SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cavalca Filippo) "

Sökning: WFRF:(Cavalca Filippo)

  • Resultat 1-16 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Amann, Peter, et al. (författare)
  • A dedicated photoelectron spectroscopy instrument for studies of catalytic reactions at pressures exceeding 1 bar
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Here, we present a new high-pressure x-ray photoelectron spectroscopy system dedicated to probing catalytic reactions under realistic conditions at pressures exceeding 1 bar. The instrument builds around the concept of a “virtual cell” in which a gasflow is directed onto the sample surface creating a local high pressure on top of the sample. This allows the instrument to maintain a low pressure of a few mbars in the main chamber, while simultaneously keeping a local pressure of around 1 bar. Synchrotron radiation based grazing incidence photoemission within ± 5° is used to enhance the surface sensitivity in the experiment. The aperture, separating the high-pressure region from the differential pumping of the electron spectrometer, consists of multiple, evenly spaced, mm sized holes matching the footprint of the x-ray beam on the sample surface. As the photo-emitted electrons are subject to strong scattering in the gas phase and the resulting signal is therefore highly dependent on the sample to aperture distance, the latter is controlled with high precision using a fully integrated manipulator that allows for sample movement with step sizes of 10 nm between 0 and –5 mm with very low vibrational amplitude. The instrumental features allows acquisition of metallic bulk spectra at He pressures up to 2.5 bar and also allows for following C1s spectra under realistic gas mixtures of CO + H2with various temperatures up to 500°C. This capability opens for studies of catalytic reactions in operandi.
  •  
2.
  • Amann, Peter, et al. (författare)
  • A high-pressure x-ray photoelectron spectroscopy instrument for studies of industrially relevant catalytic reactions at pressures of several bars
  • 2019
  • Ingår i: Review of Scientific Instruments. - : American Institute of Physics (AIP). - 0034-6748 .- 1089-7623. ; 90:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a new high-pressure x-ray photoelectron spectroscopy system dedicated to probing catalytic reactions under realistic conditions at pressures of multiple bars. The instrument builds around the novel concept of a "virtual cell" in which a gas flow onto the sample surface creates a localized high-pressure pillow. This allows the instrument to be operated with a low pressure of a few millibar in the main chamber, while simultaneously a local pressure exceeding 1 bar can be supplied at the sample surface. Synchrotron based hard x-ray excitation is used to increase the electron mean free path in the gas region between sample and analyzer while grazing incidence <5 degrees close to total external refection conditions enhances surface sensitivity. The aperture separating the high-pressure region from the differential pumping of the electron spectrometer consists of multiple, evenly spaced, micrometer sized holes matching the footprint of the x-ray beam on the sample. The resulting signal is highly dependent on the sample-to-aperture distance because photoemitted electrons are subject to strong scattering in the gas phase. Therefore, high precision control of the sample-to-aperture distance is crucial. A fully integrated manipulator allows for sample movement with step sizes of 10 nm between 0 and -5 mm with very low vibrational amplitude and also for sample heating up to 500 degrees C under reaction conditions. We demonstrate the performance of this novel instrument with bulk 2p spectra of a copper single crystal at He pressures of up to 2.5 bars and C1s spectra measured in gas mixtures of CO + H-2 at pressures of up to 790 mbar. The capability to detect emitted photoelectrons at several bars opens the prospect for studies of catalytic reactions under industrially relevant operando conditions.
  •  
3.
  •  
4.
  • Boix, Virginia, et al. (författare)
  • Following the Kinetics of Undercover Catalysis with APXPS and the Role of Hydrogen as an Intercalation Promoter
  • 2022
  • Ingår i: ACS Catalysis. - : American Chemical Society (ACS). - 2155-5435. ; 12:16, s. 9897-9907
  • Tidskriftsartikel (refereegranskat)abstract
    • While improved catalytic properties of many surfaces covered by two-dimensional materials have been demonstrated, a detailed in situ picture of gas delivery, undercover reaction, and product removal from the confined space is lacking. Here, we demonstrate how a combination of gas pulses with varying compositions and time-resolved ambient pressure photoelectron spectroscopy can be used to obtain such knowledge. This approach allows us to sequentially form and remove undercover reaction products, in contrast to previous work, where co-dosing of reactant gases was used. In more detail, we study CO and H2 oxidation below oxygen-intercalated graphene flakes partially covering an Ir(111) surface. We show that hydrogen rapidly mixes into a p(2 × 1)-O structure below the graphene flakes and converts it into a dense OH-H2O phase. In contrast, CO exposure only leads to oxygen removal from the confined space and little CO intercalation. Finally, our study shows that H2 mixed into CO pulses can be used as a promoter to change the undercover chemistry. Their combined exposure leads to the formation of OH-H2O below the flakes, which, in turn, unbinds the flakes for enough time for CO to intercalate, resulting in a CO structure stable only in coexistence with the OH-H2O phase. Altogether, our study proves that promoter chemistry in the form of adding trace gases to the gas feed is essential to consider for undercover reactions.
  •  
5.
  •  
6.
  • Cavalca, Filippo, et al. (författare)
  • Nature and Distribution of Stable Subsurface Oxygen in Copper Electrodes During Electrochemical CO2 Reduction
  • 2017
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 121:45, s. 25003-25009
  • Tidskriftsartikel (refereegranskat)abstract
    • Oxide-derived copper (OD-Cu) electrodes exhibit higher activity than pristine copper during the carbon dioxide reduction reaction (CO2RR) and higher selectivity toward ethylene. The presence of residual subsurface oxygen in OD-Cu has been proposed to be responsible for such improvements, although its stability under the reductive CO2RR conditions remains unclear. This work sheds light on the nature and stability of subsurface oxygen. Our spectroscopic results show that oxygen is primarily concentrated in an amorphous 1-2 nm thick layer within the Cu subsurface, confirming that subsurface oxygen is stable during CO2RR for up to 1 h at -1.15 V vs RHE. Besides, it is associated with a high density of defects in the OD-Cu structure. We propose that both low coordination of the amorphous OD-Cu surface and the presence of subsurface oxygen that withdraws charge from the copper sp- and d-bands might selectively enhance the binding energy of CO.
  •  
7.
  • Diesen, Elias, et al. (författare)
  • Ultrafast Adsorbate Excitation Probed with Subpicosecond-Resolution X-Ray Absorption Spectroscopy
  • 2021
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 127:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We use a pump-probe scheme to measure the time evolution of the C K-edge x-ray absorption spectrum from CO/Ru(0001) after excitation by an ultrashort high-intensity optical laser pulse. Because of the short duration of the x-ray probe pulse and precise control of the pulse delay, the excitation-induced dynamics during the first picosecond after the pump can be resolved with unprecedented time resolution. By comparing with density functional theory spectrum calculations, we find high excitation of the internal stretch and frustrated rotation modes occurring within 200 fs of laser excitation, as well as thermalization of the system in the picosecond regime. The ∼100  fs initial excitation of these CO vibrational modes is not readily rationalized by traditional theories of nonadiabatic coupling of adsorbates to metal surfaces, e.g., electronic frictions based on first order electron-phonon coupling or transient population of adsorbate resonances. We suggest that coupling of the adsorbate to nonthermalized electron-hole pairs is responsible for the ultrafast initial excitation of the modes.
  •  
8.
  • Eilert, André, et al. (författare)
  • Subsurface Oxygen in Oxide-Derived Copper Electrocatalysts for Carbon Dioxide Reduction
  • 2017
  • Ingår i: The Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 8:1, s. 285-290
  • Tidskriftsartikel (refereegranskat)abstract
    • Copper electrocatalysts derived from an oxide have shown extraordinary electrochemical properties for the carbon dioxide reduction reaction (CO2RR). Using in situ ambient pressure X-ray photoelectron spectroscopy and quasi in situ electron energy loss spectroscopy in a transmission electron microscope, we show that there is a substantial amount of residual oxygen in nanostructured, oxide-derived copper electrocatalysts but no residual copper oxide. On the basis of these findings in combination with density functional theory simulations, we propose that residual subsurface oxygen changes the electronic structure of the catalyst and creates sites with higher carbon monoxide binding energy. If such sites are stable under the strongly reducing conditions found in CO2RR, these findings would explain the high efficiencies of oxide-derived copper in reducing carbon dioxide to multicarbon compounds such as ethylene.
  •  
9.
  • Knudsen, Jan, et al. (författare)
  • Stroboscopic operando spectroscopy of the dynamics in heterogeneous catalysis by event-averaging
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Heterogeneous catalyst surfaces are dynamic entities that respond rapidly to changes in their local gas environment, and the dynamics of the response is a decisive factor for the catalysts’ action and activity. Few probes are able to map catalyst structure and local gas environment simultaneously under reaction conditions at the timescales of the dynamic changes. Here we use the CO oxidation reaction and a Pd(100) model catalyst to demonstrate how such studies can be performed by time-resolved ambient pressure photoelectron spectroscopy. Central elements of the method are cyclic gas pulsing and software-based event-averaging by image recognition of spectral features. A key finding is that at 3.2 mbar total pressure a metallic, predominantly CO-covered metallic surface turns highly active for a few seconds once the O2:CO ratio becomes high enough to lift the CO poisoning effect before mass transport limitations triggers formation of a √5 oxide.
  •  
10.
  • LaRue, Jerry, et al. (författare)
  • Symmetry-resolved CO desorption and oxidation dynamics on O/Ru(0001) probed at the C K-edge by ultrafast x-ray spectroscopy
  • 2022
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 157:16
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on carbon monoxide desorption and oxidation induced by 400 nm femtosecond laser excitation on the O/Ru(0001) surface probed by time-resolved x-ray absorption spectroscopy (TR-XAS) at the carbon K-edge. The experiments were performed under constant background pressures of CO (6 × 10−8 Torr) and O2 (3 × 10−8 Torr). Under these conditions, we detect two transient CO species with narrow 2π* peaks, suggesting little 2π* interaction with the surface. Based on polarization measurements, we find that these two species have opposing orientations: (1) CO favoring a more perpendicular orientation and (2) CO favoring a more parallel orientation with respect to the surface. We also directly detect gas-phase CO2 using a mass spectrometer and observe weak signatures of bent adsorbed CO2 at slightly higher x-ray energies than the 2π* region. These results are compared to previously reported TR-XAS results at the O K-edge, where the CO background pressure was three times lower (2 × 10−8 Torr) while maintaining the same O2 pressure. At the lower CO pressure, in the CO 2π* region, we observed adsorbed CO and a distribution of OC–O bond lengths close to the CO oxidation transition state, with little indication of gas-like CO. The shift toward “gas-like” CO species may be explained by the higher CO exposure, which blocks O adsorption, decreasing O coverage and increasing CO coverage. These effects decrease the CO desorption barrier through dipole–dipole interaction while simultaneously increasing the CO oxidation barrier.
  •  
11.
  • Liu, Chang, et al. (författare)
  • Stability and Effects of Subsurface Oxygen in Oxide-Derived Cu Catalyst for CO2 Reduction
  • 2017
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 121:45, s. 25010-25017
  • Tidskriftsartikel (refereegranskat)abstract
    • Oxide-derived copper (OD-Cu) catalysts are promising candidates for the electrochemical CO2 reduction reaction (CO2RR) due to the enhanced selectivity toward ethylene over methane evolution, which has been linked to the presence of subsurface oxygen (O-sb). In this work, O-sb is investigated with theoretical methods. Although O-sb is unstable in slab models, it becomes stabilized within a manually reduced OD-Cu nanocube model which was calculated by self-consistent charge density functional tight binding (SCC-DFTB). The results obtained with SCC-DFTB for the full nanocube were confirmed with subcluster models extracted from the nanocube, calculated with both density functional theory (DFT) and SCC-DFTB. The. higher stability of O-sb in the nanocube is attributed to the disordered structure and greater flexibility. The adsorption strength of CO on Cu(100) is enhanced by O-sb withdrawing electron density from the Cu atom, resulting in reduction of the sigma-repulsion. Hence, the coverage of CO may be increased, facilitating its dimerization.
  •  
12.
  • Perakis, Fivos, et al. (författare)
  • Diffusive dynamics during the high-to-low density transition in amorphous ice
  • 2017
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 114:31, s. 8193-8198
  • Tidskriftsartikel (refereegranskat)abstract
    • Water exists in high- and low-density amorphous ice forms (HDA and LDA), which could correspond to the glassy states of high(HDL) and low-density liquid (LDL) in the metastable part of the phase diagram. However, the nature of both the glass transition and the high-to-low-density transition are debated and new experimental evidence is needed. Here we combine wide-angle X-ray scattering (WAXS) with X-ray photon-correlation spectroscopy (XPCS) in the small-angle X-ray scattering (SAXS) geometry to probe both the structural and dynamical properties during the high-to-low-density transition in amorphous ice at 1 bar. By analyzing the structure factor and the radial distribution function, the coexistence of two structurally distinct domains is observed at T = 125 K. XPCS probes the dynamics in momentum space, which in the SAXS geometry reflects structural relaxation on the nanometer length scale. The dynamics of HDA are characterized by a slow component with a large time constant, arising from viscoelastic relaxation and stress release from nanometer-sized heterogeneities. Above 110 K a faster, strongly temperature-dependent component appears, with momentum transfer dependence pointing toward nanoscale diffusion. This dynamical component slows down after transition into the low-density form at 130 K, but remains diffusive. The diffusive character of both the high- and low-density forms is discussed among different interpretations and the results are most consistent with the hypothesis of a liquid-liquid transition in the ultraviscous regime.
  •  
13.
  • Schreck, Simon, et al. (författare)
  • Atom-specific activation in CO oxidation
  • 2018
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 149:23
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on atom-specific activation of CO oxidation on Ru(0001) via resonant X-ray excitation. We show that resonant 1s core-level excitation of atomically adsorbed oxygen in the co-adsorbed phase of CO and oxygen directly drives CO oxidation. We separate this direct resonant channel from indirectly driven oxidation via X-ray induced substrate heating. Based on density functional theory calculations, we identify the valence-excited state created by the Auger decay as the driving electronic state for direct CO oxidation. We utilized the fresh-slice multi-pulse mode at the Linac Coherent Light Source that provided time-overlapped and 30 fs delayed pairs of soft X-ray pulses and discuss the prospects of femtosecond X-ray pump X-ray spectroscopy probe, as well as X-ray two-pulse correlation measurements for fundamental investigations of chemical reactions via selective X-ray excitation.
  •  
14.
  • Schreck, Simon, et al. (författare)
  • Atom-Specific Probing of Electron Dynamics in an Atomic Adsorbate by Time-Resolved X-Ray Spectroscopy
  • 2022
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 129:27
  • Tidskriftsartikel (refereegranskat)abstract
    • The electronic excitation occurring on adsorbates at ultrafast timescales from optical lasers that initiate surface chemical reactions is still an open question. Here, we report the ultrafast temporal evolution of x-ray absorption spectroscopy (XAS) and x-ray emission spectroscopy (XES) of a simple well-known adsorbate prototype system, namely carbon (C) atoms adsorbed on a nickel [Ni(100)] surface, following intense laser optical pumping at 400 nm. We observe ultrafast (∼100  fs) changes in both XAS and XES showing clear signatures of the formation of a hot electron-hole pair distribution on the adsorbate. This is followed by slower changes on a few picoseconds timescale, shown to be consistent with thermalization of the complete C/Ni system. Density functional theory spectrum simulations support this interpretation.
  •  
15.
  • Wang, Hsin-Yi, et al. (författare)
  • Time-resolved observation of transient precursor state of CO on Ru(0001) using carbon K-edge spectroscopy
  • 2020
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - 1463-9076 .- 1463-9084. ; 22:5, s. 2677-2684
  • Tidskriftsartikel (refereegranskat)abstract
    • The transient dynamics of carbon monoxide (CO) molecules on a Ru(0001) surface following femtosecond optical laser pump excitation has been studied by monitoring changes in the unoccupied electronic structure using an ultrafast X-ray free-electron laser (FEL) probe. The particular symmetry of perpendicularly chemisorbed CO on the surface is exploited to investigate how the molecular orientation changes with time by varying the polarization of the FEL pulses. The time evolution of spectral features corresponding to the desorption precursor state was well distinguished due to the narrow line-width of the C K-edge in the X-ray absorption (XA) spectrum, illustrating that CO molecules in the precursor state rotated freely and resided on the surface for several picoseconds. Most of the CO molecules trapped in the precursor state ultimately cooled back down to the chemisorbed state, while we estimate that ∼14.5 ± 4.9% of the molecules in the precursor state desorbed into the gas phase. It was also observed that chemisorbed CO molecules diffused over the metal surface from on-top sites toward highly coordinated sites. In addition, a new “vibrationally hot precursor” state was identified in the polarization-dependent XA spectra.
  •  
16.
  • Zhu, Suyun, et al. (författare)
  • HIPPIE : a new platform for ambient-pressure X-ray photoelectron spectroscopy at the MAX IV Laboratory
  • 2021
  • Ingår i: Journal of Synchrotron Radiation. - : INT UNION CRYSTALLOGRAPHY. - 1600-5775 .- 0909-0495. ; 28, s. 624-636
  • Tidskriftsartikel (refereegranskat)abstract
    • HIPPIE is a soft X-ray beamline on the 3 GeV electron storage ring of the MAX IV Laboratory, equipped with a novel ambient-pressure X-ray photoelectron spectroscopy (APXPS) instrument. The endstation is dedicated to performing in situ and operando X-ray photoelectron spectroscopy experiments in the presence of a controlled gaseous atmosphere at pressures up to 30 mbar [1 mbar = 100 Pa] as well as under ultra-high-vacuum conditions. The photon energy range is 250 to 2200 eV in planar polarization and with photon fluxes >1012 photons s-1 (500 mA ring current) at a resolving power of greater than 10000 and up to a maximum of 32000. The endstation currently provides two sample environments: a catalysis cell and an electrochemical/liquid cell. The former allows APXPS measurements of solid samples in the presence of a gaseous atmosphere (with a mixture of up to eight gases and a vapour of a liquid) and simultaneous analysis of the inlet/outlet gas composition by online mass spectrometry. The latter is a more versatile setup primarily designed for APXPS at the solid-liquid (dip-and-pull setup) or liquid-gas (liquid microjet) interfaces under full electrochemical control, and it can also be used as an open port for ad hoc-designed non-standard APXPS experiments with different sample environments. The catalysis cell can be further equipped with an IR reflection-absorption spectrometer, allowing for simultaneous APXPS and IR spectroscopy of the samples. The endstation is set up to easily accommodate further sample environments.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-16 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy