticles are promising candidates to be used as contrast agents in magnetic resonance (MR) imaging applications. In this study, these nanoparticles were investigated in a cellular system, as possible probes for visualization and targeting intended for bioimaging applications. We evaluated the impact of the presence of Gd2O3 nanoparticles on the production of reactive oxygen species (ROS) from human neutrophils, by means of luminol-dependent chemiluminescence. Three sets of Gd2O3 nanoparticles were studied, i.e. as synthesized, dialyzed and both PEG-functionalized and dialyzed Gd2O3 nanoparticles. In addition, neutrophil morphology was evaluated by fluorescent staining of the actin cytoskeleton and fluorescence microscopy. We show that surface modification of these nanoparticles with polyethylene glycol (PEG) is essential in order to increase their biocompatibility. We observed that the as synthesized nanoparticles markedly decreased the ROS production from neutrophils challenged with prey (opsonized yeast particles) compared to controls without nanoparticles. After functionalization and dialysis, more moderate inhibitory effects were observed at a corresponding concentration of gadolinium. At lower gadolinium concentration the response was similar to that of the control cells. We suggest that the diethylene glycol (DEG) present in the as synthesized nanoparticle preparation is responsible for the inhibitory effects on the neutrophil oxidative burst. Indeed, in the present study we also show that even a low concentration of DEG, 0.3%, severely inhibits neutrophil function. In summary, the low cellular response upon PEG-functionalized Gd2O3 nanoparticle exposure indicates that these nanoparticles are promising candidates for MR-imaging purposes.
  •  
4.
  • Asplund Persson, Anna, 1966-, et al. (författare)
  • Cross-talk between adenosine and the oxatriazole derivative GEA 3175 in platelets
  • 2005
  • Ingår i: European Journal of Pharmacology. - : Elsevier BV. - 0014-2999 .- 1879-0712. ; 517:3, s. 149-157
  • Tidskriftsartikel (refereegranskat)abstract
    • We examined the interplay between adenosine and the nitric oxide (NO)-containing oxatriazole derivative GEA 3175 in human platelets. The importance of cyclic guanosine 3′5′-monophosphate (cGMP)-inhibited phosphodiesterases (PDEs) was elucidated by treating the platelets with adenosine combined with either GEA 3175 or the PDE3-inhibitor milrinone. The drug combinations provoked similar cyclic adenosine 3′5′-monophosphate (cAMP) responses. On the contrary, cGMP levels were increased only in GEA 3175-treated platelets. Both drug combinations reduced P-selectin exposure, platelet adhesion and fibrinogen-binding. However, adenosine together with GEA 3175 was more effective in inhibiting platelet aggregation and ATP release. Thrombin-induced rises in cytosolic Ca2+ were suppressed by the two drug combinations. Adenosine administered with GEA 3175 was, however, more effective in reducing Ca2+ influx.In conclusion, the interaction between adenosine and GEA 3175 involves cGMP-mediated inhibition of PDE3. The results also imply that inhibition of Ca2+ influx represent another cGMP-specific mechanism that enhances the effect of adenosine.
  •  
5.
  • Bengtsson, Torbjörn, 1955-, et al. (författare)
  • Dual action of bacteriocin PLNC8 alpha beta through inhibition of Porphyromonas gingivalis infection and promotion of cell proliferation
  • 2017
  • Ingår i: Pathogens and Disease. - : Oxford University Press. - 2049-632X. ; 75:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Periodontitis is a chronic inflammatory disease that is characterised by accumulation of pathogenic bacteria, including Porphyromonas gingivalis, in periodontal pockets. The lack of effective treatments has emphasised in an intense search for alternative methods to prevent bacterial colonisation and disease progression. Bacteriocins are bacterially produced antimicrobial peptides gaining increased consideration as alternatives to traditional antibiotics. We show rapid permeabilisation and aggregation of P. gingivalis by the two-peptide bacteriocin PLNC8 alpha beta. In a cell culture model, P. gingivalis was cytotoxic against gingival fibroblasts. The proteome profile of fibroblasts is severely affected by P. gingivalis, including induction of the ubiquitin-proteasome pathway. PLNC8 alpha beta enhanced the expression of growth factors and promoted cell proliferation, and suppressed proteins associated with apoptosis. PLNC8 alpha beta efficiently counteracted P. gingivalis-mediated cytotoxicity, increased expression of a large number of proteins and restored the levels of inflammatory mediators. In conclusion, we show that bacteriocin PLNC8 alpha beta displays dual effects by acting as a potent antimicrobial agent killing P. gingivalis and as a stimulatory factor promoting cell proliferation. We suggest preventive and therapeutical applications of PLNC8 alpha beta in periodontitis to supplement the host immune defence against P. gingivalis infection and support wound healing processes.
  •  
6.
  • Bengtsson, Torbjörn, 1955-, et al. (författare)
  • Leucocyte activation by collagen-stimulated platelets in whole blood
  • 2002
  • Ingår i: Scandinavian Journal of Clinical and Laboratory Investigation. - : Informa UK Limited. - 0036-5513 .- 1502-7686. ; 62:6, s. 451-462
  • Tidskriftsartikel (refereegranskat)abstract
    • Interaction between vascular cells plays an important role in the initial phases of the inflammatory process, but the mechanisms responsible for cell-cell communication are not fully understood. In this study, activation of leucocytes and platelets in heparinized whole blood was assessed using lumi-aggregometry. This technique enables simultaneous measurement of aggregation and oxygen radical production by monitoring impedance and luminol-amplified chemiluminescence (CL), respectively. Collagen induced aggregation and CL, depending on dose, and markedly enhanced subsequent aggregation and CL-response triggered by the chemotactic peptide formyl-methionyl-leucyl-phenylalanine (fMet-Leu-Phe). Collagen stimulation of whole blood down- and upregulated the expression of L-selectin and CD11b, respectively. Monoclonal antibodies against sialyl LewisX and P-selectin caused a pronounced inhibition of the oxidative burst, triggered by collagen itself or by a combination of collagen and fMet-Leu-Phe. Furthermore, the Arg-Gly-Asp-Ser(RGDS)-peptide effectively inhibited collagentriggered aggregation and CL, and the subsequent enhancement of the fMet-Leu-Phe-induced responses. This suggests that fibrinogen plays a part in linking platelet GpIIb/IIIa with CD11b on the leucocyte surface. However, neither anti-CD11b nor the PI-peptide (containing the ?-chain motif in fibrinogen that interacts with CD11b) counteracted the stimulatory effects of activated platelets on leucocyte functions. The selectin- and integrin-antagonizing substances were ineffective on the CL-responses induced by fMet-Leu-Phe itself. This study suggests that, through selectin- and integrin-dependent interaction, activated platelets potentiate leucocyte aggregation and oxygen radical production, which might be important for the outcome of inflammatory reactions.
  •  
7.
  •  
8.
  • Bengtsson, Torbjörn, 1955-, et al. (författare)
  • Role of the actin cytoskeleton during respiratory burst in chemoattractant-stimulated neutrophils
  • 2006
  • Ingår i: Cell Biology International. - : Wiley. - 1065-6995 .- 1095-8355. ; 30:2, s. 154-163
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to clarify the role of the actin cytoskeleton during chemotactic peptide fMet-Leu-Phe (fMLF)-stimulated respiratory burst in human neutrophil granulocytes. Reactive oxygen species (ROS) was measured as luminol-amplified chemiluminescence (CL) and F-actin content as bodipy phallacidin fluorescence in neutrophils treated with latrunculin B or jasplakinolide, an inhibitor and activator of actin polymerization, respectively. Latrunculin B markedly decreased, whereas jasplakinolide increased, the F-actin content in neutrophils, unstimulated or stimulated with fMLF. Latrunculin B enhanced the fMLF-triggered ROS-production more than tenfold. Jasplakinolide initially inhibited the fMLF-induced CL-response, however, caused a potent second sustained phase (>400% of control). Both actin drugs triggered a substantial CL-response when added 5-25 min after fMLF. This was also valid for chemotactic doses of fMLF, where latrunculin B and jasplakinolide amplified the ROS-production 5-10 times. By using specific signal transduction inhibitors, we found that the NADPH oxidase activation triggered by destabilization of the actin cytoskeleton occurs downstream of phospholipase C and protein kinase C but is mediated by Rho GTPases and tyrosine phosphorylation. In conclusion, rearrangements of the actin cytoskeleton are a prerequisite in connecting ligand/receptor activation, generation of second messengers and assembly of the NADPH oxidase in neutrophil granulocytes. © 2005 International Federation for Cell Biology. Published by Elsevier Ltd. All rights reserved.
  •  
9.
  • Bengtsson, Torbjörn, 1955-, et al. (författare)
  • Secreted gingipains from Porphyromonas gingivalis colonies exert potent immunomodulatory effects on human gingival fibroblasts
  • 2015
  • Ingår i: Microbiological Research. - : Elsevier BV. - 0944-5013 .- 1618-0623. ; 178, s. 18-26
  • Tidskriftsartikel (refereegranskat)abstract
    • Periodontal pathogens, including Polphyromonas gingivalis, can form biofilms in dental pockets and cause inflammation, which is one of the underlying mechanisms involved in the development of periodontal disease, ultimately leading to tooth loss. Although P. gingivalis is protected in the biofilm, it can still cause damage and modulate inflammatory responses from the host, through secretion of microvesicles containing proteinases. The aim of this study was to evaluate the role of cysteine proteinases in P. gingivalis colony growth and development, and subsequent immunomodulatory effects on human gingival fibroblast. By comparing the wild type W50 with its gingipain deficient strains we show that cysteine proteinases are required by P. gingivalis to form morphologically normal colonies. The lysine-specific proteinase (Kgp), but not arginine-specific proteinases (Rgps), was associated with immunomodulation. P. gingivalis with Kgp affected the viability of gingival fibroblasts and modulated host inflammatory responses, including induction of TGF-beta 1 and suppression of CXCL8 and IL-6 accumulation. These results suggest that secreted products from P. gingivalis, including proteinases, are able to cause damage and significantly modulate the levels of inflammatory mediators, independent of a physical host-bacterial interaction. This study provides new insight of the pathogenesis of P. gingivalis and suggests gingipains as targets for diagnosis and treatment of periodontitis.
  •  
10.
  • Bengtsson, Torbjörn, 1955-, et al. (författare)
  • The lantibiotic gallidermin acts bactericidal against Staphylococcus epidermidis and Staphylococcus aureus and antagonizes the bacteria-induced proinflammatory responses in dermal fibroblasts
  • 2018
  • Ingår i: MicrobiologyOpen. - : John Wiley & Sons. - 2045-8827. ; 7:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Antimicrobial resistance needs to be tackled from new angles, and antimicrobial peptides could be future candidates for combating bacterial infections. This study aims to investigate in vitro the bactericidal effects of the lantibiotic gallidermin on Staphylococcus epidermidis and Staphylococcus aureus, possible cytotoxic effects and its impact on host-microbe interactions. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of gallidermin were determined, and cytotoxicity and proinflammatory effects of gallidermin on fibroblasts, red blood cells (RBCs) and in whole blood were investigated. Both MIC and MBC for all four tested strains of S. epidermidis was 6.25 μg/ml. Both MIC and MBC for methicillin-sensitive S. aureus was 12.5 μg/ml and for methicillin-resistant S. aureus (MRSA) 1.56 μg/ml. Gallidermin displayed no cytotoxic effects on fibroblasts, only a high dose of gallidermin induced low levels of CXCL8 and interleukin-6. Gallidermin hemolyzed less than 1% of human RBCs, and did not induce reactive oxygen species production or cell aggregation in whole blood. In cell culture, gallidermin inhibited the cytotoxic effects of the bacteria and totally suppressed the bacteria-induced release of CXCL8 and interleukin-6 from fibroblasts. We demonstrate that gallidermin, expressing low cell cytotoxicity, is a promising candidate for treating bacterial infections caused by S. epidermidis and S. aureus, especially MRSA.
  •  
11.
  • Berg, Cecilia, 1976-, et al. (författare)
  • Platelet-induced growth of human fibroblasts is associated with an increased expression of 5-lipoxygenase
  • 2006
  • Ingår i: Thrombosis and Haemostasis. - 0340-6245 .- 2567-689X. ; 96:5, s. 652-659
  • Tidskriftsartikel (refereegranskat)abstract
    • Proliferation of fibroblasts is vital for adequate wound healing but is probably also involved in different hyperproliferative disorders such as atherosclerosis and cancer. The regeneration of tissue usually starts with coagulation, involving release of mitogenic and inflammatory factors from activated platelets. This study focuses on the role of eicosanoids in the proliferative effects of platelets on human fibroblasts. We show that the phospholipase A2 inhibitor 7,7-dimethyl-5,8-eicosadienoic acid (DMDA), the combined cyclooxygenase (COX) and lipoxygenase (LOX) inhibitor 5,8,11,14-eicosatetraynoic acid (ETYA) and the LOX inhibitor 5,8,11-eicosatriynoic acid (ETI) block the platelet-induced proliferation of serum starved subconfluent human fibroblasts. Anti-proliferative effects were also obtained by specific inhibition of 5-LOX with 5,6-dehydro arachidonic acid (5,6-dAA), whereas the 12-LOX inhibitor cinnamyl-3,4-dihydroxy-α-cyanocinnamate (CDC) did not affect the platelet-stimulated growth of fibroblasts. The expression of 5-LOX was analyzed by reverse-transcriptase-mediated PCR (RT-PCR), Western blotting and HPLC. 5-LOX message and protein was detected in fibroblasts but not in platelets. Incubation with platelets markedly increased, already after one hour, the expression of 5-LOX in the fibroblast culture. The increased 5-LOX activity was associated with an elevated level of the 5-LOX metabolite 5-hydroxyeicosatetraenoic acid (5-HETE) reaching its maximum after 1-2 hours of co-incubation of fibroblasts and platelets. The 5-HETE production was reduced by the inhibitors DMDA, ETYA and ETI. In conclusion, this study suggests that platelet-stimulated proliferation of fibroblasts is mediated by an increased 5-LOX activity, which supports recent findings indicating a crucial role for this enzyme in proliferative disorders such as atherosclerosis. © 2006 Schattauer GmbH, Stuttgart.
  •  
12.
  • Berg, Cecilia, 1976-, et al. (författare)
  • Platelets induce reactive oxygen species-dependent growth of human skin fibroblasts
  • 2003
  • Ingår i: European Journal of Cell Biology. - : Elsevier BV. - 0171-9335 .- 1618-1298. ; 82:11, s. 565-571
  • Tidskriftsartikel (refereegranskat)abstract
    • A growing amount of evidence suggests that reactive oxygen species (ROS), such as hydrogen peroxide and superoxide anion, regulate intracellular signalling and have a role in cell proliferation. In the present study, we show that platelets increase the mitogenic rate in human fibroblasts and that this effect was inhibited by the intracellular antioxidant N-acetyl-L-cysteine (NAC) and the NADPH-oxidase inhibitor diphenyleneiodonium chloride (DPI). The mitogenic effects of platelets were mimicked by the platelet factors platelet-derived growth factor BB-isoform (PDGF-BB), transforming growth factor β1 (TGF-β1) and sphingosine-1-phosphate (S1P). The sphingosine kinase inhibitor DL-threo-dihydrosphingosine (DL-dihydro) abrogated the platelet-induced growth, while antibodies directed against PDGF or TGF-β had modest effects. Exposure of fibroblasts to platelets, PDGF-BB, TGF-β1 or S1P caused an extensive intracellular ROS production, measured as changes in dichlorofluorescein fluorescence. This ROS production was totally inhibited by NAC, pyrrolidinethiocarbamate (PDTC), DPI and apocynin. In conclusion, the results presented are indicative of a crucial role of ROS in the platelet-mediated regulation of fibroblast proliferation.
  •  
13.
  • Davies, Julia R, 1962-, et al. (författare)
  • Polymicrobial synergy stimulates Porphyromonas gingivalis survival and gingipain expression in a multi-species subgingival community
  • 2021
  • Ingår i: BMC Oral Health. - : BioMed Central. - 1472-6831. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Dysbiosis in subgingival microbial communities, resulting from increased inflammatory transudate from the gingival tissues, is an important factor in initiation and development of periodontitis. Dysbiotic communities are characterized by increased numbers of bacteria that exploit the serum-like transudate for nutrients, giving rise to a proteolytic community phenotype. Here we investigate the contribution of interactions between members of a sub-gingival community to survival and development of virulence in a serum environment-modelling that in the subgingival pocket.METHODS: Growth and proteolytic activity of three Porphyromonas gingivalis strains in nutrient broth or a serum environment were assessed using A600 and a fluorescent protease substrate, respectively. Adherence of P. gingivalis strains to serum-coated surfaces was studied with confocal microscopy and 2D-gel electrophoresis of bacterial supernatants used to investigate extracellular proteins. A model multi-species sub-gingival community containing Fusobacterium nucleatum, Streptococcus constellatus, Parvimonas micra with wild type or isogenic mutants of P. gingivalis was then created and growth and proteolytic activity in serum assessed as above. Community composition over time was monitored using culture techniques and qPCR.RESULTS: The P. gingivalis strains showed different growth rates in nutrient broth related to the level of proteolytic activity (largely gingipains) in the cultures. Despite being able to adhere to serum-coated surfaces, none of the strains was able to grow alone in a serum environment. Together in the subgingival consortium however, all the included species were able to grow in the serum environment and the community adopted a proteolytic phenotype. Inclusion of P. gingivalis strains lacking gingipains in the consortium revealed that community growth was facilitated by Rgp gingipain from P. gingivalis.CONCLUSIONS: In the multi-species consortium, growth was facilitated by the wild-type and Rgp-expressing strains of P. gingivalis, suggesting that Rgp is involved in delivery of nutrients to the whole community through degradation of complex protein substrates in serum. Whereas they are constitutively expressed by P. gingivalis in nutrient broth, gingipain expression in the model periodontal pocket environment (serum) appeared to be orchestrated through signaling to P. gingivalis from other members of the community, a phenomenon which then promoted growth of the whole community.
  •  
14.
  • Eskilson, Olof, 1992-, et al. (författare)
  • Nanocellulose composite wound dressings for real-time pH wound monitoring
  • 2023
  • Ingår i: Materials Today Bio. - : Elsevier. - 2590-0064. ; 19
  • Tidskriftsartikel (refereegranskat)abstract
    • The skin is the largest organ of the human body. Wounds disrupt the functions of the skin and can have catastrophic consequences for an individual resulting in significant morbidity and mortality. Wound infections are common and can substantially delay healing and can result in non-healing wounds and sepsis. Early diagnosis and treatment of infection reduce risk of complications and support wound healing. Methods for monitoring of wound pH can facilitate early detection of infection. Here we show a novel strategy for integrating pH sensing capabilities in state-of-the-art hydrogel-based wound dressings fabricated from bacterial nanocellulose (BC). A high surface area material was developed by self-assembly of mesoporous silica nanoparticles (MSNs) in BC. By encapsulating a pH-responsive dye in the MSNs, wound dressings for continuous pH sensing with spatiotemporal resolution were developed. The pH responsive BC-based nanocomposites demonstrated excellent wound dressing properties, with respect to conformability, mechanical properties, and water vapor transmission rate. In addition to facilitating rapid colorimetric assessment of wound pH, this strategy for generating functional BC-MSN nanocomposites can be further be adapted for encapsulation and release of bioactive compounds for treatment of hard-to-heal wounds, enabling development of novel wound care materials.
  •  
15.
  • Eskilson, Olof, 1992-, et al. (författare)
  • Self-Assembly of Mechanoplasmonic Bacterial Cellulose-Metal Nanoparticle Composites
  • 2020
  • Ingår i: Advanced Functional Materials. - : Wiley-VCH Verlagsgesellschaft. - 1616-301X .- 1616-3028. ; 30:40
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanocomposites of metal nanoparticles (NPs) and bacterial nanocellulose (BC) enable fabrication of soft and biocompatible materials for optical, catalytic, electronic, and biomedical applications. Current BC-NP nanocomposites are typically prepared by in situ synthesis of the NPs or electrostatic adsorption of surface functionalized NPs, which limits possibilities to control and tune NP size, shape, concentration, and surface chemistry and influences the properties and performance of the materials. Here a self-assembly strategy is described for fabrication of complex and well-defined BC-NP composites using colloidal gold and silver NPs of different sizes, shapes, and concentrations. The self-assembly process results in nanocomposites with distinct biophysical and optical properties. In addition to antibacterial materials and materials with excellent senor performance, materials with unique mechanoplasmonic properties are developed. The homogenous incorporation of plasmonic gold NPs in the BC enables extensive modulation of the optical properties by mechanical stimuli. Compression gives rise to near-field coupling between adsorbed NPs, resulting in tunable spectral variations and enhanced broadband absorption that amplify both nonlinear optical and thermoplasmonic effects and enables novel biosensing strategies.
  •  
16.
  • Fursatz, Marian, et al. (författare)
  • Functionalization of bacterial cellulose wound dressings with the antimicrobial peptide ε-poly-L-Lysine
  • 2018
  • Ingår i: Biomedical Materials. - : Institute of Physics Publishing (IOPP). - 1748-6041 .- 1748-605X. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Wound dressings based on bacterial cellulose (BC) can form a soft and conformable protective layer that can stimulate wound healing while preventing bacteria from entering the wound. Bacteria already present in the wound can, however, thrive in the moist environment created by the BC dressing which can aggravate the healing process. Possibilities to render the BC antimicrobial without affecting the beneficial structural and mechanical properties of the material would hence be highly attractive. Here we present methods for functionalization of BC with ε-Poly-L-Lysine (ε-PLL), a non-toxic biopolymer with broad-spectrum antimicrobial activity. Low molecular weight ε-PLL was cross-linked in pristine BC membranes and to carboxymethyl cellulose (CMC) functionalized BC using carbodiimide chemistry. The functionalization of BC with ε-PLL inhibited growth of S. epidermidis on the membranes but did not affect the cytocompatibility to cultured human fibroblasts as compared to native BC. The functionalization had no significant effects on the nanofibrous structure and mechanical properties of the BC. The possibility to functionalize BC with ε-PLL is a promising, green and versatile approach to improve the performance of BC in wound care and other biomedical applications.
  •  
17.
  • Fälker, Knut, 1971-, et al. (författare)
  • The Toll-like receptor 2/1 (TLR2/1) complex initiates human platelet activation via the src/Syk/LAT/PLC gamma 2 signalling cascade
  • 2014
  • Ingår i: Cellular Signalling. - New York, USA : Elsevier. - 0898-6568 .- 1873-3913. ; 26:2, s. 279-286
  • Tidskriftsartikel (refereegranskat)abstract
    • The specific TLR2/1 complex activator Pam3CSK4 has been shown to provoke prominent activation and aggregation of human non-nucleated platelets. As Pam3CSK4-evoked platelet activation does not employ the major signalling pathway established in nucleated immune cells, we investigated if the TLR2/1 complex on platelets may initiate signalling pathways known to be induced by physiological agonists such as collagen via GPVI or thrombin via PARs. We found that triggering TLR2/1 complex-signalling with Pam3CSK4, in common with that induced via GPVI, and in contrast to that provoked by PARS, involves tyrosine phosphorylation of the adaptor protein LAT as well as of PLC gamma 2 in a src- and Syk-dependent manner. In this respect, we provide evidence that Pam3CSK4 does not cross-activate GPVI. Further, by the use of platelets from a Glanzmann's thrombasthenia patient lacking beta(3), in contrast to findings in nucleated immune cells, we show that the initiation of platelet activation by Pam3CSK4 does not involve integrin beta(3) signalling; whereas the latter, subsequent to intermediate TXA2 synthesis and signalling, was found to be indispensable for proper dense granule secretion and full platelet aggregation. Together, our findings reveal that triggering the TLR2/1 complex with Pam3CSK4 initiates human platelet activation by engaging tyrosine kinases of the src family and Syk, the adaptor protein LAT, as well as the key mediator PLC gamma 2. (C) 2013 Elsevier Inc. All rights reserved.
  •  
18.
  • Herbertsson, H, et al. (författare)
  • Role of platelets and the arachidonic acid pathway in the regulation of neutrophil oxidase activity
  • 2001
  • Ingår i: Scandinavian Journal of Clinical and Laboratory Investigation. - : Informa UK Limited. - 0036-5513 .- 1502-7686. ; 61:8, s. 641-649
  • Tidskriftsartikel (refereegranskat)abstract
    • The intercellular mechanisms involved in platelet-mediated regulation of neutrophil function remain incompletely understood. This study investigated the role of the arachidonic acid pathway in the modulation of chemoattractant-induced production of oxygen metabolites, measured as luminol-amplified chemiluminescence (CL). We demonstrate that platelets dose-dependently inhibit the CL response in neutrophils stimulated with N-formyl-methionyl-leucyl-phenylalanine (fMLP). Incubation with eicosatetrayonic acid (ETYA), a combined cyclooxygenase and lipooxygenase inhibitor, dramatically decreased the fMLP-induced CL response in neutrophils, an effect that was further enhanced in the presence of platelets. The separate effects of eicosatriyonic acid (ETI) and indomethacin, specific inhibitors of lipoxygenase and cyclooxygenase, respectively, were significantly lower compared to the action of ETYA. On the contrary, impediment of arachidonic acid release with the phospholipase A2 inhibitor arachidonyl trifluoromethyl ketone (ATK) markedly increased the production of oxygen radicals triggered by fMLP. The addition of exogenous arachidonic acid clearly decreased the fMLP-induced CL response in neutrophils, which further strengthens a downregulating effect of arachidonic acid on oxidase activity. This inhibitory action of arachidonic acid, however, was reversed upon co-incubation with platelets. In conclusion, this study suggests that an accumulation of arachidonic acid, following chemotactic peptide stimulation, turns off neutrophil oxidase activity. Furthermore, platelets may support the synthesis of reactive arachidonic acid metabolites, which modulate oxygen radical production in neutrophils.
  •  
19.
  • Jayaprakash, Kartheyaene, 1983-, et al. (författare)
  • Gingipains from Porphyromonas gingivalis play a significant role in induction and regulation of CXCL8 in THP-1 cells
  • 2014
  • Ingår i: BMC Microbiology. - : BioMed Central. - 1471-2180. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Porphyromonas gingivalis is an important bacterial etiological agent involved in periodontitis. The bacterium expresses two kinds of cysteine proteases called gingipains: arginine gingipains (RgpA/B) and lysine gingipain (Kgp). This study evaluated the interaction between P. gingivalis and THP-1 cells, a widely used monocytic cell line, in vitro with a focus on CXCL8 at the gene and protein levels and its fate thereafter in cell culture supernatants. THP-1 cells were stimulated with viable and heat-killed wild-type strains ATCC 33277 or W50 or viable isogenic gingipain mutants of W50, E8 (Rgp mutant) or K1A (Kgp mutant), for 24 hours.Results: ELISA and qPCR results show an elevated CXCL8 expression and secretion in THP-1 cells in response to P. gingivalis, where the heat-killed ATCC33277 and W50 induced higher levels of CXCL8 in comparison to their viable counterparts. Furthermore, the Kgp-deficient mutant K1A caused a higher CXCL8 response compared to the Rgp-deficient E8. Chromogenic quantification of lipopolysaccharide (LPS) in supernatant showed no significant differences between viable and heat killed bacteria except that W50 shed highest levels of LPS. The wild-type strains secreted relatively more Rgp during the co-culture with THP-1 cells. The CXCL8 degradation assay of filter-sterilized supernatant from heat-killed W50 treated cells showed that Rgp was most efficient at CXCL8 hydrolysis. Of all tested P. gingivalis strains, adhesion and internalization in THP-1 cells was least conspicuous by Rgp-deficient P. gingivalis (E8), as demonstrated by confocal imaging.Conclusions: W50 and its Kgp mutant K1A exhibit a higher immunogenic and proteolytic function in comparison to the Rgp mutant E8. Since K1A differs from E8 in the expression of Rgp, it is rational to conclude that Rgp contributes to immunomodulation in a more dynamic manner in comparison to Kgp. Also, W50 is a more virulent strain when compared to the laboratory strain ATCC33277.
  •  
20.
  • Jayaprakash, Kartheyaene, 1983-, et al. (författare)
  • PKC, ERK/p38 MAP kinases and NF-B targeted signalling play a role in the expression and release of IL-1β  and CXCL8 in Porphyromonas gingivalis-infected THP1 cells
  • 2017
  • Ingår i: Acta Pathologica, Microbiologica et Immunologica Scandinavica (APMIS). - : John Wiley & Sons. - 0903-4641 .- 1600-0463. ; 125:7, s. 623-633
  • Tidskriftsartikel (refereegranskat)abstract
    • Porphyromonas gingivalis is a keystone pathogen in periodontitis and is gaining importance in cardiovascular pathogenesis. Protease-activated receptors (PARs), toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD) on monocytes recognize the structural components on P. gingivalis, inducing inflammatory intermediates. Here, we elucidate the modulation of PARs, TLRs, NODs, and the role of MAPK and NF-B in IL-1 and CXCL8 release. THP1 cells were stimulated with P. gingivalis wild-type W50 and its isogenic gingipain mutants: Rgp mutant E8 and Kgp mutant K1A. We observed modulation of PARs, TLRs, NOD, IL-1 and CXCL8 expression by P. gingivalis. Gingipains hydrolyse IL-1 and CXCL8, which is more evident for IL-1 accumulation at 24 h. Inhibition of PKC (protein kinase C), p38 and ERK (extracellular signal-regulated kinases) partially reduced P. gingivalis-induced IL-1 at 6 h, whereas PKC and ERK reduced CXCL8 at both 6 and 24 h. Following NF-B inhibition, P. gingivalis-induced IL-1 and CXCL8 were completely suppressed to basal levels. Overall, TLRs, PARs and NOD possibly act in synergy with PKC, MAPK ERK/p38 and NF-B in P. gingivalis-induced IL-1 and CXCL8 release from THP1 cells. These pro-inflammatory cytokines could affect leucocytes in circulation and exacerbate other vascular inflammatory conditions such as atherosclerosis.
  •  
21.
  •  
22.
  • Jayaprakash, Kartheyaene, et al. (författare)
  • Porphyromonas gingivalis-induced inflammatory responses in THP1 cells are altered by native and modified low-density lipoproteins in a strain-dependent manner
  • 2018
  • Ingår i: Acta Pathologica, Microbiologica et Immunologica Scandinavica (APMIS). - : Wiley-Blackwell Publishing Inc.. - 0903-4641 .- 1600-0463. ; 126:8, s. 667-677
  • Tidskriftsartikel (refereegranskat)abstract
    • Strong epidemiological evidence supports an association between cardiovascular and periodontal disease and furthermore, the periodontopathogen Porphyromonas gingivalis has been identified in blood and from atheromatous plaques. Blood exposed to P.gingivalis shows an increased protein modification of low-density lipoprotein (LDL). In this study, we investigate the inflammatory responses of THP1 cells incubated with P.gingivalis and the effects of native or modified LDL on these responses. Reactive oxygen species (ROS) and IL-1 were observed in THP1 cells following infection with P.gingivalis ATCC33277 and W50. Caspase 1 activity was quantified in THP1 cells and correlated with IL-1 accumulation. Oxidized LDL (oxLDL) induced IL-1 release and CD36 expression on THP1 cells. Modified LDL co-stimulated with ATCC33277 exhibited regulatory effects on caspase 1 activity, IL-1 release and CD36 expression in THP1 cells, whereas W50 induced more modest responses in THP1 cells. In summary, we show that P.gingivalis is capable of inducing pro-inflammatory responses in THP1 cells, and native and modified LDL could alter these responses in a dose- and strain-dependent manner. Strain-dependent differences in THP1 cell responses could be due to the effect of P.gingivalis proteases, presence or absence of capsule and proteolytic transformation of native and modified LDL.
  •  
23.
  •  
24.
  • Jayaprakash, Kartheyaene, 1983-, et al. (författare)
  • The role of phagocytosis, oxidative burst and neutrophil extracellular traps in the interaction between neutrophils and the periodontal pathogen Porphyromonas gingivalis
  • 2015
  • Ingår i: Molecular Oral Microbiology. - : Wiley. - 2041-1006 .- 2041-1014. ; 30:5, s. 361-375
  • Tidskriftsartikel (refereegranskat)abstract
    • Neutrophils are regarded as the sentinel cells of innate immunity and are found in abundance within the gingival crevice. Discovery of neutrophil extracellular traps (NETs) within the gingival pockets prompted us to probe the nature of the interactions of neutrophils with the prominent periopathogen Porphyromonas gingivalis. Some of the noted virulence factors of this Gram-negative anaerobe are gingipains: arginine gingipains (RgpA/B) and lysine gingipain (Kgp). The aim of this study was to evaluate the role of gingipains in phagocytosis, formation of reactive oxygen species, NETs and CXCL8 modulation by using wild-type strains and isogenic gingipain mutants. Confocal imaging showed that gingipain mutants K1A (Kgp) and E8 (RgpA/B) induced extracellular traps in neutrophils, whereas ATCC33277 and W50 were phagocytosed. The viability of both ATCC33277 and W50 dwindled as the result of phagocytosis and could be salvaged by cytochalasin D, and the bacteria released high levels of lipopolysaccharide in the culture supernatant. Porphyromonas gingivalis induced reactive oxygen species and CXCL8 with the most prominent effect being that of the wild-type strain ATCC33277, whereas the other wild-type strain W50 was less effective. Quantitative real-time polymerase chain reaction revealed a significant CXCL8 expression by E8. All the tested P.gingivalis strains increased cytosolic free calcium. In conclusion, phagocytosis is the primary neutrophil response to P.gingivalis, although NETs could play an accessory role in infection control. Although gingipains do not seem to directly regulate phagocytosis, NETs or oxidative burst in neutrophils, their proteolytic properties could modulate the subsequent outcomes such as nutrition acquisition and survival by the bacteria.
  •  
25.
  • Khalaf, Hazem, 1981-, et al. (författare)
  • Altered T-cell responses by the periodontal pathogen Porphyromonas gingivalis
  • 2012
  • Ingår i: PLOS ONE. - San Francisco, USA : Public Library Science. - 1932-6203. ; 7:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Several studies support an association between the chronic inflammatory diseases periodontitis and atherosclerosis with a crucial role for the periodontal pathogen Porphyromonas gingivalis. However, the interplay between this pathogen and the adaptive immune system, including T-cells, is sparsely investigated. Here we used Jurkat T-cells to determine the effects of P. gingivalis on T-cell-mediated adaptive immune responses. We show that viable P. gingivalis targets IL-2 expression at the protein level. Initial cellular events, including ROS production and [Ca2+]i, were elevated in response to P. gingivalis, but AP-1 and NF-κB activity dropped below basal levels and T-cells were unable to sustain stable IL-2 accumulation. IL-2 was partially restored by Leupeptin, but not by Cathepsin B Inhibitor, indicating an involvement of Rgp proteinases in the suppression of IL-2 accumulation. This was further confirmed by purified Rgp that caused a dose-dependent decrease in IL-2 levels. These results provide new insights of how this periodontal pathogen evades the host adaptive immune system by inhibiting IL-2 accumulation and thus attenuating T-cell proliferation and cellular communication.
  •  
26.
  •  
27.
  • Khalaf, Hazem, 1981-, et al. (författare)
  • Antibacterial effects of Lactobacillus and bacteriocin PLNC8 αβ on the periodontal pathogen Porphyromonas gingivalis
  • 2016
  • Ingår i: BMC Microbiology. - London, United Kingdom : BioMed Central (BMC). - 1471-2180. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The complications in healthcare systems associated with antibiotic-resistant microorganisms have resulted in an intense search for new effective antimicrobials. Attractive substances from which novel antibiotics may be developed are the bacteriocins. These naturally occurring peptides are generally considered to be safe and efficient at eliminating pathogenic bacteria. Among specific keystone pathogens in periodontitis, Porphyromonas gingivalis is considered to be the most important pathogen in the development and progression of chronic inflammatory disease. The aim of the present study was to investigate the antimicrobial effects of different Lactobacillus species and the two-peptide bacteriocin PLNC8 αβ on P. gingivalis.Results: Growth inhibition of P. gingivalis was obtained by viable Lactobacillus and culture media from L. plantarum NC8 and 44048, but not L. brevis 30670. The two-peptide bacteriocin from L. plantarum NC8 (PLNC8 αβ) was found to be efficient against P. gingivalis through binding followed by permeabilization of the membranes, using Surface plasmon resonance analysis and DNA staining with Sytox Green. Liposomal systems were acquired to verify membrane permeabilization by PLNC8 αβ. The antimicrobial activity of PLNC8 αβ was found to be rapid (1 min) and visualized by TEM to cause cellular distortion through detachment of the outer membrane and bacterial lysis.Conclusion: Soluble or immobilized PLNC8 αβ bacteriocins may be used to prevent P. gingivalis colonization and subsequent pathogenicity, and thus supplement the host immune system against invading pathogens associated with periodontitis.
  •  
28.
  • Khalaf, Hazem, 1981-, et al. (författare)
  • Cellular Response Mechanisms in Porphyromonas gingivalis Infection
  • 2017
  • Ingår i: Periodontitis. - : InTech. - 9789535136064 - 9789535136057 ; , s. 45-68
  • Bokkapitel (refereegranskat)abstract
    • The pathogenicity of the periodontal biofilm is highly dependent on a few key species, of which Porphyromonas gingivalis is considered to be one of the most important pathogens. P. gingivalis expresses a broad range of virulence factors, of these cysteine proteases (gingipains) are of special importance both for the bacterial survival/proliferation and for the pathological outcome. Several cell types, for example, epithelial cells, endothelial cells, dendritic cells, osteoblasts, and fibroblasts, reside in the periodontium and are part of the innate host response, as well as platelets, neutrophils, lymphocytes, and monocytes/macrophages. These cells recognize and respond to P. gingivalis and its components through pattern recognition receptors (PRRs), for example, Toll-like receptors and protease-activated receptors. Ligation of PRRs induces downstream-signaling pathways modifying the activity of transcription factors that regulates the expression of genes linked to inflammation. This is followed by the release of inflammatory mediators, for example, cytokines and reactive oxygen species. Periodontal disease is today considered to play a significant role in various systemic conditions such as cardiovascular disease (CVD). The mechanisms by which P. gingivalis and its virulence factors interact with host immune cells and contribute to the pathogenesis of periodontitis and CVD are far from completely understood.
  •  
29.
  • Khalaf, Hazem, 1981-, et al. (författare)
  • Cytokines and chemokines are differentially expressed in patients with periodontitis : Possible role for TGF-beta 1 as a marker for disease progression
  • 2014
  • Ingår i: Cytokine. - London : Academic Press. - 1043-4666 .- 1096-0023. ; 67:1, s. 29-35
  • Tidskriftsartikel (refereegranskat)abstract
    • Periodontitis is a chronic inflammatory disease characterized by destruction of periodontal tissue ultimately leading to bone destruction and has been associated with other inflammatory diseases, such as atherosclerosis. Attachment loss of periodontal tissue is primarily caused by host cell-derived immune responses against subgingival biofilm. The aim of the present study was to determine the cytokine profile in serum, saliva and gingival crevicular fluid (GCF) patients with periodontitis and healthy controls. We show that periodontitis patients exhibit higher numbers of periodontal pathogens and their immune responses are significantly altered. The levels of IL-6 in saliva and GCF were significantly suppressed, and while CXCL8 was not altered in serum, its expression levels were significantly suppressed in saliva and elevated in GCF. The T-cell-derived cytokine IL-2 did not differ between patients and controls in serum and saliva, but there was a significant suppression in GCF of patients. Interestingly, TGF-beta(1) levels were significantly elevated in serum, saliva and GCF in patients compared to controls. Furthermore, by using cultured gingival fibroblasts stimulated with wild type and proteinase mutant strains of Porphyromonas gingivalis, we show that the suppression of CXCL8 and IL-6, and the induction of TGF-beta(1) is primarily mediated by the proteolytic activity of lysine-specific proteinases. These results indicate that P. gingivalis is a major contributor to the altered immune responses and the pathology of periodontitis. Furthermore, the ease of sampling and analyzing cytokine expression profiles, including TGF-beta(1), in saliva and GCF may serve to predict the progression of periodontitis and associated systemic inflammatory diseases.
  •  
30.
  • Khalaf, Hazem, 1981-, et al. (författare)
  • Suppression of inflammatory gene expression in T cells by Porphyromonas gingivalis is mediated by targeting MAPK signaling
  • 2013
  • Ingår i: Cellular & Molecular Immunology. - London, United Kingdom : Nature Publishing Group. - 1672-7681 .- 2042-0226. ; 10:5, s. 413-422
  • Tidskriftsartikel (refereegranskat)abstract
    • There is increasing awareness of the effects of Porphyromonas gingivalis on host immune responses. Degradation of cytokines and chemokines by cysteine proteinases has previously been reported. However, the precise mechanisms by which P. gingivalis is able to alter intracellular signaling, and thus proliferation and inflammation, have not been described. We have previously reported suppression of activator protein-1 (AP-1) and degradation of IL-2 by proteinases from P. gingivalis. In the present study, we have analyzed the effects of P. gingivalis on Jurkat T-cell signal transduction and subsequent IL-2 and CXCL8 expression. We found that CXCL8, but not IL-2, gene expression levels were significantly suppressed by viable P. gingivalis. Analysis of intracellular signaling revealed an inhibitory effect of P. gingivalis on c-Jun and c-Fos, but not NF kappa B (p50 and p65), NFAT or STAT5 expression. This inhibitory effect was not due to suppression of mitogen-activated protein kinase (MAPK) (p38, erk and JNK) gene expression, but was rather due to prevention of protein kinase C (PKC) and p38 phosphorylation, as demonstrated by western blot analysis. Furthermore, SOCS1 and SOCS3 expression levels decreased following treatment of Jurkat T cells with viable P. gingivalis. The results indicate that P. gingivalis is able to suppress inflammatory gene expression by targeting the activity of MAPK pathways in T cells, which was confirmed by using specific inhibitors of NF-kappa B, PKC, ERK, p38 and JNK.
  •  
31.
  •  
32.
  •  
33.
  •  
34.
  • Klarström-Engström, Kristin, 1986-, et al. (författare)
  • The role of Porphyromonas gingivalis gingipains in platelet activation and innate immune modulation
  • 2015
  • Ingår i: Molecular Oral Microbiology. - : Wiley. - 2041-1006 .- 2041-1014. ; 30:1, s. 62-73
  • Tidskriftsartikel (refereegranskat)abstract
    • Platelets are considered to have important functions in inflammatory processes and as actors in the innate immunity. Several studies have shown associations between cardiovascular disease and periodontitis, where the oral anaerobic pathogen Porphyromonas gingivalis has a prominent role in modulating the immune response. Porphyromonas gingivalis has been found in atherosclerotic plaques, indicating spreading of the pathogen via the circulation, with an ability to interact with and activate platelets via e.g. Toll-like receptors (TLR) and protease-activated receptors. We aimed to evaluate how the cysteine proteases, gingipains, of P.gingivalis affect platelets in terms of activation and chemokine secretion, and to further investigate the mechanisms of platelet-bacteria interaction. This study shows that primary features of platelet activation, i.e. changes in intracellular free calcium and aggregation, are affected by P.gingivalis and that arg-gingipains are of great importance for the ability of the bacterium to activate platelets. The P.gingivalis induced a release of the chemokine RANTES, however, to a much lower extent compared with the TLR2/1-agonist Pam(3)CSK(4), which evoked a time-dependent release of the chemokine. Interestingly, the TLR2/1-evoked response was abolished by a following addition of viable P.gingivalis wild-types and gingipain mutants, showing that both Rgp and Kgp cleave the secreted chemokine. We also demonstrate that Pam(3)CSK(4)-stimulated platelets release migration inhibitory factor and plasminogen activator inhibitor-1, and that also these responses were antagonized by P.gingivalis. These results supports immune-modulatory activities of P.gingivalis and further clarify platelets as active players in innate immunity and in sensing bacterial infections, and as target cells in inflammatory reactions induced by P.gingivalis infection.
  •  
35.
  • Klarström-Engström, Kristin, 1986-, et al. (författare)
  • Toll like receptor 2/1 mediated platelet adhesion and activation on bacterial mimetic surfaces is dependent on src/Syk-signaling and purinergic receptor P2X1 and P2Y12 activation
  • 2014
  • Ingår i: Biointerphases. - : American Vacuum Society. - 1934-8630 .- 1559-4106. ; 9:4, s. 041003-
  • Tidskriftsartikel (refereegranskat)abstract
    • Platelets are considered to have important functions in inflammatory processes as key players in innate immunity. Toll like receptors (TLRs), expressed on platelets, recognize pathogen associated molecular patterns and trigger immune responses. Pathogens are able to adhere to human tissues and form biofilms which cause a continuous activation of the immune system. The authors aimed to investigate how immobilized Pam(3)CSK(4) (a synthetic TLR2/1 agonist) and IgG, respectively, resembling a bacterial focus, affects adhesion and activation of platelets including release of two cytokines, regulated on activation normal T-cell expressed and secreted (RANTES) and macrophage migration inhibitory factor (MIF). The authors also aim to clarify the signaling downstream of TLR2/1 and Fc gamma RII (IgG receptor) and the role of adenine nucleotides in this process. Biolayers of Pam(3)CSK(4) and IgG, respectively, were confirmed by null-ellipsometry and contact angle measurements. Platelets were preincubated with signaling inhibitors for scr and Syk and antagonists for P2X1 or P2Y1 [adenosine triphosphate (ATP), adenosine diphosphate (ADP) receptors] prior to addition to the surfaces. The authors show that platelets adhere and spread on both Pam(3)CSK(4)- and IgG-coated surfaces and that this process is antagonized by scr and Syc inhibitors as well as P2X1 and P2Y antagonists. This suggests that Pam(3)CSK(4) activated platelets utilize the same pathway as Fc gamma RII. Moreover, the authors show that ATP-ligation of P2X1 is of importance for further platelet activation after TLR2/1-activation, and that P2Y12 is the prominent ADP-receptor involved in adhesion and spreading. RANTES and MIF were secreted over time from platelets adhering to the coated surfaces, but no MIF was released upon stimulation with soluble Pam(3)CSK(4). These results clarify the importance of TLR2/1 and Fc gamma RII in platelet adhesion and activation, and strengthen the role of platelets as an active player in sensing bacterial infections.
  •  
36.
  • Ljunggren, Stefan, 1988-, et al. (författare)
  • Modified lipoproteins in periodontitis : a link to cardiovascular disease?
  • 2019
  • Ingår i: Bioscience Reports. - : Portland Press. - 0144-8463 .- 1573-4935. ; 39:3
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a strong association between periodontal disease and atherosclerotic cardiovascular disorders. A key event in the development of atherosclerosis is accumulation of modified lipoproteins within the arterial wall. We hypothesize that patients with periodontitis have an altered lipoprotein profile towards an atherogenic form. Therefore, this study aims at identifying modifications of plasma lipoproteins in periodontitis. Lipoproteins from ten female patients with periodontitis and gender- and age-matched healthy controls were isolated by density-gradient-ultracentrifugation. Proteins were separated by two-dimensional gel-electrophoresis and identified by map-matching or by nano-liquid chromatography followed by mass spectrometry. ApoA-I methionine oxidation, Oxyblot, total antioxidant capacity and a multiplex of 71 inflammation-related plasma proteins were assessed.Reduced levels of apoJ, phospholipid transfer protein, apoF, complement C3, paraoxonase 3 and increased levels of alpha-1-antichymotrypsin, apoA-II, apoC-III were found in HDL from the patients. In LDL/VLDL, the levels of apoL-1 and platelet-activating factor acetylhydrolase as well as apo-B fragments were increased. Methionine oxidation of apoA-I was increased in HDL and showed a relationship with periodontal parameters. Alpha-1 antitrypsin and alpha-2-HS glycoprotein were oxidised in LDL/VLDL and antioxidant capacity was increased in the patient group. 17 inflammation-related proteins were important for group separation with the highest discriminating proteins identified as IL-21, Fractalkine, IL-17F, IL-7, IL-1RA and IL-2.Patients with periodontitis have an altered plasma lipoprotein profile, defined by altered protein levels as well as posttranslational and other structural modifications towards an atherogenic form, which supports a role of modified plasma lipoproteins as central in the link between periodontal and cardiovascular disease (CVD).
  •  
37.
  •  
38.
  • Lönn, Johanna, 1982-, et al. (författare)
  • Hepatocyte growth factor in patients with coronary artery disease and its relation to periodontal condition
  • 2012
  • Ingår i: Results in Immunology. - : Elsevier BV. - 2211-2839. ; 2, s. 7-12
  • Tidskriftsartikel (refereegranskat)abstract
    • Hepatocyte growth factor (HGF) is an angiogenic, cardioprotective factor important for tissue and vascular repair. High levels of HGF are associated with chronic inflammatory diseases, such as coronary artery disease (CAD) and periodontitis, and are suggested as a marker of the ongoing atherosclerotic event in patients with CAD. Periodontal disease is more prevalent among patients with CAD than among healthy people. Recent studies indicate a reduced biological activity of HGF in different chronic inflammatory conditions. Biologically active HGF has high affinity to heparan sulfate proteoglycan (HSPG) on cell-membrane and extracellular matrix. The aim of the study was to investigate the serum concentration and the biological activity of HGF with ELISA and surface plasmon resonance (SPR), respectively, before and at various time points after percutaneous coronary intervention (PCI) in patients with CAD, and to examine the relationship with periodontal condition. The periodontal status of the CAD patients was examined, and the presence of P. gingivalis in periodontal pockets was analyzed with PCR. The HGF concentration was significantly higher, at all time-points, in patients with CAD compared to the age-matched controls (P< 0.001), but was independent of periodontal status. The HGF concentration and the affinity to HSPG adversely fluctuated over time, and the biological activity increased one month after intervention in patients without periodontitis. We conclude that elevated concentration of HGF but with reduced biological activity might indicate a chronic inflammatory profile in patients with CAD and periodontitis.
  •  
39.
  • Lönn, Johanna, 1982-, et al. (författare)
  • High Concentration but Low Activity of Hepatocyte Growth Factor in Periodontitis
  • 2014
  • Ingår i: Journal of Periodontology. - Chicago, USA : American Academy of Periodontology. - 0022-3492 .- 1943-3670. ; 85:1, s. 113-122
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: High levels of hepatocyte growth factor (HGF), a healing factor with regenerative and cytoprotective effects, are associated with inflammatory diseases, including periodontitis. HGF biological activity requires binding to its receptors, the proto-oncogene c-Met (c-Met) and heparan sulphate proteoglycan (HSPG). Here we investigated HGF expression and its relationship to subgingival microbiota in medically healthy individuals with and without periodontitis.Methods: Saliva, gingival crevicular fluid (GCF), and blood samples from 30 patients with severe periodontitis and 30 healthy controls were analyzed for HGF concentration using enzyme-linked immunosorbent assay (ELISA), and binding affinity for HSPG and c-Met using surface plasmon resonance (SPR). The regenerative effects of saliva from three patients and controls were analyzed in an in vitro model of cell injury. Subgingival plaques were analyzed for the presence of 18 bacterial species.Results: Patients with periodontitis showed higher HGF concentrations in saliva, GCF, and serum (P < 0.001); however, the binding affinities for HSPG and c-Met were reduced in GCF and saliva (P < 0.002). In contrast to the controls, saliva from patients showed no significant regenerative effect over time on gingival epithelial cells. Compared to controls, patients had a higher prevalence of periodontal-related bacteria.Conclusion: Higher circulatory HGF levels indicate a systemic effect of periodontitis. However, the HGF biological activity at local inflammation sites was reduced, and this effect was associated with the amount of periodontal bacteria. Loss of function of healing factors may be an important mechanism in degenerative processes in periodontally susceptible individuals.
  •  
40.
  • Lönn, Johanna, 1982-, et al. (författare)
  • High concentration but low biological activity of hepatocyte growth factor in patients with chronic renal failure
  • 2012
  • Ingår i: Advances in Bioscience and Biotechnology. - Irvine, USA : Scientific Research Publishing. - 2156-8456 .- 2156-8502. ; 3:4, s. 516-523
  • Tidskriftsartikel (refereegranskat)abstract
    • Hepatocyte growth factor (HGF) is a renotropic, antifibrotic and regenerative factor with cytoprotective effects that is produced by mesenchymal cells and shows high affinity to components of extra cellular matrix, such as heparan sulphate proteoglycan (HS-PG), in healthy. Patients with chronic renal failure (CRF) suffer from a chronic inflammatory disorder. In order to assess the underlying mechanisms for development of CRF we aimed to assess the amounts and affinity of HGF in this patient group. Elisa, western blot and surface plasmon resonance (SPR) were used to study HGF in blood samples, as well as in isolated neutrophils, in CRF patients compared to healthy controls. Patients with CRF showed higher HGF levels in serum (P < 0.0001), but decreased affinity to HSPG (P < 0.0001), compared to healthy controls. Addition of protease inhibitors decreased the difference between patients with CRF compared to healthy individuals. HGF with potent regenerative function during injury lacks affinity to HSPG in patients with CRF that may depend on production of proteases from activated immune cells. This information might be used to highlight underlying mechanisms for chronicity and leading to new strategies for treatment of chronic injuries.
  •  
41.
  • Lönn, Johanna, et al. (författare)
  • Lipoprotein modifications by gingipains of Porphyromonas gingivalis
  • 2018
  • Ingår i: Journal of Periodontal Research. - : Wiley-Blackwell Publishing Inc.. - 0022-3484 .- 1600-0765. ; 53:3, s. 403-413
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND OBJECTIVE: Several studies have shown an association between periodontitis and cardiovascular disease (CVD). Atherosclerosis is the major cause of CVD, and a key event in the development of atherosclerosis is accumulation of lipoproteins within the arterial wall. Bacteria are the primary etiologic agents in periodontitis and Porphyromonas gingivalis is the major pathogen in the disease. Several studies support a role of modified low-density lipoprotein (LDL) in atherogenesis; however, the pathogenic stimuli that induce the changes and the mechanisms by which this occur are unknown. This study aims to identify alterations in plasma lipoproteins induced by the periodontopathic species of bacterium, P. gingivalis, in vitro.MATERIAL AND METHODS: Plasma lipoproteins were isolated from whole blood treated with wild-type and gingipain-mutant (lacking either the Rgp- or Kgp gingipains) P. gingivalis by density/gradient-ultracentrifugation and were studied using 2-dimensional gel electrophoresis followed by matrix-assisted laser desorption/ionization mass spectrometry. Porphyromonas gingivalis-induced lipid peroxidation and antioxidant levels were measured by thiobarbituric acid-reactive substances and antioxidant assay kits, respectively, and lumiaggregometry was used for measurement of reactive oxygen species (ROS) and aggregation.RESULTS: Porphyromonas gingivalis exerted substantial proteolytic effects on the lipoproteins. The Rgp gingipains were responsible for producing 2 apoE fragments, as well as 2 apoB-100 fragments, in LDL, and the Kgp gingipain produced an unidentified fragment in high-density lipoproteins. Porphyromonas gingivalis and its different gingipain variants induced ROS and consumed antioxidants. Both the Rgp and Kgp gingipains were involved in inducing lipid peroxidation.CONCLUSIONS: Porphyromonas gingivalis has the potential to change the expression of lipoproteins in blood, which may represent a crucial link between periodontitis and CVD.
  •  
42.
  • Lönn, Johanna, 1982-, et al. (författare)
  • P. gingivalis-induced aggregation and ros production in whole blood is dependent on gingipains
  • 2012
  • Ingår i: Cardiovascular Research. - Oxford, United Kingdom : Oxford University Press. - 0008-6363 .- 1755-3245. ; 93, s. S35-S35
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • A large body of data accumulated over the past several years suggests that the periodontal pathogen Porphyromonas gingivalis is associated with cardiovascular disease. Circulating bacteria may contribute to atherogenesis by promoting CD11b/CD18-mediated interactions between neutrophils and platelets, causing reactive oxygen species (ROS) production and aggregation. We have previously demonstrated that P. gingivalis induces aggregation and ROS production in whole blood, and that the anti-inflammatory mediator lipoxin A4 (LXA4) inhibits these responses by modulating plateletneutrophil interaction through a down-regulation of the bacterium-induced surface expression of CD11b/CD18 on neutrophils, likely by inhibiting Rac2 and Cdc42 signaling pathways. Furthermore, P. gingivalis, unlike other periodontopathic bacteria, has been shown to trigger platelet aggregation, mainly through the interaction between bacterial gingipains and protease-activating receptors (PARs) on the platelets. Since platelet aggregation precedes thromboembolic events, this is an important pathogenic feature of the bacterium. The aim of this study was to investigate the effect of gingipains on P. gingivalis-induced cell activation in whole blood. Platelet/leukocyte aggregation and ROS production was examined by lumiaggregometry. This study shows that leupeptin, a protease inhibitor of gingipains, inhibits P. gingivalis-induced aggregation and ROS production in whole blood. Supernatants of bacteria suspensions induced no ROS-production, but an aggregatory response that was also inhibited by leupeptin. In conclusion, P. gingivalis-induced aggregation and ROS production in whole blood is mainly dependent on gingipains. However, since bacterial supernatants (containing soluble gingipains) stimulate only aggregation, this suggests that a gingipain/PAR-mediated mechanism in combination with phagocytosis of whole bacterium is a prerequisite for inducing a respiratory burst and an inflammatory response. These findings may contribute to new strategies in the prevention and treatment of periodontitis-induced inflammatory disorders, such as atherosclerosis.
  •  
43.
  •  
44.
  • Musa, Amani, 1983-, et al. (författare)
  • Plantaricin NC8 alpha beta prevents Staphylococcus aureus-mediated cytotoxicity and inflammatory responses of human keratinocytes
  • 2021
  • Ingår i: Scientific Reports. - : Nature Portfolio. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Multidrug resistance bacteria constitue an increasing global health problem and the development of novel therapeutic strategies to face this challenge is urgent. Antimicrobial peptides have been proven as potent agents against pathogenic bacteria shown by promising in vitro results. The aim of this study was to characterize the antimicrobial effects of PLNC8 alpha beta on cell signaling pathways and inflammatory responses of human keratinocytes infected with S. aureus. PLNC8 alpha beta did not affect the viability of human keratinocytes but upregulated several cytokines (IL-1 beta, IL-6, CXCL8), MMPs (MMP1, MMP2, MMP9, MMP10) and growth factors (VEGF and PDGF-AA), which are essential in cell regeneration. S. aureus induced the expression of several inflammatory mediators at the gene and protein level and PLNC8 alpha beta was able to significantly suppress these effects. Intracellular signaling events involved primarily c-Jun via JNK, c-Fos and NF kappa B, suggesting their essential role in the initiation of inflammatory responses in human keratinocytes. PLNC8 alpha beta was shown to modulate early keratinocyte responses, without affecting their viability. The peptides have high selectivity towards S. aureus and were efficient at eliminating the bacteria and counteracting their inflammatory and cytotoxic effects, alone and in combination with low concentrations of gentamicin. We propose that PLNC8 alpha beta may be developed to combat infections caused by Staphylococcus spp.
  •  
45.
  • Musa, Amani, 1983- (författare)
  • Plantaricins as a novel group of antibacterial compounds and enhancers of antibiotics
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Antibiotics have revolutionized medicine, however, the rapid development of an-tibiotic resistance among bacteria is diminishing their efficacy. Antimicrobial pep-tides produced by Lactobacillus plantarum, i.e., plantaricins, are considered prom-ising alternatives to antibiotics against infections. In this thesis, the antimicrobial activities of different plantaricins (Pln A, Pln EF, Pln JK, and PLNC8 αβ) were investigated against antibiotic-resistant and susceptible strains of Staphylococcus spp, biofilm-forming strains, as well as clinical isolates of ESKAPE pathogens, and Escherichia coli. Moreover, the stability, cytotoxicity, and immunomodulatory effects of PLNC8 αβ were characterized. The results show that Pln EF and Pln JK have potent antimicrobial activity against Staphylococcus epidermidis and effectively enhance the effects of various antibiotics. Furthermore, PLNC8 αβ shows potent antibacterial effects against different Gram-positive and Gram-negative bacteria, including vancomycin- and methicillin-resistant strains. The antibacterial effects and stability following peptide truncation and D-amino acid substitution were investigated. D-amino acid substitution did not change the antimicrobial activity of PLNC8 αβ, however, it increased the stability of the peptide as it was more resistant to proteolysis by trypsin compared to the native L-enantiomer. Moreover, among the truncated peptides, α1–22, β7–34, and β1–20 retained bacteriostatic effects without displaying bactericidal activity. L-PLNC8 αβ peptides were tested for their antibiofilm properties and displayed rapid disruption of surface-associated S. epidermidis. Electron microscopy shows that PLNC8 αβ targets bacterial cell membranes, ultimately resulting in rapid permeabilization and altered homeostasis, including ATP release. PLNC8 αβ does not show any cytotoxic or hemolytic effects on human cells in vitro. Furthermore, PLNC8 αβ counteracted the cytotoxic effects and expression of inflammatory mediators that were induced by S. aureus, including MMPs and growth factors that are essential in cell regeneration. Pathogen recognition receptors (TLR2, TLR4, and PAR2), intracellular signaling events (c-Jun, c-Fos), and inflammatory mediators (IL-1β, IL-6, CXCL-8), that facilitate pathogen recognition, cell survival, and cellular communication, were all enhanced by the peptides. At sub-MIC concentrations, PLNC8 αβ enhanced the activity of various antibiotics against both Gram-positive and Gram-negative ESKAPE bacteria. In conclusion, plantaricins efficiently impede bacterial pathogens and enhance the activity of antibiotics and thereby constitute a therapeutic option to counter the threatening situation with severe antibiotic-resistant infections.
  •  
46.
  • Nakka, Sravya Sowdamini, 1988-, et al. (författare)
  • Antibodies produced in vitro in the detection of periodontal bacteria by using surface plasmon resonance analysis
  • 2015
  • Ingår i: Clinical and Experimental Dental Research. - : Wiley-Blackwell. - 2057-4347. ; 1:1, s. 32-44
  • Tidskriftsartikel (refereegranskat)abstract
    • Porphyromonas gingivalis (P. gingivalis) is a major etiological agent associated with periodontitis. This study aims to develop antibodies to P. gingivalis in vitro for real-time detection of bacteria in clinical samples. Lymphocytes were isolated from whole blood of patient treated for periodontitis and were stimulated with P. gingivalis ATCC 33277. B-cell maturation to long-living antibody secreting-plasma cells was studied using flow cytometry and immunofluorescence staining. The antibodies developed in vitro were immobilized onto a CM-5 sensor chip of a biosensor to detect the presence of P. gingivalis in the gingival crevicular fluid of patients with periodontitis compared to periodontally healthy controls (n = 30). Surface plasmon resonance (SPR) analysis was performed to evaluate specific interactions of bacteria in samples with the immobilized antibodies. The results of SPR analysis were compared to the detection of P. gingivalis in the samples using DNA–DNA checkerboard hybridization technique. A clear and distinct change in lymphocyte morphology upon stimulation with P. gingivalis was observed. Anti-P. gingivalis antibodies secreted by CD38+ plasma cells showed the presence of all the four IgG subclasses. The results of DNA–DNA checkerboard analysis were in agreement with that of SPR analysis for the detection of P. gingivalis in patient samples. Furthermore, incubation with anti-P. gingivalis attenuated the bacterial response in SPR. The in vitro method for antibody production developed during this study could be used for an efficient real-time detection of periodontitis, and the attenuating effects of in vitro antibodies suggest their role in passive immunization to prevent periodontitis and their associated risk factors.
  •  
47.
  •  
48.
  •  
49.
  • Nimeri, G, et al. (författare)
  • The influence of plasma proteins and platelets on oxygen radical production and F-actin distribution in neutrophils adhering to polymer surfaces
  • 2002
  • Ingår i: Biomaterials. - 0142-9612 .- 1878-5905. ; 23:8, s. 1785-1795
  • Tidskriftsartikel (refereegranskat)abstract
    • It is well known that blood cell interactions with artificial surfaces might have deleterious effects on host tissue, however, the mechanisms involved are far from understood. In this study, neutrophil-platelet interaction on uncoated or protein-coated polymer surfaces was investigated. Cell spreading, reorganization of actin filaments and release of oxygen metabolites (measured as luminol-amplified chemiluminescence) were used as criteria for cell activation on positively charged, hydrophilic 1,2-diaminocyclohexane, and negatively charged, hydrophobic hexamethylene-disiloxane. The model surfaces were made by radio frequency plasma discharge polymerization. Neutrophil contact with the uncoated polymers induced a prolonged generation of oxygen radicals. Precoating of the polymer surfaces with human serum albumin (HSA) or fibrinogen, markedly reduced neutrophil activation, whereas coating with human immunoglobulin G (IgG), a well-known opsonin, resulted in significantly higher levels of cell activation. Consequently, protein coating overruled the activating effects of the polymer surfaces. The presence of unstimulated or thrombin-stimulated platelets markedly increased the reactivity of neutrophils against fibrinogen- and IgG-coated surfaces. However, neutrophils remained relatively unreactive in the presence of platelets on HSA-treated surfaces. Comparison of the different types of surfaces used, reveals a correlation between the degree of cell spreading, reorganization of the actin cytoskeleton and the amount of oxygen radicals produced. Our results suggest that the acute inflammatory reaction on a biomaterial surface is highly dependent on the nature and composition of the first adsorbed protein layer and the extent of platelet activation.
  •  
50.
  • Nixon Tangi, Tebeng, et al. (författare)
  • Role of NLRP3 and CARD8 in the regulation of TNF-α induced IL-1β release in vascular smooth muscle cells
  • 2012
  • Ingår i: International Journal of Molecular Medicine. - Athens, Greece : Spandidos Publications. - 1107-3756 .- 1791-244X. ; 30:3, s. 697-702
  • Tidskriftsartikel (refereegranskat)abstract
    • Interleukin (IL)-1β is known to be activated by the inflammasome. Inflammasome activities depend on a plethora of moieties including NLRP3 and CARD8, which have been reported to be associated with several inflammatory diseases. Aortic smooth muscle cells (AOSMCs) were transfected with siRNA targeting the NLRP3 and CARD8 genes, followed by tumor necrosis factor-α (TNF-α) treatment. We found that TNF-α induces IL-1β, IL-1Ra and NLRP3 genes but not CARD8. Silencing of the NLRP3 gene significantly decreased IL-1β expression and release, the IL-1Ra expression showed a borderline non-significant increment, while CARD8 knockdown did not affect the IL-1β and IL-1Ra mRNA expression or IL-1β protein release. Our results suggest that mainly NLRP3 plays a role in the regulation of IL-1β expression and release in AOSMC and could be a potential future target for the treatment of atherosclerosis and other inflammatory diseases.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 86
Typ av publikation
tidskriftsartikel (65)
annan publikation (14)
konferensbidrag (3)
doktorsavhandling (2)
bok (1)
bokkapitel (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (63)
övrigt vetenskapligt/konstnärligt (23)
Författare/redaktör
Bengtsson, Torbjörn, ... (83)
Khalaf, Hazem, 1981- (42)
Palm, Eleonor, 1980- (15)
Aili, Daniel (11)
Demirel, Isak, 1987- (11)
Nayeri, Fariba (8)
visa fler...
Lönn, Johanna, 1982- (7)
Sirsjö, Allan, 1959- (7)
Wetterö, Jonas, 1972 ... (7)
Klarström-Engström, ... (7)
Grenegård, Magnus, 1 ... (6)
Selegård, Robert, 19 ... (6)
Musa, Amani, 1983- (6)
Tengvall, Pentti (5)
Aili, Daniel, 1977- (5)
Whiss, Per A, 1966- (5)
Kälvegren, Hanna (5)
Selegård, Robert (4)
Skog, Mårten (4)
Hultenby, Kjell (4)
Lindström, Eva, 1961 ... (4)
Sivlér, Petter (4)
Skoglund, Caroline, ... (3)
Skoglund, Caroline (3)
Svensson, Ann-Charlo ... (3)
Skogh, Thomas, 1952- (3)
Fransén, Karin, 1973 ... (3)
Wiman, Emanuel, 1985 ... (3)
Söderquist, Bo, 1955 ... (2)
Hellmark, Bengt, 197 ... (2)
Björk, Emma, 1981- (2)
Ljunggren, Stefan, 1 ... (2)
Scherbak, Nikolai, 1 ... (2)
Lönn, Johanna (2)
Neilands, Jessica (2)
Svensäter, Gunnel, 1 ... (2)
Wetterö, Jonas (2)
Aronsson, Christophe ... (2)
Tengvall, Pentti, 19 ... (2)
Zattarin, Elisa, Dok ... (2)
Askendal, Agneta (2)
Utterström, Johanna (2)
Orselius, Kristina, ... (2)
Berg, Cecilia, 1976- (2)
Elmabsout, Ali Ateia ... (2)
Starkhammar Johansso ... (2)
Svärd, Anna (2)
Starkhammar Johansso ... (2)
Eskilson, Olof, 1992 ... (2)
Sandén, Camilla (2)
visa färre...
Lärosäte
Örebro universitet (67)
Linköpings universitet (46)
Malmö universitet (5)
Göteborgs universitet (3)
Karolinska Institutet (3)
Högskolan Kristianstad (1)
visa fler...
Umeå universitet (1)
Luleå tekniska universitet (1)
Mittuniversitetet (1)
visa färre...
Språk
Engelska (86)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (56)
Naturvetenskap (16)
Teknik (2)
Lantbruksvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy