SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Boyarsky Alexey) "

Sökning: WFRF:(Boyarsky Alexey)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdullahi, Asli M., et al. (författare)
  • The present and future status of heavy neutral leptons
  • 2023
  • Ingår i: Journal of Physics G. - : Institute of Physics Publishing (IOPP). - 0954-3899 .- 1361-6471. ; 50:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The existence of nonzero neutrino masses points to the likely existence of multiple Standard Model neutral fermions. When such states are heavy enough that they cannot be produced in oscillations, they are referred to as heavy neutral leptons (HNLs). In this white paper, we discuss the present experimental status of HNLs including colliders, beta decay, accelerators, as well as astrophysical and cosmological impacts. We discuss the importance of continuing to search for HNLs, and its potential impact on our understanding of key fundamental questions, and additionally we outline the future prospects for next-generation future experiments or upcoming accelerator run scenarios.
  •  
2.
  • Brandenburg, Axel, et al. (författare)
  • The Turbulent Chiral Magnetic Cascade in the Early Universe
  • 2017
  • Ingår i: Astrophysical Journal Letters. - : IOP PUBLISHING LTD. - 2041-8205 .- 2041-8213. ; 845:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The presence of asymmetry between fermions of opposite handedness in plasmas of relativistic particles can lead to exponential growth of a helical magnetic field via a small-scale chiral dynamo instability known as the chiral magnetic effect. Here, we show, using dimensional arguments and numerical simulations, that this process produces through the Lorentz force chiral magnetically driven turbulence. A k(-2) magnetic energy spectrum emerges via inverse transfer over a certain range of wavenumbers k. The total chirality (magnetic helicity plus normalized chiral chemical potential) is conserved in this system. Therefore, as the helical magnetic field grows, most of the total chirality gets transferred into magnetic helicity until the chiral magnetic effect terminates. Quantitative results for height, slope, and extent of the spectrum are obtained. Consequences of this effect for cosmic magnetic fields are discussed.
  •  
3.
  • Rogachevskii, Igor, et al. (författare)
  • Laminar and Turbulent Dynamos in Chiral Magnetohydrodynamics. I. Theory
  • 2017
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 846:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The magnetohydrodynamic (MHD) description of plasmas with relativistic particles necessarily includes an additional new field, the chiral chemical potential associated with the axial charge (i.e., the number difference between right-and left-handed relativistic fermions). This chiral chemical potential gives rise to a contribution to the electric current density of the plasma (chiral magnetic effect). We present a self-consistent treatment of the chiral MHD equations, which include the back-reaction of the magnetic field on a chiral chemical potential and its interaction with the plasma velocity field. A number of novel phenomena are exhibited. First, we show that the chiral magnetic effect decreases the frequency of the Alfven wave for incompressible flows, increases the frequencies of the Alfven wave and of the fast magnetosonic wave for compressible flows, and decreases the frequency of the slow magnetosonic wave. Second, we show that, in addition to the well-known laminar chiral dynamo effect, which is not related to fluid motions, there is a dynamo caused by the joint action of velocity shear and chiral magnetic effect. In the presence of turbulence with vanishing mean kinetic helicity, the derived mean-field chiral MHD equations describe turbulent large-scale dynamos caused by the chiral alpha effect, which is dominant for large fluid and magnetic Reynolds numbers. The chiral alpha effect is due to an interaction of the chiral magnetic effect and fluctuations of the small-scale current produced by tangling magnetic fluctuations (which are generated by tangling of the large-scale magnetic field by sheared velocity fluctuations). These dynamo effects may have interesting consequences in the dynamics of the early universe, neutron stars, and the quark-gluon plasma.
  •  
4.
  • Schober, Jennifer, et al. (författare)
  • Laminar and Turbulent Dynamos in Chiral Magnetohydrodynamics. II. Simulations
  • 2018
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 858:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Using direct numerical simulations (DNS), we study laminar and turbulent dynamos in chiral magnetohydrodynamics with an extended set of equations that accounts for an additional contribution to the electric current due to the chiral magnetic effect (CME). This quantum phenomenon originates from an asymmetry between left-and right-handed relativistic fermions in the presence of a magnetic field and gives rise to a chiral dynamo. We show that the magnetic field evolution proceeds in three stages: (1) a small-scale chiral dynamo instability, (2) production of chiral magnetically driven turbulence and excitation of a large-scale dynamo instability due to a new chiral effect (alpha(mu) effect), and (3) saturation of magnetic helicity and magnetic field growth controlled by a conservation law for the total chirality. The alpha(mu) effect becomes dominant at large fluid and magnetic Reynolds numbers and is not related to kinetic helicity. The growth rate of the large-scale magnetic field and its characteristic scale measured in the numerical simulations agree well with theoretical predictions based on mean-field theory. The previously discussed two-stage chiral magnetic scenario did not include stage (2), during which the characteristic scale of magnetic field variations can increase by many orders of magnitude. Based on the findings from numerical simulations, the relevance of the CME and the chiral effects revealed in the relativistic plasma of the early universe and of protoneutron stars are discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy