SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Boschi Alex) "

Sökning: WFRF:(Boschi Alex)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Boschi, Alex, et al. (författare)
  • Mesoscopic 3D Charge Transport in Solution-Processed Graphene-Based Thin Films: A Multiscale Analysis
  • 2023
  • Ingår i: Small. - 1613-6810 .- 1613-6829. ; 19:42
  • Tidskriftsartikel (refereegranskat)abstract
    • Graphene and related 2D material (GRM) thin films consist of 3D assembly of billions of 2D nanosheets randomly distributed and interacting via van der Waals forces. Their complexity and the multiscale nature yield a wide variety of electrical characteristics ranging from doped semiconductor to glassy metals depending on the crystalline quality of the nanosheets, their specific structural organization ant the operating temperature. Here, the charge transport (CT) mechanisms are studied that are occurring in GRM thin films near the metal-insulator transition (MIT) highlighting the role of defect density and local arrangement of the nanosheets. Two prototypical nanosheet types are compared, i.e., 2D reduced graphene oxide and few-layer-thick electrochemically exfoliated graphene flakes, forming thin films with comparable composition, morphology and room temperature conductivity, but different defect density and crystallinity. By investigating their structure, morphology, and the dependence of their electrical conductivity on temperature, noise and magnetic-field, a general model is developed describing the multiscale nature of CT in GRM thin films in terms of hopping among mesoscopic bricks, i.e., grains. The results suggest a general approach to describe disordered van der Waals thin films.
  •  
2.
  • Kovtun, Alessandro, et al. (författare)
  • Benchmarking of graphene-based materials: Real commercial products versus ideal graphene
  • 2019
  • Ingår i: 2D Materials. - : IOP Publishing. - 2053-1583. ; 6:2
  • Tidskriftsartikel (refereegranskat)abstract
    • There are tens of industrial producers claiming to sell graphene and related materials (GRM), mostly as solid powders. Recently the quality of commercial GRM has been questioned, and procedures for GRM quality control were suggested using Raman Spectroscopy or Atomic Force Microscopy. Such techniques require dissolving the sample in solvents, possibly introducing artefacts. A more pragmatic approach is needed, based on fast measurements and not requiring any assumption on GRM solubility. To this aim, we report here an overview of the properties of commercial GRM produced by selected companies in Europe, USA and Asia. We benchmark: (A) size, (B) exfoliation grade and (C) oxidation grade of each GRM versus the ones of 'ideal' graphene and, most importantly, versus what reported by the producer. In contrast to previous works, we report explicitly the names of the GRM producers and we do not re-dissolve the GRM in solvents, but only use techniques compatible with industrial powder metrology. A general common trend is observed: Products having low defectivity (%sp 2 bonds >95%) feature low surface area (<200 m 2 g -1 ), while highly exfoliated GRM show a lower sp 2 content, demonstrating that it is still challenging to exfoliate GRM at industrial level without adding defects.
  •  
3.
  • Kovtun, Alessandro, et al. (författare)
  • Multiscale Charge Transport in van der Waals Thin Films: Reduced Graphene Oxide as a Case Study
  • 2021
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-086X .- 1936-0851. ; 15:2, s. 2654-2667
  • Tidskriftsartikel (refereegranskat)abstract
    • Large area van der Waals (vdW) thin films are assembled materials consisting of a network of randomly stacked nanosheets. The multiscale structure and the two-dimensional (2D) nature of the building block mean that interfaces naturally play a crucial role in the charge transport of such thin films. While single or few stacked nanosheets (i.e., vdW heterostructures) have been the subject of intensive works, little is known about how charges travel through multilayered, more disordered networks. Here, we report a comprehensive study of a prototypical system given by networks of randomly stacked reduced graphene oxide 2D nanosheets, whose chemical and geometrical properties can be controlled independently, permitting to explore percolated networks ranging from a single nanosheet to some billions with room-temperature resistivity spanning from 10-5 to 10-1 ω·m. We systematically observe a clear transition between two different regimes at a critical temperature T*: Efros-Shklovskii variable-range hopping (ES-VRH) below T∗ and power law behavior above. First, we demonstrate that the two regimes are strongly correlated with each other, both depending on the charge localization length ζ, calculated by the ES-VRH model, which corresponds to the characteristic size of overlapping sp2 domains belonging to different nanosheets. Thus, we propose a microscopic model describing the charge transport as a geometrical phase transition, given by the metal-insulator transition associated with the percolation of quasi-one-dimensional nanofillers with length ζ, showing that the charge transport behavior of the networks is valid for all geometries and defects of the nanosheets, ultimately suggesting a generalized description on vdW and disordered thin films.
  •  
4.
  • Pippione, Agnese C., et al. (författare)
  • 4-Hydroxy-N -[3,5-bis(trifluoromethyl)phenyl]-1,2,5-thiadiazole-3-carboxamide: A novel inhibitor of the canonical NF-κB cascade
  • 2017
  • Ingår i: MedChemComm. - : Royal Society of Chemistry (RSC). - 2040-2503 .- 2040-2511. ; 8:9, s. 1850-1855
  • Tidskriftsartikel (refereegranskat)abstract
    • The NF-κB signaling pathway is a validated oncological target. Here, we applied scaffold hopping to IMD-0354, a presumed IKKβ inhibitor, and identified 4-hydroxy-N-[3,5-bis(trifluoromethyl)phenyl]-1,2,5-thiadiazole-3-carboxamide (4) as a nM-inhibitor of the NF-κB pathway. However, both 4 and IMD-0354, being potent inhibitors of the canonical NF-κB pathway, were found to be inactive in human IKKβ enzyme assays.
  •  
5.
  • Sainas, Stefano, et al. (författare)
  • Targeting myeloid differentiation using potent 2-hydroxypyrazolo[1,5-a]pyridine scaffold-based human dihydroorotate dehydrogenase (hDHODH) inhibitors.
  • 2018
  • Ingår i: Journal of medicinal chemistry. - : American Chemical Society (ACS). - 1520-4804 .- 0022-2623. ; 61:14, s. 6034-6055
  • Tidskriftsartikel (refereegranskat)abstract
    • Human dihydroorotate dehydrogenase (hDHODH) catalyzes the rate-limiting step in de novo pyrimidine biosynthesis, the conversion of dihydroorotate to orotate. hDHODH has recently been found to be associated with acute myelogenous leukemia, a disease for which the standard of intensive care has not changed over decades. This work presents a novel class of hDHODH inhibitors, which are based on an unusual carboxylic group bioisostere 2-hydroxypyrazolo[1,5-a]pyridine, that has been designed starting from brequinar, one of the most potent hDHODH inhibitors. A combination of structure-based and ligand-based strategies produced compound 4, which shows brequinar-like hDHODH potency in vitro and is superior in terms of cytotoxicity and immunosuppression. Compound 4 also restores myeloid differentiation in leukemia cell lines at concentrations that are one log digit lower than those achieved in experiments with brequinar. This paper reports the design, synthesis, SAR, X-ray crystallography, biological assays and physicochemical characterization of the new class of hDHODH inhibitors.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy