SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ehrenreich H.) "

Search: WFRF:(Ehrenreich H.)

  • Result 1-50 of 76
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Blokland, G. A. M., et al. (author)
  • Sex-Dependent Shared and Nonshared Genetic Architecture Across Mood and Psychotic Disorders
  • 2022
  • In: Biological Psychiatry. - : Elsevier BV. - 0006-3223 .- 1873-2402. ; 91:1, s. 102-117
  • Journal article (peer-reviewed)abstract
    • Background: Sex differences in incidence and/or presentation of schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BIP) are pervasive. Previous evidence for shared genetic risk and sex differences in brain abnormalities across disorders suggest possible shared sex-dependent genetic risk. Methods: We conducted the largest to date genome-wide genotype-by-sex (G×S) interaction of risk for these disorders using 85,735 cases (33,403 SCZ, 19,924 BIP, and 32,408 MDD) and 109,946 controls from the PGC (Psychiatric Genomics Consortium) and iPSYCH. Results: Across disorders, genome-wide significant single nucleotide polymorphism–by-sex interaction was detected for a locus encompassing NKAIN2 (rs117780815, p = 3.2 × 10−8), which interacts with sodium/potassium-transporting ATPase (adenosine triphosphatase) enzymes, implicating neuronal excitability. Three additional loci showed evidence (p < 1 × 10−6) for cross-disorder G×S interaction (rs7302529, p = 1.6 × 10−7; rs73033497, p = 8.8 × 10−7; rs7914279, p = 6.4 × 10−7), implicating various functions. Gene-based analyses identified G×S interaction across disorders (p = 8.97 × 10−7) with transcriptional inhibitor SLTM. Most significant in SCZ was a MOCOS gene locus (rs11665282, p = 1.5 × 10−7), implicating vascular endothelial cells. Secondary analysis of the PGC-SCZ dataset detected an interaction (rs13265509, p = 1.1 × 10−7) in a locus containing IDO2, a kynurenine pathway enzyme with immunoregulatory functions implicated in SCZ, BIP, and MDD. Pathway enrichment analysis detected significant G×S interaction of genes regulating vascular endothelial growth factor receptor signaling in MDD (false discovery rate-corrected p < .05). Conclusions: In the largest genome-wide G×S analysis of mood and psychotic disorders to date, there was substantial genetic overlap between the sexes. However, significant sex-dependent effects were enriched for genes related to neuronal development and immune and vascular functions across and within SCZ, BIP, and MDD at the variant, gene, and pathway levels. © 2021 Society of Biological Psychiatry
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Luque, R., et al. (author)
  • A resonant sextuplet of sub-Neptunes transiting the bright star HD 110067
  • 2023
  • In: Nature. - 0028-0836 .- 1476-4687. ; 623:7989, s. 932-937
  • Journal article (peer-reviewed)abstract
    • Planets with radii between that of the Earth and Neptune (hereafter referred to as ‘sub-Neptunes’) are found in close-in orbits around more than half of all Sun-like stars 1,2. However, their composition, formation and evolution remain poorly understood 3. The study of multiplanetary systems offers an opportunity to investigate the outcomes of planet formation and evolution while controlling for initial conditions and environment. Those in resonance (with their orbital periods related by a ratio of small integers) are particularly valuable because they imply a system architecture practically unchanged since its birth. Here we present the observations of six transiting planets around the bright nearby star HD 110067. We find that the planets follow a chain of resonant orbits. A dynamical study of the innermost planet triplet allowed the prediction and later confirmation of the orbits of the rest of the planets in the system. The six planets are found to be sub-Neptunes with radii ranging from 1.94R ⊕ to 2.85R ⊕. Three of the planets have measured masses, yielding low bulk densities that suggest the presence of large hydrogen-dominated atmospheres.
  •  
6.
  •  
7.
  • Leleu, A., et al. (author)
  • Six transiting planets and a chain of Laplace resonances in TOI-178
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 649
  • Journal article (peer-reviewed)abstract
    • Determining the architecture of multi-planetary systems is one of the cornerstones of understanding planet formation and evolution. Resonant systems are especially important as the fragility of their orbital configuration ensures that no significant scattering or collisional event has taken place since the earliest formation phase when the parent protoplanetary disc was still present. In this context, TOI-178 has been the subject of particular attention since the first TESS observations hinted at the possible presence of a near 2:3:3 resonant chain. Here we report the results of observations from CHEOPS, ESPRESSO, NGTS, and SPECULOOS with the aim of deciphering the peculiar orbital architecture of the system. We show that TOI-178 harbours at least six planets in the super-Earth to mini-Neptune regimes, with radii ranging from 1.152 to 2.87 Earth radii and periods of 1.91, 3.24, 6.56, 9.96, 15.23, and 20.71 days. All planets but the innermost one form a 2:4:6:9:12 chain of Laplace resonances, and the planetary densities show important variations from planet to planet, jumping from 1.02 to 0.177 times the Earth's density between planets c and d. Using Bayesian interior structure retrieval models, we show that the amount of gas in the planets does not vary in a monotonous way, contrary to what one would expect from simple formation and evolution models and unlike other known systems in a chain of Laplace resonances. The brightness of TOI-178 (H = 8.76 mag, J = 9.37 mag, V = 11.95 mag) allows for a precise characterisation of its orbital architecture as well as of the physical nature of the six presently known transiting planets it harbours. The peculiar orbital configuration and the diversity in average density among the planets in the system will enable the study of interior planetary structures and atmospheric evolution, providing important clues on the formation of super-Earths and mini-Neptunes. -0.070 -0.13 -0.23 -0.061 +0.073 +0.14 +0.28 +0.055
  •  
8.
  • Quanz, S. P., et al. (author)
  • Large Interferometer For Exoplanets (LIFE) I. Improved exoplanet detection yield estimates for a large mid-infrared space-interferometer mission
  • 2022
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 664
  • Journal article (peer-reviewed)abstract
    • Context. One of the long-term goals of exoplanet science is the atmospheric characterization of dozens of small exoplanets in order to understand their diversity and search for habitable worlds and potential biosignatures. Achieving this goal requires a space mission of sufficient scale that can spatially separate the signals from exoplanets and their host stars and thus directly scrutinize the exoplanets and their atmospheres.Aims. We seek to quantify the exoplanet detection performance of a space-based mid-infrared (MIR) nulling interferometer that measures the thermal emission of exoplanets. We study the impact of various parameters and compare the performance with that of large single-aperture mission concepts that detect exoplanets in reflected light.Methods. We have developed an instrument simulator that considers all major astrophysical noise sources and coupled it with Monte Carlo simulations of a synthetic exoplanet population around main-sequence stars within 20 pc of the Sun. This allows us to quantify the number (and types) of exoplanets that our mission concept could detect. Considering single visits only, we discuss two different scenarios for distributing 2.5 yr of an initial search phase among the stellar targets. Different apertures sizes and wavelength ranges are investigated.Results. An interferometer consisting of four 2 m apertures working in the 4–18.5 μ.m wavelength range with a total instrument throughput of 5% could detect up to ≈550 exoplanets with radii between 0.5 and 6 R⊕ with an integrated S/N ≥ 7. At least ≈160 of the detected exoplanets have radii ≤1.5 R⊕. Depending on the observing scenario, ≈25–45 rocky exoplanets (objects with radii between 0.5 and 1.5 R⊕) orbiting within the empirical habitable zone (eHZ) of their host stars are among the detections. With four 3.5 m apertures, the total number of detections can increase to up to ≈770, including ≈60–80 rocky eHZ planets. With four times 1 m apertures, the maximum detection yield is ≈315 exoplanets, including ≤20 rocky eHZ planets. The vast majority of small, temperate exoplanets are detected around M dwarfs. The impact of changing the wavelength range to 3–20 μm or 6–17 μm on the detection yield is negligible.Conclusions. A large space-based MIR nulling interferometer will be able to directly detect hundreds of small, nearby exoplanets, tens of which would be habitable world candidates. This shows that such a mission can compete with large single-aperture reflected light missions. Further increasing the number of habitable world candidates, in particular around solar-type stars, appears possible via the implementation of a multi-visit strategy during the search phase. The high median S/N of most of the detected planets will allow for first estimates of their radii and effective temperatures and will help prioritize the targets for a second mission phase to obtain high-S/N thermal emission spectra, leveraging the superior diagnostic power of the MIR regime compared to shorter wavelengths.
  •  
9.
  • Rauer, H., et al. (author)
  • The PLATO 2.0 mission
  • 2014
  • In: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 38:1-2, s. 249-330
  • Journal article (peer-reviewed)abstract
    • PLATO 2.0 has recently been selected for ESA's M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s cadence) providing a wide field-of-view (2232 deg(2)) and a large photometric magnitude range (4-16 mag). It focuses on bright (4-11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4-10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2-3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e. g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such a low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmospheres. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA's Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science.
  •  
10.
  •  
11.
  • Bonfanti, A., et al. (author)
  • CHEOPS observations of the HD 108236 planetary system: A fifth planet, improved ephemerides, and planetary radii
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 646
  • Journal article (peer-reviewed)abstract
    • Context. The detection of a super-Earth and three mini-Neptunes transiting the bright (V = 9.2 mag) star HD 108236 (also known as TOI-1233) was recently reported on the basis of TESS and ground-based light curves. Aims. We perform a first characterisation of the HD 108236 planetary system through high-precision CHEOPS photometry and improve the transit ephemerides and system parameters. Methods. We characterise the host star through spectroscopic analysis and derive the radius with the infrared flux method. We constrain the stellar mass and age by combining the results obtained from two sets of stellar evolutionary tracks. We analyse the available TESS light curves and one CHEOPS transit light curve for each known planet in the system. Results. We find that HD 108236 is a Sun-like star with R? = 0.877 ± 0.008 R? , M? = 0.869-0.048+0.050 M? , and an age of 6.7-5.1+4.0 Gyr. We report the serendipitous detection of an additional planet, HD 108236 f, in one of the CHEOPS light curves. For this planet, the combined analysis of the TESS and CHEOPS light curves leads to a tentative orbital period of about 29.5 days. From the light curve analysis, we obtain radii of 1.615 ± 0.051, 2.071 ± 0.052, 2.539-0.065+0.062, 3.083 ± 0.052, and 2.017-0.057+0.052 R? for planets HD 108236 b to HD 108236 f, respectively. These values are in agreement with previous TESS-based estimates, but with an improved precision of about a factor of two. We perform a stability analysis of the system, concluding that the planetary orbits most likely have eccentricities smaller than 0.1. We also employ a planetary atmospheric evolution framework to constrain the masses of the five planets, concluding that HD 108236 b and HD 108236 c should have an Earth-like density, while the outer planets should host a low mean molecular weight envelope. Conclusions. The detection of the fifth planet makes HD 108236 the third system brighter than V = 10 mag to host more than four transiting planets. The longer time span enables us to significantly improve the orbital ephemerides such that the uncertainty on the transit times will be of the order of minutes for the years to come. A comparison of the results obtained from the TESS and CHEOPS light curves indicates that for a V - 9 mag solar-like star and a transit signal of -500 ppm, one CHEOPS transit light curve ensures the same level of photometric precision as eight TESS transits combined, although this conclusion depends on the length and position of the gaps in the light curve.
  •  
12.
  • Cabrera, J., et al. (author)
  • The planetary system around HD 190622 (TOI-1054): Measuring the gas content of low-mass planets orbiting F-stars
  • 2023
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 675
  • Journal article (peer-reviewed)abstract
    • Context. Giant planets are known to dominate the long-term stability of planetary systems due to their prevailing gravitational interactions, but they are also thought to play an important role in planet formation. Observational constraints improve our understanding of planetary formation processes such as the delivery of volatile-rich planetesimals from beyond the ice line into the inner planetary system. Additional constraints may come from studies of the atmosphere, but almost all such studies of the atmosphere investigate the detection of certain species, and abundances are not routinely quantitatively measured. Aims. Accurate measurements of planetary bulk parameters-that is, mass and density-provide constraints on the inner structure and chemical composition of transiting planets. This information provides insight into properties such as the amounts of volatile species, which in turn can be related to formation and evolution processes. Methods. The Transiting Exoplanet Survey Satellite (TESS) reported a planetary candidate around HD 190622 (TOI-1054), which was subsequently validated and found to merit further characterization with photometric and spectroscopic facilities. The KESPRINT collaboration used data from the High Accuracy Radial Velocity Planet Searcher (HARPS) to independently confirm the planetary candidate, securing its mass, and revealing the presence of an outer giant planet in the system. The CHEOPS consortium invested telescope time in the transiting target in order to reduce the uncertainty on the radius, improving the characterization of the planet. Results. We present the discovery and characterization of the planetary system around HD 190622 (TOI-1054). This system hosts one transiting planet, which is smaller than Neptune (3.087-0.053+0.058REarth, 7.7 ± 1.0 MEarth) but has a similar bulk density (1.43 ± 0.21 g cm-3) and an orbital period of 16 days; and a giant planet, not known to be transiting, with a minimum mass of 227.0 ± 6.7 MEarth in an orbit with a period of 315 days. Conclusions. Our measurements constrain the structure and composition of the transiting planet. HD 190622b has singular properties among the known population of transiting planets, which we discuss in detail. Among the sub-Neptune-sized planets known today, this planet stands out because of its large gas content.
  •  
13.
  • Fridlund, Malcolm, 1952, et al. (author)
  • Planets observed with CHEOPS: Two super-Earths orbiting the red dwarf star TOI-776
  • 2024
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 684
  • Journal article (peer-reviewed)abstract
    • Context. M-dwarf stars are the most common of potential exoplanet host stars in the Galaxy. It is therefore very important to understand planetary systems orbiting such stars and to determine the physical parameters of such planets with high precision. Also with the launch of the James Webb Space Telescope (JWST) the observation of atmospheric parameters of planets orbiting these stars has begun. It is therefore required to determine properties of potential targets. Aims. Two planets around the red dwarf TOI-776 were detected by TESS. The objective of our study was to use transit observations obtained by the CHEOPS space mission to improve the current precision of the planetary radii, as well as additional radial velocity (RV) data in order to improve mass estimates of the two planets. Using these quantities, we wanted to derive the bulk densities of those planets, improving the precision in earlier results, and use this information to put them in context of other exoplanetary systems involving very low mass stars. Methods. Utilizing new transit data from the CHEOPS satellite and its photometric telescope, we obtained very high precision planetary transit measurements. Interpretation of these provides updated planetary radii, along with other system parameters. A concurrent ESO large observing program using the high precision spectrograph HARPS has doubled the available radial velocity data. Calculating the power spectrum of a number of stellar activity indices we update the previously estimated stellar rotation period to a lower value. Results. The CHEOPS data provide precise transit depths of 909 and 1177 ppm translating into radii of Rb = 1.798-0.077+0.078 R⊕ and Rc = 2.047-0.078+0.081 R⊕, respectively. Our interpretation of the radial velocities and activity indicator time series data estimates a stellar rotation period for this early M dwarf of ~21.1 days. A further multi-dimensional Gaussian process approach confirm this new estimate. By performing a Skew-Normal (SN) fit onto the Cross Correlation Functions we extracted the RV data and the activity indicators to estimate the planetary masses, obtaining Mb = 5.0-1.6+1.6 M⊕ and Mc = 6.9-2.5+2.6 M⊕. Conclusions. We improve the precision in planetary radius for TOI-776 b and c by a factor of more than two. Our data and modelling give us parameters of both bodies consistent with mini-Neptunes, albeit with a relatively high density. The stellar activity of TOI-776 is found to have increased by a factor larger than 2 since the last set of observations.
  •  
14.
  •  
15.
  • Rosario, N. M., et al. (author)
  • Precise characterisation of HD 15337 with CHEOPS: A laboratory for planet formation and evolution
  • 2024
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 686
  • Journal article (peer-reviewed)abstract
    • Context . The HD 15337 (TIC 120896927, TOI-402) system was observed by the Transiting Exoplanet Survey Satellite (TESS), revealing the presence of two short-period planets situated on opposite sides of the radius gap. This offers an excellent opportunity to study theories of formation and evolution, as well as to investigate internal composition and atmospheric evaporation. Aims . We aim to constrain the internal structure and composition of two short-period planets situated on opposite sides of the radius valley: HD 15337 b and c. We use new transit photometry and radial velocity data. Methods . We acquired 6 new transit visits with the CHaracterising ExOPlanet Satellite (CHEOPS) and 32 new radial velocity measurements from the High Accuracy Radial Velocity Planet Searcher (HARPS) to improve the accuracy of the mass and radius estimates for both planets. We re-analysed the light curves from TESS sectors 3 and 4 and analysed new data from sector 30, correcting for long-term stellar activity. Subsequently, we performed a joint fit of the TESS and CHEOPS light curves, along with all available RV data from HARPS and the Planet Finder Spectrograph (PFS). Our model fit the planetary signals, stellar activity signal, and instrumental decorrelation model for the CHEOPS data simultaneously. The stellar activity was modelled using a Gaussian-process regression on both the RV and activity indicators. Finally, we employed a Bayesian retrieval code to determine the internal composition and structure of the planets. Results . We derived updated and highly precise parameters for the HD 15337 system. Our improved precision on the planetary parameters makes HD 15337 b one of the most precisely characterised rocky exoplanets, with radius and mass measurements achieving a precision better than 2% and 7%, respectively. We were able to improve the precision of the radius measurement of HD 15337 c to 3%. Our results imply that the composition of HD 15337 b is predominantly rocky, while HD 15337 c exhibits a gas envelope with a mass of at least 0.01 M-circle plus. Conclusions . Our results lay the groundwork for future studies, which can further unravel the atmospheric evolution of these exoplanets and offer new insights into their composition and formation history as well as the causes behind the radius gap.
  •  
16.
  • Serrano, L. M., et al. (author)
  • The HD 93963 A transiting system: A 1.04d super-Earth and a 3.65 d sub-Neptune discovered by TESS and CHEOPS
  • 2022
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 667
  • Journal article (peer-reviewed)abstract
    • We present the discovery of two small planets transiting HD 93963A (TOI-1797), a GOV star (M-* = 1.109 +/- 0.043M(circle dot), R-* = 1.043 +/- 0.009 R-circle dot) in a visual binary system. We combined TESS and CHEOPS space-borne photometry with MuSCAT 2 ground-based photometry, 'Alopeke and PHARO high-resolution imaging, TRES and FIES reconnaissance spectroscopy, and SOPHIE radial velocity measurements. We validated and spectroscopically confirmed the outer transiting planet HD 93963 A c, a sub-Neptune with an orbital period of P-c approximate to 3.65 d that was reported to be a TESS object of interest (TOI) shortly after the release of Sector 22 data. HD 93963 A c has amass of M-c = 19.2 +/- 4.1 M-circle plus and a radius of R-c = 3.228 +/- 0.059 R-circle plus, implying a mean density of rho(c) = 3.1 +/- 0.7 g cm(-3). The inner object, HD 93963 A b, is a validated 1.04 d ultra-short period (USP) transiting super-Earth that we discovered in the TESS light curve and that was not listed as a TOI, owing to the low significance of its signal (TESS signal-to-noise ratio approximate to 6.7, TESS + CHEOPS combined transit depth D-b = 141.5(-8.3)(+8.5) ppm). We intensively monitored the star with CHEOPS by performing nine transit observations to confirm the presence of the inner planet and validate the system. HD 93963 A b is the first small (R-b = 1.35 +/- 0.042 R-circle plus) USP planet discovered and validated by TESS and CHEOPS. Unlike planet c, HD 93963 Ab is not significantly detected in our radial velocities (M-b = 7.8 +/- 3.2 M-circle plus). The two planets are on either side of the radius valley, implying that they could have undergone completely different evolution processes. We also discovered a linear trend in our Doppler measurements, suggesting the possible presence of a long-period outer planet. With a V-band magnitude of 9.2, HD 93963 A is among the brightest stars known to host a USP planet, making it one of the most favourable targets for precise mass measurement via Doppler spectroscopy and an important laboratory to test formation, evolution, and migration models of planetary systems hosting ultra-short period planets.
  •  
17.
  • Alqasim, A., et al. (author)
  • TOI−757 b: an eccentric transiting mini−Neptune on a 17.5−d orbit
  • 2024
  • In: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 533:1, s. 1-26
  • Journal article (peer-reviewed)abstract
    • We report the spectroscopic confirmation and fundamental properties of TOI−757 b, a mini−Neptune on a 17.5−d orbit transiting a bright star (V = 9.7 mag) discovered by the TESS mission. We acquired high−precision radial velocity measurements with the HARPS, ESPRESSO, and PFS spectrographs to confirm the planet detection and determine its mass. We also acquired space−borne transit photometry with the CHEOPS space telescope to place stronger constraints on the planet radius, supported with ground−based LCOGT photometry. WASP and KELT photometry were used to help constrain the stellar rotation period. We also determined the fundamental parameters of the host star. We find that TOI−757 b has a radius of Rp = 2.5 ± 0.1R. and a mass of Mp = 10.5+−2212M, implying a bulk density of ρp = 3.6 ± 0.8 g cm−3. Our internal composition modelling was unable to constrain the composition of TOI−757 b, highlighting the importance of atmospheric observations for the system. We also find the planet to be highly eccentric with e = 0.39+−000708, making it one of the very few highly eccentric planets among precisely characterized mini−Neptunes. Based on comparisons to other similar eccentric systems, we find a likely scenario for TOI−757 b’s formation to be high eccentricity migration due to a distant outer companion. We additionally propose the possibility of a more intrinsic explanation for the high eccentricity due to star−star interactions during the earlier epoch of the Galactic disc formation, given the low metallicity and older age of TOI−757.
  •  
18.
  • Benz, W., et al. (author)
  • The CHEOPS mission
  • 2021
  • In: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 51:1, s. 109-151
  • Journal article (peer-reviewed)abstract
    • The CHaracterising ExOPlanet Satellite (CHEOPS) was selected on October 19, 2012, as the first small mission (S-mission) in the ESA Science Programme and successfully launched on December 18, 2019, as a secondary passenger on a Soyuz-Fregat rocket from Kourou, French Guiana. CHEOPS is a partnership between ESA and Switzerland with important contributions by ten additional ESA Member States. CHEOPS is the first mission dedicated to search for transits of exoplanets using ultrahigh precision photometry on bright stars already known to host planets. As a follow-up mission, CHEOPS is mainly dedicated to improving, whenever possible, existing radii measurements or provide first accurate measurements for a subset of those planets for which the mass has already been estimated from ground-based spectroscopic surveys. The expected photometric precision will also allow CHEOPS to go beyond measuring only transits and to follow phase curves or to search for exo-moons, for example. Finally, by unveiling transiting exoplanets with high potential for in-depth characterisation, CHEOPS will also provide prime targets for future instruments suited to the spectroscopic characterisation of exoplanetary atmospheres. To reach its science objectives, requirements on the photometric precision and stability have been derived for stars with magnitudes ranging from 6 to 12 in the V band. In particular, CHEOPS shall be able to detect Earth-size planets transiting G5 dwarf stars (stellar radius of 0.9R⊙) in the magnitude range 6 ≤ V ≤ 9 by achieving a photometric precision of 20 ppm in 6 hours of integration time. In the case of K-type stars (stellar radius of 0.7R⊙) of magnitude in the range 9 ≤ V ≤ 12, CHEOPS shall be able to detect transiting Neptune-size planets achieving a photometric precision of 85 ppm in 3 hours of integration time. This precision has to be maintained over continuous periods of observation for up to 48 hours. This precision and stability will be achieved by using a single, frame-transfer, back-illuminated CCD detector at the focal plane assembly of a 33.5 cm diameter, on-axis Ritchey-Chrétien telescope. The nearly 275 kg spacecraft is nadir-locked, with a pointing accuracy of about 1 arcsec rms, and will allow for at least 1 Gbit/day downlink. The sun-synchronous dusk-dawn orbit at 700 km altitude enables having the Sun permanently on the backside of the spacecraft thus minimising Earth stray light. A mission duration of 3.5 years in orbit is foreseen to enable the execution of the science programme. During this period, 20% of the observing time is available to the wider community through yearly ESA call for proposals, as well as through discretionary time approved by ESA’s Director of Science. At the time of this writing, CHEOPS commissioning has been completed and CHEOPS has been shown to fulfill all its requirements. The mission has now started the execution of its science programme.
  •  
19.
  • Bonfanti, A., et al. (author)
  • TOI-1055 b: Neptunian planet characterised with HARPS, TESS, and CHEOPS
  • 2023
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 671
  • Journal article (peer-reviewed)abstract
    • Context. TOI-1055 is a Sun-like star known to host a transiting Neptune-sized planet on a 17.5-day orbit (TOI-1055 b). Radial velocity (RV) analyses carried out by two independent groups using nearly the same set of HARPS spectra have provided measurements of planetary masses that differ by ∼2σ. Aims. Our aim in this work is to solve the inconsistency in the published planetary masses by significantly extending the set of HARPS RV measurements and employing a new analysis tool that is able to account and correct for stellar activity. Our further aim was to improve the precision on measurements of the planetary radius by observing two transits of the planet with the CHEOPS space telescope. Methods. We fit a skew normal function to each cross correlation function extracted from the HARPS spectra to obtain RV measurements and hyperparameters to be used for the detrending. We evaluated the correlation changes of the hyperparameters along the RV time series using the breakpoint technique. We performed a joint photometric and RV analysis using a Markov chain Monte Carlo scheme to simultaneously detrend the light curves and the RV time series. Results. We firmly detected the Keplerian signal of TOI-1055 b, deriving a planetary mass of Mb = 20.4-2.5+2.6 MO (∼12%). This value is in agreement with one of the two estimates in the literature, but it is significantly more precise. Thanks to the TESS transit light curves combined with exquisite CHEOPS photometry, we also derived a planetary radius of Rb = 3.490-0.064+0.070 RO (∼1.9%). Our mass and radius measurements imply a mean density of ρb = 2.65-0.35+0.37 g cm-3 (∼14%). We further inferred the planetary structure and found that TOI-1055 b is very likely to host a substantial gas envelope with a mass of 0.41-0.20+0.34 MO and a thickness of 1.05-0.29+0.30 RO. Conclusions. Our RV extraction combined with the breakpoint technique has played a key role in the optimal removal of stellar activity from the HARPS time series, enabling us to solve the tension in the planetary mass values published so far for TOI-1055 b.
  •  
20.
  • Ehrenreich, D., et al. (author)
  • A full transit of v 2 Lupi d and the search for an exomoon in its Hill sphere with CHEOPS
  • 2023
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 671
  • Journal article (peer-reviewed)abstract
    • The planetary system around the naked-eye star v2 Lupi (HD 136352; TOI-2011) is composed of three exoplanets with masses of 4.7, 11.2, and 8.6 Earth masses (M⊕). The TESS and CHEOPS missions revealed that all three planets are transiting and have radii straddling the radius gap separating volatile-rich and volatile-poor super-earths. Only a partial transit of planet d had been covered so we re-observed an inferior conjunction of the long-period 8.6 M⊕ exoplanet v2 Lup d with the CHEOPS space telescope. We confirmed its transiting nature by covering its whole 9.1 h transit for the first time. We refined the planet transit ephemeris to P = 107.13610.0022+0.0019 days and Tc = 2459009.77590.0096+0.0101 BJDTDB, improving by ~40 times on the previously reported transit timing uncertainty. This refined ephemeris will enable further follow-up of this outstanding long-period transiting planet to search for atmospheric signatures or explore the planet s Hill sphere in search for an exomoon. In fact, the CHEOPS observations also cover the transit of a large fraction of the planet s Hill sphere, which is as large as the Earth s, opening the tantalising possibility of catching transiting exomoons. We conducted a search for exomoon signals in this single-epoch light curve but found no conclusive photometric signature of additional transiting bodies larger than Mars. Yet, only a sustained follow-up of v2 Lup d transits will warrant a comprehensive search for a moon around this outstanding exoplanet.
  •  
21.
  • Fortier, A., et al. (author)
  • CHEOPS in-flight performance: A comprehensive look at the first 3.5 yr of operations
  • 2024
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 687
  • Journal article (peer-reviewed)abstract
    • Context. Since the discovery of the first exoplanet almost three decades ago, the number of known exoplanets has increased dramatically. By beginning of the 2000s it was clear that dedicated facilities to advance our studies in this field were needed. The CHaracterising ExOPlanet Satellite (CHEOPS) is a space telescope specifically designed to monitor transiting exoplanets orbiting bright stars. In September 2023, CHEOPS completed its nominal mission duration of 3.5 yr and remains in excellent operational conditions. As a testament to this, the mission has been extended until the end of 2026. Aims. Scientific and instrumental data have been collected throughout in-orbit commissioning and nominal operations, enabling a comprehensive analysis of the missiona's performance. In this article, we present the results of this analysis with a twofold goal. First, we aim to inform the scientific community about the present status of the mission and what can be expected as the instrument ages. Secondly, we intend for this publication to serve as a legacy document for future missions, providing insights and lessons learned from the successful operation of CHEOPS. Methods. To evaluate the instrument performance in flight, we developed a comprehensive monitoring and characterisation (M&C) programme. It consists of dedicated observations that allow us to characterise the instrumenta's response and continuously monitor its behaviour. In addition to the standard collection of nominal science and housekeeping data, these observations provide valuable input for detecting, modelling, and correcting instrument systematics, discovering and addressing anomalies, and comparing the instrumenta's actual performance with expectations. Results. The precision of the CHEOPS measurements has enabled the mission objectives to be met and exceeded. The satellitea's performance remains stable and reliable, ensuring accurate data collection throughout its operational life. Careful modelling of the instrumental systematics allows the data quality to be significantly improved during the light curve analysis phase, resulting in more precise scientific measurements. Conclusions. CHEOPS is compliant with the driving scientific requirements of the mission. Although visible, the ageing of the instrument has not affected the missiona's performance. The satellitea's capabilities remain robust, and we are confident that we will continue to acquire high-quality data during the mission extension.
  •  
22.
  • Garai, Z., et al. (author)
  • Refined parameters of the HD 22946 planetary system and the true orbital period of planet d
  • 2023
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 674
  • Journal article (peer-reviewed)abstract
    • Context. Multi-planet systems are important sources of information regarding the evolution of planets. However, the long-period planets in these systems often escape detection. These objects in particular may retain more of their primordial characteristics compared to close-in counterparts because of their increased distance from the host star. HD 22946 is a bright (G = 8.13 mag) late F-type star around which three transiting planets were identified via Transiting Exoplanet Survey Satellite (TESS) photometry, but the true orbital period of the outermost planet d was unknown until now. Aims. We aim to use the Characterising Exoplanet Satellite (CHEOPS) space telescope to uncover the true orbital period of HD 22946d and to refine the orbital and planetary properties of the system, especially the radii of the planets. Methods. We used the available TESS photometry of HD 22946 and observed several transits of the planets b, c, and d using CHEOPS. We identified two transits of planet d in the TESS photometry, calculated the most probable period aliases based on these data, and then scheduled CHEOPS observations. The photometric data were supplemented with ESPRESSO (Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations) radial velocity data. Finally, a combined model was fitted to the entire dataset in order to obtain final planetary and system parameters. Results. Based on the combined TESS and CHEOPS observations, we successfully determined the true orbital period of the planet d to be 47.42489 ± 0.00011 days, and derived precise radii of the planets in the system, namely 1.362 ± 0.040 R, 2.328 ± 0.039 R, and 2.607 ± 0.060 R for planets b, c, and d, respectively. Due to the low number of radial velocities, we were only able to determine 3σ upper limits for these respective planet masses, which are 13.71 M, 9.72 M, and 26.57 M. We estimated that another 48 ESPRESSO radial velocities are needed to measure the predicted masses of all planets in HD 22946. We also derived stellar parameters for the host star. Conclusions. Planet c around HD 22946 appears to be a promising target for future atmospheric characterisation via transmission spectroscopy. We can also conclude that planet d, as a warm sub-Neptune, is very interesting because there are only a few similar confirmed exoplanets to date. Such objects are worth investigating in the near future, for example in terms of their composition and internal structure.
  •  
23.
  • Lendl, M., et al. (author)
  • The hot dayside and asymmetric transit of WASP-189 b seen by CHEOPS
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 643
  • Journal article (peer-reviewed)abstract
    • The CHEOPS space mission dedicated to exoplanet follow-up was launched in December 2019, equipped with the capacity to perform photometric measurements at the 20 ppm level. As CHEOPS carries out its observations in a broad optical passband, it can provide insights into the reflected light from exoplanets and constrain the short-wavelength thermal emission for the hottest of planets by observing occultations and phase curves. Here, we report the first CHEOPS observation of an occultation, namely, that of the hot Jupiter WASP-189 b, a MP ≈ 2MJ planet orbiting an A-type star. We detected the occultation of WASP-189 b at high significance in individual measurements and derived an occultation depth of dF = 87.9 ± 4.3 ppm based on four occultations. We compared these measurements to model predictions and we find that they are consistent with an unreflective atmosphere heated to a temperature of 3435 ± 27 K, when assuming inefficient heat redistribution. Furthermore, we present two transits of WASP-189 b observed by CHEOPS. These transits have an asymmetric shape that we attribute to gravity darkening of the host star caused by its high rotation rate. We used these measurements to refine the planetary parameters, finding a ~25% deeper transit compared to the discovery paper and updating the radius of WASP-189 b to 1.619 ± 0.021RJ. We further measured the projected orbital obliquity to be λ = 86.4-4.4+2.9°, a value that is in good agreement with a previous measurement from spectroscopic observations, and derived a true obliquity of ψ = 85.4 ± 4.3°. Finally, we provide reference values for the photometric precision attained by the CHEOPS satellite: for the V = 6.6 mag star, and using a 1-h binning, we obtain a residual RMS between 10 and 17 ppm on the individual light curves, and 5.7 ppm when combining the four visits.
  •  
24.
  • Marconi, A., et al. (author)
  • ANDES, the high resolution spectrograph for the ELT : science case, baseline design and path to construction
  • 2022
  • In: GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY IX. - : SPIE - International Society for Optical Engineering. - 9781510653504 - 9781510653498
  • Conference paper (peer-reviewed)abstract
    • The first generation of ELT instruments includes an optical-infrared high resolution spectrograph, indicated as ELT-HIRES and recently christened ANDES (ArmazoNes high Dispersion Echelle Spectrograph). ANDES consists of three fibre-fed spectrographs (UBV, RIZ, YJH) providing a spectral resolution of similar to 100,000 with a minimum simultaneous wavelength coverage of 0.4-1.8 mu m with the goal of extending it to 0.35-2.4 mu m with the addition of a K band spectrograph. It operates both in seeing- and diffraction-limited conditions and the fibre-feeding allows several, interchangeable observing modes including a single conjugated adaptive optics module and a small diffraction-limited integral field unit in the NIR. Its modularity will ensure that ANDES can be placed entirely on the ELT Nasmyth platform, if enough mass and volume is available, or partly in the Coude room. ANDES has a wide range of groundbreaking science cases spanning nearly all areas of research in astrophysics and even fundamental physics. Among the top science cases there are the detection of biosignatures from exoplanet atmospheres, finding the fingerprints of the first generation of stars, tests on the stability of Nature's fundamental couplings, and the direct detection of the cosmic acceleration. The ANDES project is carried forward by a large international consortium, composed of 35 Institutes from 13 countries, forming a team of more than 200 scientists and engineers which represent the majority of the scientific and technical expertise in the field among ESO member states.
  •  
25.
  • Osborn, H. P., et al. (author)
  • Uncovering the true periods of the young sub-Neptunes orbiting TOI-2076
  • 2022
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 664
  • Journal article (peer-reviewed)abstract
    • Context. TOI-2076 is a transiting three-planet system of sub-Neptunes orbiting a bright (G = 8.9 mag), young (340 +/- 80 Myr) K-type star. Although a validated planetary system, the orbits of the two outer planets were unconstrained as only two non-consecutive transits were seen in TESS photometry. This left 11 and 7 possible period aliases for each. Aims. To reveal the true orbits of these two long-period planets, precise photometry targeted on the highest-probability period aliases is required. Long-term monitoring of transits in multi-planet systems can also help constrain planetary masses through TTV measurements. Methods. We used the MonoTools package to determine which aliases to follow, and then performed space-based and ground-based photometric follow-up of TOI-2076 c and d with CHEOPS, SAINT-EX, and LCO telescopes. Results. CHEOPS observations revealed a clear detection for TOI-2076 c at P = 21.01538(-0.00074)(+0.00084) d, and allowed us to rule out three of the most likely period aliases for TOI-2076 d. Ground-based photometry further enabled us to rule out remaining aliases and confirm the P = 35.12537 +/- 0.00067 d alias. These observations also improved the radius precision of all three sub-Neptunes to 2.518 +/- 0.036, 3.497 +/- 0.043, and 3.232 +/- 0.063 R-circle plus. Our observations also revealed a clear anti-correlated TTV signal between planets b and c likely caused by their proximity to the 2:1 resonance, while planets c and d appear close to a 5:3 period commensurability, although model degeneracy meant we were unable to retrieve robust TTV masses. Their inflated radii, likely due to extended H-He atmospheres, combined with low insolation makes all three planets excellent candidates for future comparative transmission spectroscopy with JWST.
  •  
26.
  •  
27.
  •  
28.
  • Tuson, A., et al. (author)
  • TESS and CHEOPS discover two warm sub-Neptunes transiting the bright K-dwarf HD 15906
  • 2023
  • In: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 523:2, s. 3090-3118
  • Journal article (peer-reviewed)abstract
    • We report the discovery of two warm sub-Neptunes transiting the bright (G = 9.5 mag) K-dwarf HD 15906 (TOI 461, TIC 4646810). This star was observed by the Transiting Exoplanet Survey Satellite (TESS) in sectors 4 and 31, revealing two small transiting planets. The inner planet, HD 15906 b, was detected with an unambiguous period but the outer planet, HD 15906 c, showed only two transits separated by ∼ 734 d, leading to 36 possible values of its period. We performed follow-up observations with the CHaracterising ExOPlanet Satellite (CHEOPS) to confirm the true period of HD 15906 c and improve the radius precision of the two planets. From TESS, CHEOPS, and additional ground-based photometry, we find that HD 15906 b has a radius of 2.24 ± 0.08 R and a period of 10.924709 ± 0.000032 d, whilst HD 15906 c has a radius of 2.93+−000607 R and a period of 21.583298+−00000055000052 d. Assuming zero bond albedo and full day-night heat redistribution, the inner and outer planet have equilibrium temperatures of 668 ± 13 K and 532 ± 10 K, respectively. The HD 15906 system has become one of only six multiplanet systems with two warm (700 K) sub-Neptune sized planets transiting a bright star (G ≤ 10 mag). It is an excellent target for detailed characterization studies to constrain the composition of sub-Neptune planets and test theories of planet formation and evolution.
  •  
29.
  • Ahrer, E., et al. (author)
  • Atmospheric characterization and tighter constraints on the orbital misalignment of WASP-94 A b with HARPS
  • 2024
  • In: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 530:3, s. 2749-2759
  • Journal article (peer-reviewed)abstract
    • We present high spectral resolution observations of the hot Jupiter WASP-94 A b using the HARPS instrument on ESO’s 3.6-m telescope in La Silla, Chile. We probed for Na absorption in its atmosphere as well as constrained the previously reported misaligned retrograde orbit using the Rossiter–McLaughlin effect. Additionally, we undertook a combined atmospheric retrieval analysis with previously published low-resolution data. We confirm the retrograde orbit as well as constrain the orbital misalignment with our measurement of a projected spin-orbit obliquity of λ = 123.0 ± 3.0°. We find a tentative detection of Na absorption in the atmosphere of WASP-94 A b, independent of the treatment of the Rossiter–McLaughlin effect in our analysis (3.6σ and 4.4σ). We combine our HARPS high-resolution data with low-resolution data from the literature and find that while the posterior distribution of the Na abundance results in a tighter constraint than using a single data set, the detection significance does not improve (3.2σ), which we attribute to degeneracies between the low- and high-resolution data.
  •  
30.
  • Akinsanmi, B., et al. (author)
  • The tidal deformation and atmosphere of WASP-12 b from its phase curve
  • 2024
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 685
  • Journal article (peer-reviewed)abstract
    • Context. Ultra-hot Jupiters present a unique opportunity to understand the physics and chemistry of planets, their atmospheres, and interiors at extreme conditions. WASP-12 b stands out as an archetype of this class of exoplanets, with a close-in orbit around its star that results in intense stellar irradiation and tidal effects. Aims. The goals are to measure the planet's tidal deformation, atmospheric properties, and also to refine its orbital decay rate. Methods. We performed comprehensive analyses of the transits, occultations, and phase curves of WASP-12b by combining new CHEOPS observations with previous TESS and Spitzer data. The planet was modeled as a triaxial ellipsoid parameterized by the second-order fluid Love number of the planet, h2, which quantifies its radial deformation and provides insight into the interior structure. Results. We measured the tidal deformation of WASP-12b and estimated a Love number of h2 = 1.55- 0.49+0.45 (at 3.2σ) from its phase curve. We measured occultation depths of 333 ± 24 ppm and 493 ± 29 ppm in the CHEOPS and TESS bands, respectively, while the nightside fluxes are consistent with zero, and also marginal eastward phase offsets. Our modeling of the dayside emission spectrum indicates that CHEOPS and TESS probe similar pressure levels in the atmosphere at a temperature of ~2900 K. We also estimated low geometric albedos of Ag = 0.086 ± 0.017 and Ag = 0.01 ± 0.023 in the CHEOPS and TESS passbands, respectively, suggesting the absence of reflective clouds in the high-temperature dayside of the planet. The CHEOPS occultations do not show strong evidence for variability in the dayside atmosphere of the planet at the median occultation depth precision of 120 ppm attained. Finally, combining the new CHEOPS timings with previous measurements refines the precision of the orbital decay rate by 12% to a value of - 30.23 ± 0.82 ms yr- 1, resulting in a modified stellar tidal quality factor of Q′∗ = 1.70 ± 0.14 × 105. Conclusions. WASP-12 b becomes the second exoplanet, after WASP-103b, for which the Love number has been measured from the effect of tidal deformation in the light curve. However, constraining the core mass fraction of the planet requires measuring h2 with a higher precision. This can be achieved with high signal-to-noise observations with JWST since the phase curve amplitude, and consequently the induced tidal deformation effect, is higher in the infrared.
  •  
31.
  • Alonso, R., et al. (author)
  • No random transits in CHEOPS observations of HD 139139 *,**
  • 2023
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 680
  • Journal article (peer-reviewed)abstract
    • Context . The star HD 139139 (a.k.a. ‘the Random Transiter’) is a star that exhibited enigmatic transit-like features with no apparent periodicity in K2 data. The shallow depth of the events (-200 ppm - equivalent to transiting objects with radii of -1.5 R⊕ in front of a Sun-like star) and their non-periodicity constitute a challenge for the photometric follow-up of this star. Aims . The goal of this study is to confirm with independent measurements the presence of shallow, non-periodic transit-like features on this object. Methods . We performed observations with CHEOPS for a total accumulated time of 12.75 days, distributed in visits of roughly 20 h in two observing campaigns in years 2021 and 2022. The precision of the data is sufficient to detect 150 ppm features with durations longer than 1.5 h. We used the duration and times of the events seen in the K2 curve to estimate how many events should have been detected in our campaigns, under the assumption that their behaviour during the CHEOPS observations would be the same as in the K2 data of 2017. Results . We do not detect events with depths larger than 150 ppm in our data set. If the frequency, depth, and duration of the events were the same as in the K2 campaign, we estimate the probability of having missed all events due to our limited observing window would be 4.8%. Conclusions . We suggest three different scenarios to explain our results: 1) Our observing window was not long enough, and the events were missed with the estimated 4.8% probability. 2) The events recorded in the K2 observations were time critical, and the mechanism producing them was either not active in the 2021 and 2022 campaigns or created shallower events under our detectability level. 3) The enigmatic events in the K2 data are the result of an unidentified and infrequent instrumental noise in the original data set or its data treatment.
  •  
32.
  • Barros, S. C. C., et al. (author)
  • Detection of the tidal deformation of WASP-103b at 3σ with CHEOPS
  • 2022
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 657
  • Journal article (peer-reviewed)abstract
    • Context. Ultra-short period planets undergo strong tidal interactions with their host star which lead to planet deformation and orbital tidal decay.Aims. WASP-103b is the exoplanet with the highest expected deformation signature in its transit light curve and one of the shortest expected spiral-in times. Measuring the tidal deformation of the planet would allow us to estimate the second degree fluid Love number and gain insight into the planet's internal structure. Moreover, measuring the tidal decay timescale would allow us to estimate the stellar tidal quality factor, which is key to constraining stellar physics.Methods. We obtained 12 transit light curves of WASP-103b with the CHaracterising ExOplanet Satellite (CHEOPS) to estimate the tidal deformation and tidal decay of this extreme system. We modelled the high-precision CHEOPS transit light curves together with systematic instrumental noise using multi-dimensional Gaussian process regression informed by a set of instrumental parameters. To model the tidal deformation, we used a parametrisation model which allowed us to determine the second degree fluid Love number of the planet. We combined our light curves with previously observed transits of WASP-103b with the Hubble Space Telescope (HST) and Spitzer to increase the signal-to-noise of the light curve and better distinguish the minute signal expected from the planetary deformation.Results. We estimate the radial Love number of WASP-103b to be h(f) = 1.59(-0.53)(+0.45). This is the first time that the tidal deformation is directly detected (at 3 sigma) from the transit light curve of an exoplanet. Combining the transit times derived from CHEOPS, HST, and Spitzer light curves with the other transit times available in the literature, we find no significant orbital period variation for WASP-103b. However, the data show a hint of an orbital period increase instead of a decrease, as is expected for tidal decay. This could be either due to a visual companion star if this star is bound, the Applegate effect, or a statistical artefact.Conclusions. The estimated Love number of WASP-103b is similar to Jupiter's. This will allow us to constrain the internal structure and composition of WASP-103b, which could provide clues on the inflation of hot Jupiters. Future observations with James Webb Space Telescope can better constrain the radial Love number of WASP-103b due to their high signal-to-noise and the smaller signature of limb darkening in the infrared. A longer time baseline is needed to constrain the tidal decay in this system.
  •  
33.
  • Bruno, G., et al. (author)
  • Detailed cool star flare morphology with CHEOPS and TESS
  • 2024
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 686
  • Journal article (peer-reviewed)abstract
    • Context. White-light stellar flares are proxies for some of the most energetic types of flares, but their triggering mechanism is still poorly understood. As they are associated with strong X and ultraviolet emission, their study is particularly relevant to estimate the amount of high-energy irradiation onto the atmospheres of exoplanets, especially those in their stars’ habitable zone. Aims. We used the high-cadence, high-photometric capabilities of the CHEOPS and TESS space telescopes to study the detailed morphology of white-light flares occurring in a sample of 130 late-K and M stars, and compared our findings with results obtained at a lower cadence. Methods. We employed dedicated software for the reduction of 3 s cadence CHEOPS data, and adopted the 20 s cadence TESS data reduced by their official processing pipeline. We developed an algorithm to separate multi-peak flare profiles into their components, in order to contrast them to those of single-peak, classical flares. We also exploited this tool to estimate amplitudes and periodicities in a small sample of quasi-periodic pulsation (QPP) candidates. Results. Complex flares represent a significant percentage (≳30%) of the detected outburst events. Our findings suggest that high-impulse flares are more frequent than suspected from lower-cadence data, so that the most impactful flux levels that hit close-in exoplanets might be more time-limited than expected. We found significant differences in the duration distributions of single and complex flare components, but not in their peak luminosity. A statistical analysis of the flare parameter distributions provides marginal support for their description with a log-normal instead of a power-law function, leaving the door open to several flare formation scenarios. We tentatively confirmed previous results about QPPs in high-cadence photometry, report the possible detection of a pre-flare dip, and did not find hints of photometric variability due to an undetected flare background. Conclusions. The high-cadence study of stellar hosts might be crucial to evaluate the impact of their flares on close-in exoplanets, as their impulsive phase emission might otherwise be incorrectly estimated. Future telescopes such as PLATO and Ariel, thanks to their high-cadence capability, will help in this respect. As the details of flare profiles and of the shape of their parameter distributions are made more accessible by continuing to increase the instrument precision and time resolution, the models used to interpret them and their role in star-planet interactions might need to be updated constantly.
  •  
34.
  • Deline, A., et al. (author)
  • The atmosphere and architecture of WASP-189 b probed by its CHEOPS phase curve
  • 2022
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 659
  • Journal article (peer-reviewed)abstract
    • Context. Gas giants orbiting close to hot and massive early-type stars can reach dayside temperatures that are comparable to those of the coldest stars. These 'ultra-hot Jupiters' have atmospheres made of ions and atomic species from molecular dissociation and feature strong day-to-night temperature gradients. Photometric observations at different orbital phases provide insights on the planet's atmospheric properties. Aims. We aim to analyse the photometric observations of WASP-189 acquired with the Characterising Exoplanet Satellite (CHEOPS) to derive constraints on the system architecture and the planetary atmosphere. Methods. We implemented a light-curve model suited for an asymmetric transit shape caused by the gravity-darkened photosphere of the fast-rotating host star. We also modelled the reflective and thermal components of the planetary flux, the effect of stellar oblateness and light-travel time on transit-eclipse timings, the stellar activity, and CHEOPS systematics. Results. From the asymmetric transit, we measure the size of the ultra-hot Jupiter WASP-189 b, R-p = 1.600(-0.016)(+0.017)R(J), with a precision of 1%, and the true orbital obliquity of the planetary system, Psi(P) = 89.6 +/- 1.2 deg (polar orbit). We detect no significant hotspot offset from the phase curve and obtain an eclipse depth of delta ecl = 96.5(-5.9)(+4).(5) ppm, from which we derive an upper limit on the geometric albedo: A(g) < 0.48. We also find that the eclipse depth can only be explained by thermal emission alone in the case of extremely inefficient energy redistribution. Finally, we attribute the photometric variability to the stellar rotation, either through superficial inhomogeneities or resonance couplings between the convective core and the radiative envelope. Conclusions. Based on the derived system architecture, we predict the eclipse depth in the upcoming Transiting Exoplanet Survey Satellite (TESS) observations to be up to similar to 165 ppm. High-precision detection of the eclipse in both CHEOPS and TESS passbands might help disentangle reflective and thermal contributions. We also expect the right ascension of the ascending node of the orbit to precess due to the perturbations induced by the stellar quadrupole moment J(2) (oblateness).
  •  
35.
  • Demory, B.O., et al. (author)
  • 55 Cancri e's occultation captured with CHEOPS
  • 2023
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 669
  • Journal article (peer-reviewed)abstract
    • Past occultation and phase-curve observations of the ultra-short period super-Earth 55 Cnc e obtained at visible and infrared wavelengths have been challenging to reconcile with a planetary reflection and emission model. In this study, we analyse a set of 41 occultations obtained over a two-year timespan with the CHEOPS satellite. We report the detection of 55 Cnc e's occultation with an average depth of 12 ± 3 ppm. We derive a corresponding 2Ïà  upper limit on the geometric albedo of Ag < 0.55 once decontaminated from the thermal emission measured by Spitzer at 4.5 μm. CHEOPSâà €à ™ s photometric performance enables, for the first time, the detection of individual occultations of this super-Earth in the visible and identifies short-timescale photometric corrugations likely induced by stellar granulation. We also find a clear 47.3-day sinusoidal pattern in the time-dependent occultation depths that we are unable to relate to stellar noise, nor instrumental systematics, but whose planetary origin could be tested with upcoming JWST occultation observations of this iconic super-Earth.
  •  
36.
  • Hoeijmakers, H. J., et al. (author)
  • Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy (HEARTS) : IV. A spectral inventory of atoms and molecules in the high-resolution transmission spectrum of WASP-121 b
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 641
  • Journal article (peer-reviewed)abstract
    • Context. WASP-121 b is a hot Jupiter that was recently found to possess rich emission (day side) and transmission (limb) spectra, suggestive of the presence of a multitude of chemical species in the atmosphere. Aims. We survey the transmission spectrum of WASP-121 b for line-absorption by metals and molecules at high spectral resolution and elaborate on existing interpretations of the optical transmission spectrum observed with the Hubble Space Telescope (HST). Methods. We applied the cross-correlation technique and direct differential spectroscopy to search for sodium and other neutral and ionised atoms, TiO, VO, and SH in high-resolution transit spectra obtained with the HARPS spectrograph. We injected models assuming chemical and hydrostatic equilibrium with a varying temperature and composition to enable model comparison, and employed two bootstrap methods to test the robustness of our detections. Results. We detect neutral Mg, Na, Ca, Cr, Fe, Ni, and V, which we predict exists in equilibrium with a significant quantity of VO, supporting earlier observations by HST/WFC3. Non-detections of Ti and TiO support the hypothesis that Ti is depleted via a cold-trap mechanism, as has been proposed in the literature. Atomic line depths are under-predicted by hydrostatic models by a factor of 1.5 to 8, confirming recent findings that the atmosphere is extended. We predict the existence of significant concentrations of gas-phase TiO2, VO2, and TiS, which could be important absorbers at optical and near-IR wavelengths in hot Jupiter atmospheres. However, accurate line-list data are not currently available for them. We find no evidence for absorption by SH and find that inflated atomic lines can plausibly explain the slope of the transmission spectrum observed in the near-ultraviolet with HST. The Na I D lines are significantly broadened (FWHM ∼50 to 70 km s-1) and show a difference in their respective depths of ~15 scale heights, which is not expected from isothermal hydrostatic theory. If this asymmetry is of astrophysical origin, it may indicate that Na I forms an optically thin envelope, reminiscent of the Na I cloud surrounding Jupiter, or that it is hydrodynamically outflowing.
  •  
37.
  • Hooton, M.J., et al. (author)
  • Spi-OPS: Spitzer and CHEOPS confirm the near-polar orbit of MASCARA-1 b and reveal a hint of dayside reflection
  • 2022
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 658
  • Journal article (peer-reviewed)abstract
    • Context. The light curves of tidally locked hot Jupiters transiting fast-rotating, early-type stars are a rich source of information about both the planet and star, with full-phase coverage enabling a detailed atmospheric characterisation of the planet. Although it is possible to determine the true spin-orbit angle ψ-a notoriously difficult parameter to measure-from any transit asymmetry resulting from gravity darkening induced by the stellar rotation, the correlations that exist between the transit parameters have led to large disagreements in published values of ψ for some systems. Aims. We aimed to study these phenomena in the light curves of the ultra-hot Jupiter MASCARA-1 b, which is characteristically similar to well-studied contemporaries such as KELT-9 b and WASP-33 b. Methods. We obtained optical CHaracterising ExOPlanet Satellite (CHEOPS) transit and occultation light curves of MASCARA-1 b, and analysed them jointly with a Spitzer/IRAC 4.5 μm full-phase curve to model the asymmetric transits, occultations, and phase-dependent flux modulation. For the latter, we employed a novel physics-driven approach to jointly fit the phase modulation by generating a single 2D temperature map and integrating it over the two bandpasses as a function of phase to account for the differing planet-star flux contrasts. The reflected light component was modelled using the general ab initio solution for a semi-infinite atmosphere. Results. When fitting the CHEOPS and Spitzer transits together, the degeneracies are greatly diminished and return results consistent with previously published Doppler tomography. Placing priors informed by the tomography achieves even better precision, allowing a determination of ψ = 72.1-2.4+2.5 deg. From the occultations and phase variations, we derived dayside and nightside temperatures of 3062-68+66 K and 1720 ± 330 K, respectively.Our retrieval suggests that the dayside emission spectrum closely follows that of a blackbody. As the CHEOPS occultation is too deep to be attributed to blackbody flux alone, we could separately derive geometric albedo Ag = 0.171-0.068+0.066 and spherical albedo As = 0.266-0.100+0.097 from the CHEOPS data, and Bond albedoAB = 0.057-0.101+0.083 from the Spitzer phase curve.Although small, the Ag and As indicate that MASCARA-1 b is more reflective than most other ultra-hot Jupiters, where H- absorption is expected to dominate. Conclusions. Where possible, priors informed by Doppler tomography should be used when fitting transits of fast-rotating stars, though multi-colour photometry may also unlock an accurate measurement of ψ. Our approach to modelling the phase variations at different wavelengths provides a template for how to separate thermal emission from reflected light in spectrally resolved James Webb Space Telescope phase curve data.
  •  
38.
  • Jones, K., et al. (author)
  • The stable climate of KELT-9b
  • 2022
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Journal article (peer-reviewed)abstract
    • Even among the most irradiated gas giants, so-called ultra-hot Jupiters, KELT-9b stands out as the hottest planet thus far discovered with a dayside temperature of over 4500 K. At these extreme irradiation levels, we expect an increase in heat redistribution efficiency and a low Bond albedo owed to an extended atmosphere with molecular hydrogen dissociation occurring on the planetary dayside. We present new photometric observations of the KELT-9 system throughout 4 full orbits and 9 separate occultations obtained by the 30 cm space telescope CHEOPS. The CHEOPS bandpass, located at optical wavelengths, captures the peak of the thermal emission spectrum of KELT-9b. In this work we simultaneously analyse CHEOPS phase curves along with public phase curves from TESS and Spitzer to infer joint constraints on the phase curve variation, gravity-darkened transits, and occultation depth in three bandpasses, as well as derive 2D temperature maps of the atmosphere at three different depths. We find a day-night heat redistribution efficiency of similar to 0.3 which confirms expectations of enhanced energy transfer to the planetary nightside due to dissociation and recombination of molecular hydrogen. We also calculate a Bond albedo consistent with zero. We find no evidence of variability of the brightness temperature of the planet, excluding variability greater than 1% (1 sigma).
  •  
39.
  • Lam, K. W. F., et al. (author)
  • Discovery of TOI-1260d and the characterization of the multiplanet system
  • 2023
  • In: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 519:1, s. 1437-1451
  • Journal article (peer-reviewed)abstract
    • We report the discovery of a third planet transiting the star TOI-1260, previously known to host two transiting sub-Neptune planets with orbital periods of 3.127 and 7.493 d, respectively. The nature of the third transiting planet with a 16.6-d orbit is supported by ground-based follow-up observations, including time-series photometry, high-angular resolution images, spectroscopy, and archival imagery. Precise photometric monitoring with CHEOPS allows to improve the constraints on the parameters of the system, improving our knowledge on their composition. The improved radii of TOI-1260b and TOI-1260c are 2.36 +/- 0.06R(circle plus), 2.82 +/- 0.08R(circle plus), respectively while the newly discovered third planet has a radius of 3.09 +/- 0.09R(circle plus). The radius uncertainties are in the range of 3 per cent, allowing a precise interpretation of the interior structure of the three planets. Our planet interior composition model suggests that all three planets in the TOI-1260 system contains some fraction of gas. The innermost planet TOI-1260b has most likely lost all of its primordial hydrogen-dominated envelope. Planets c and d were also likely to have experienced significant loss of atmospheric through escape, but to a lesser extent compared to planet b.
  •  
40.
  • Meier Valdes, E., et al. (author)
  • Investigating the visible phase-curve variability of 55 Cnc e
  • 2023
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 677
  • Journal article (peer-reviewed)abstract
    • Context. 55 Cnc e is an ultra-short period super-Earth transiting a Sun-like star. Previous observations in the optical range detected a time-variable flux modulation that is phased with the planetary orbital period, whose amplitude is too large to be explained by reflected light and thermal emission alone. Aims. The goal of the study is to investigate the origin of the variability and timescale of the phase-curve modulation in 55 Cnc e. To this end, we used the CHaracterising ExOPlanet Satellite (CHEOPS), whose exquisite photometric precision provides an opportunity to characterise minute changes in the phase curve from one orbit to the next. Methods. CHEOPS observed 29 individual visits of 55 Cnc e between March 2020 and February 2022. Based on these observations, we investigated the different processes that could be at the origin of the observed modulation. In particular, we built a toy model to assess whether a circumstellar torus of dust driven by radiation pressure and gravity might match the observed flux variability timescale. Results. We find that the phase-curve amplitude and peak offset of 55 Cnc e do vary between visits. The sublimation timescales of selected dust species reveal that silicates expected in an Earth-like mantle would not survive long enough to explain the observed phase-curve modulation. We find that silicon carbide, quartz, and graphite are plausible candidates for the circumstellar torus composition because their sublimation timescales are long. Conclusions. The extensive CHEOPS observations confirm that the phase-curve amplitude and offset vary in time. We find that dust could provide the grey opacity source required to match the observations. However, the data at hand do not provide evidence that circumstellar material with a variable grain mass per unit area causes the observed variability. Future observations with the James Webb Space Telescope (JWST) promise exciting insights into this iconic super-Earth.
  •  
41.
  • Osborn, H. P., et al. (author)
  • Two warm Neptunes transiting HIP 9618 revealed by TESS and Cheops
  • 2023
  • In: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 523:2, s. 3069-3089
  • Journal article (peer-reviewed)abstract
    • HIP 9618 (HD 12572, TOI-1471, TIC 306263608) is a bright (G = 9.0 mag) solar analogue. TESS photometry revealed the star to have two candidate planets with radii of 3.9 ± 0.044 R (HIP 9618 b) and 3.343 ± 0.039 R (HIP 9618 c). While the 20.77291 d period of HIP 9618 b was measured unambiguously, HIP 9618 c showed only two transits separated by a 680-d gap in the time series, leaving many possibilities for the period. To solve this issue, CHEOPS performed targeted photometry of period aliases to attempt to recover the true period of planet c, and successfully determined the true period to be 52.56349 d. High-resolution spectroscopy with HARPS-N, SOPHIE, and CAFE revealed a mass of 10.0 ± 3.1M for HIP 9618 b, which, according to our interior structure models, corresponds to a 6.8 ± 1.4 per cent gas fraction. HIP 9618 c appears to have a lower mass than HIP 9618 b, with a 3-sigma upper limit of <18M. Follow-up and archival RV measurements also reveal a clear long-term trend which, when combined with imaging and astrometric information, reveal a low-mass companion (0.08+−000512M☉) orbiting at 26.0+−111900 au. This detection makes HIP 9618 one of only five bright (K < 8 mag) transiting multiplanet systems known to host a planet with P > 50 d, opening the door for the atmospheric characterization of warm (Teq < 750 K) sub-Neptunes.
  •  
42.
  • Parviainen, H., et al. (author)
  • CHEOPS finds KELT-1b darker than expected in visible light: Discrepancy between the CHEOPS and TESS eclipse depths
  • 2022
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 668
  • Journal article (peer-reviewed)abstract
    • Recent studies based on photometry from the Transiting Exoplanet Survey Satellite (TESS) have suggested that the dayside of KELT-1b, a strongly irradiated brown dwarf, is significantly brighter in visible light than what would be expected based on Spitzer observations in the infrared. We observed eight eclipses of KELT-1b with CHaracterising ExOPlanet Satellite (CHEOPS) to measure its dayside brightness temperature in the bluest passband observed so far, and we jointly modelled the CHEOPS photometry with the existing optical and near-infrared photometry from TESS, LBT, CFHT, and Spitzer. Our modelling has led to a self-consistent dayside spectrum for KELT-1b covering the CHEOPS, TESS, H, Ks, and Spitzer IRAC 3.6 and 4.5 μm bands, where our TESS, H, Ks, and Spitzer band estimates largely agree with the previous studies. However, we discovered a strong discrepancy between the CHEOPS and TESS bands. The CHEOPS observations yield a higher photometric precision than the TESS observations, but they do not show a significant eclipse signal, while a deep eclipse is detected in the TESS band. The derived TESS geometric albedo of 0.36-0.13+0.12 is difficult to reconcile with a CHEOPS geometric albedo that is consistent with zero because the two passbands have considerable overlap. Variability in cloud cover caused by the transport of transient nightside clouds to the dayside could provide an explanation for reconciling the TESS and CHEOPS geometric albedos, but this hypothesis needs to be tested by future observations.
  •  
43.
  • Psaridi, A., et al. (author)
  • Discovery of two warm mini-Neptunes with contrasting densities orbiting the young K3V star TOI-815
  • 2024
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 685
  • Journal article (peer-reviewed)abstract
    • We present the discovery and characterization of two warm mini-Neptunes transiting the K3V star TOI-815 in a K–M binary system. Analysis of its spectra and rotation period reveal the star to be young, with an age of 200+−400200 Myr. TOI-815b has a 11.2-day period and a radius of 2.94 ± 0.05 R+ with transits observed by TESS, CHEOPS, ASTEP, and LCOGT. The outer planet, TOI-815c, has a radius of 2.62 ± 0.10 R+, based on observations of three nonconsecutive transits with TESS; targeted CHEOPS photometry and radial velocity follow-up with ESPRESSO were required to confirm the 35-day period. ESPRESSO confirmed the planetary nature of both planets and measured masses of 7.6 ± 1.5 M+ (ρP = 1.64+−003331 g cm−3) and 23.5 ± 2.4 M+ (ρP = 7.2+−1110 g cm−3), respectively. Thus, the planets have very different masses, which is unusual for compact multi-planet systems. Moreover, our statistical analysis of mini-Neptunes orbiting FGK stars suggests that weakly irradiated planets tend to have higher bulk densities compared to those undergoing strong irradiation. This could be ascribed to their cooler atmospheres, which are more compressed and denser. Internal structure modeling of TOI-815b suggests it likely has a H-He atmosphere that constitutes a few percent of the total planet mass, or higher if the planet is assumed to have no water. In contrast, the measured mass and radius of TOI-815c can be explained without invoking any atmosphere, challenging planetary formation theories. Finally, we infer from our measurements that the star is viewed close to pole-on, which implies a spin-orbit misalignment at the 3σ level. This emphasizes the peculiarity of the system’s orbital architecture, and probably hints at an eventful dynamical history.
  •  
44.
  • Seidel, J. V., et al. (author)
  • Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy (HEARTS) : V. Detection of sodium on the bloated super-Neptune WASP-166b
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 641
  • Journal article (peer-reviewed)abstract
    • Planet formation processes or evolution mechanisms are surmised to be at the origin of the hot Neptune desert. Studying exoplanets currently living within or at the edge of this desert could allow disentangling the respective roles of formation and evolution. We present the High Accuracy Radial velocity Planet Searcher (HARPS) transmission spectrum of the bloated super-Neptune WASP-166b, located at the outer rim of the Neptune desert. Neutral sodium is detected at the 3.4σ level (0.455†±â€ 0.135%), with a tentative indication of line broadening, which could be caused by winds blowing sodium farther into space, a possible manifestation of the bloated character of these highly irradiated worlds. We put this detection into context with previous work claiming a non-detection of sodium in the same observations and show that the high noise in the trace of the discarded stellar sodium lines was responsible for the non-detection. We highlight the impact of this low signal-to-noise ratio remnant on detections for exoplanets similar to WASP-166b.
  •  
45.
  • Seidel, J. V., et al. (author)
  • Into the storm : Diving into the winds of the ultra-hot Jupiter WASP-76 b with HARPS and ESPRESSO
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 653
  • Journal article (peer-reviewed)abstract
    • Context. Despite swift progress in the characterisation of exoplanet atmospheres in composition and structure, the study of atmospheric dynamics has not progressed at the same speed. While theoretical models have been developed to describe the lower layers of the atmosphere, and independently, the exosphere, little is known about the intermediate layers up to the thermosphere. Aims. We aim to provide a clearer picture of atmospheric dynamics for the class of ultra-hot Jupiters, which are highly irradiated gas giants, based on the example of WASP-76 b. Methods. We jointly analysed two datasets that were obtained with the HARPS and ESPRESSO spectrographs to interpret the resolved planetary sodium doublet. We then applied the MERC code, which retrieves wind patterns, speeds, and temperature profiles on the line shape of the sodium doublet. An updated version of MERC, with added planetary rotation, also provides the possibility of modelling the latitude dependence of the wind patterns. Results. We retrieve the highest Bayesian evidence for an isothermal atmosphere, interpreted as a mean temperature of 3389 ± 227 K, a uniform day- to nightside wind of 5.5-2.0+1.4 km s-1 in the lower atmosphere with a vertical wind in the upper atmosphere of 22.7-4.1+4.9 km s-1, switching atmospheric wind patterns at 10-3 bar above the reference surface pressure (10 bar). Conclusions. Our results for WASP-76 b are compatible with previous studies of the lower atmospheric dynamics of WASP-76 b and other ultra-hot Jupiters. They highlight the need for vertical winds in the intermediate atmosphere above the layers probed by global circulation model studies to explain the line broadening of the sodium doublet in this planet. This work demonstrates the capability of exploiting the resolved spectral line shapes to observationally constrain possible wind patterns in exoplanet atmospheres. This is an invaluable input to more sophisticated 3D atmospheric models in the future.
  •  
46.
  • Singh, V., et al. (author)
  • CHEOPS observations of KELT-20 b/MASCARA-2 b: An aligned orbit and signs of variability from a reflective day side
  • 2024
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 683
  • Journal article (peer-reviewed)abstract
    • Context. Occultations are windows of opportunity to indirectly peek into the dayside atmosphere of exoplanets. High-precision transit events provide information on the spin-orbit alignment of exoplanets around fast-rotating hosts. Aims. We aim to precisely measure the planetary radius and geometric albedo of the ultra-hot Jupiter (UHJ) KELT-20 b along with the spin-orbit alignment of the system. Methods. We obtained optical high-precision transits and occultations of KELT-20 b using CHEOPS observations in conjunction with simultaneous TESS observations. We interpreted the occultation measurements together with archival infrared observations to measure the planetary geometric albedo and dayside temperatures. We further used the host star's gravity-darkened nature to measure the system's obliquity. Results. We present a time-averaged precise occultation depth of 82 ± 6 ppm measured with seven CHEOPS visits and 131-7+8 from the analysis of all available TESS photometry. Using these measurements, we precisely constrain the geometric albedo of KELT-20 b to 0.26 ± 0.04 and the brightness temperature of the dayside hemisphere to 2566-80+77 K. Assuming Lambertian scattering law, we constrain the Bond albedo to 0.36-0.05+0.04 along with a minimal heat transfer to the night side (Ïμ = 0.14-0.10+0.13). Furthermore, using five transit observations we provide stricter constraints of 3 9 ± 1 1 deg on the sky-projected obliquity of the system. Conclusions. The aligned orbit of KELT-20 b is in contrast to previous CHEOPS studies that have found strongly inclined orbits for planets orbiting other A-type stars. The comparably high planetary geometric albedo of KELT-20 b corroborates a known trend of strongly irradiated planets being more reflective. Finally, we tentatively detect signs of temporal variability in the occultation depths, which might indicate variable cloud cover advecting onto the planetary day side.
  •  
47.
  • Sulis, S., et al. (author)
  • Connecting photometric and spectroscopic granulation signals with CHEOPS and ESPRESSO
  • 2023
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 670
  • Journal article (peer-reviewed)abstract
    • Context. Stellar granulation generates fluctuations in photometric and spectroscopic data whose properties depend on the stellar type, composition, and evolutionary state. Characterizing granulation is key for understanding stellar atmospheres and detecting planets. Aims. We aim to detect the signatures of stellar granulation, link spectroscopic and photometric signatures of convection for main-sequence stars, and test predictions from 3D hydrodynamic models. Methods. For the first time, we observed two bright stars (Teff = 5833 and 6205 K) with high-precision observations taken simultaneously with CHEOPS and ESPRESSO. We analyzed the properties of the stellar granulation signal in each individual dataset. We compared them to Kepler observations and 3D hydrodynamic models. While isolating the granulation-induced changes by attenuating and filtering the p-mode oscillation signals, we studied the relationship between photometric and spectroscopic observables. Results. The signature of stellar granulation is detected and precisely characterized for the hotter F star in the CHEOPS and ESPRESSO observations. For the cooler G star, we obtain a clear detection in the CHEOPS dataset only. The TESS observations are blind to this stellar signal. Based on CHEOPS observations, we show that the inferred properties of stellar granulation are in agreement with both Kepler observations and hydrodynamic models. Comparing their periodograms, we observe a strong link between spectroscopic and photometric observables. Correlations of this stellar signal in the time domain (flux versus radial velocities, RV) and with specific spectroscopic observables (shape of the cross-correlation functions) are however difficult to isolate due to S/N dependent variations. Conclusions. In the context of the upcoming PLATO mission and the extreme precision RV surveys, a thorough understanding of the properties of the stellar granulation signal is needed. The CHEOPS and ESPRESSO observations pave the way for detailed analyses of this stellar process.
  •  
48.
  • Sulis, S., et al. (author)
  • HIP 41378 observed by CHEOPS: Where is planet d?
  • 2024
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 686
  • Journal article (peer-reviewed)abstract
    • HIP 41378 d is a long-period planet that has only been observed to transit twice, three years apart, with K2. According to stability considerations and a partial detection of the Rossiter- McLaughlin effect, Pd = 278.36 d has been determined to be the most likely orbital period. We targeted HIP 41378 d with CHEOPS at the predicted transit timing based on Pd = 278.36 d, but the observations show no transit. We find that large (> 22.4 h) transit timing variations (TTVs) could explain this non-detection during the CHEOPS observation window. We also investigated the possibility of an incorrect orbital solution, which would have major implications for our knowledge of this system. If Pd ≠ 278.36 d, the periods that minimize the eccentricity would be 101.22 d and 371.14 d. The shortest orbital period will be tested by TESS, which will observe HIP 41378 in Sector 88 starting in January 2025. Our study shows the importance of a mission like CHEOPS, which today is the only mission able to make long observations (i.e., from space) to track the ephemeris of long-period planets possibly affected by large TTVs.
  •  
49.
  • Szabó, G.M., et al. (author)
  • The changing face of AU Mic b: Stellar spots, spin-orbit commensurability, and transit timing variations as seen by CHEOPS and TESS
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 654
  • Journal article (peer-reviewed)abstract
    • AU Mic is a young planetary system with a resolved debris disc showing signs of planet formation and two transiting warm Neptunes near mean-motion resonances. Here we analyse three transits of AU Mic b observed with the CHaracterising ExOPlanet Satellite (CHEOPS), supplemented with sector 1 and 27 Transiting Exoplanet Survey Satellite (TESS) photometry, and the All-Sky Automated Survey from the ground. The refined orbital period of AU Mic b is 8.462995 ± 0.000003 d, whereas the stellar rotational period is Prot = 4.8367 ± 0.0006 d. The two periods indicate a 7:4 spin-orbit commensurability at a precision of 0.1%. Therefore, all transits are observed in front of one of the four possible stellar central longitudes. This is strongly supported by the observation that the same complex star-spot pattern is seen in the second and third CHEOPS visits that were separated by four orbits (and seven stellar rotations). Using a bootstrap analysis we find that flares and star spots reduce the accuracy of transit parameters by up to 10% in the planet-to-star radius ratio and the accuracy on transit time by 3-4 min. Nevertheless, occulted stellar spot features independently confirm the presence of transit timing variations (TTVs) with an amplitude of at least 4 min. We find that the outer companion, AU Mic c, may cause the observed TTVs.
  •  
50.
  • Ulmer-Moll, S., et al. (author)
  • TOI-5678b: A 48-day transiting Neptune-mass planet characterized with CHEOPS and HARPS
  • 2023
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 674
  • Journal article (peer-reviewed)abstract
    • Context. A large sample of long-period giant planets has been discovered thanks to long-term radial velocity surveys, but only a few dozen of these planets have a precise radius measurement. Transiting gas giants are crucial targets for the study of atmospheric composition across a wide range of equilibrium temperatures and, more importantly, for shedding light on the formation and evolution of planetary systems. Indeed, compared to hot Jupiters, the atmospheric properties and orbital parameters of cooler gas giants are unaltered by intense stellar irradiation and tidal effects. Aims. We aim to identify long-period planets in the Transiting Exoplanet Survey Satellite (TESS) data as single or duo-transit events. Our goal is to solve the orbital periods of TESS duo-transit candidates with the use of additional space-based photometric observations and to collect follow-up spectroscopic observations in order to confirm the planetary nature and measure the mass of the candidates. Methods. We use the CHaracterising ExOPlanet Satellite (CHEOPS) to observe the highest-probability period aliases in order to discard or confirm a transit event at a given period. Once a period is confirmed, we jointly model the TESS and CHEOPS light curves along with the radial velocity datasets to measure the orbital parameters of the system and obtain precise mass and radius measurements. Results. We report the discovery of a long-period transiting Neptune-mass planet orbiting the G7-type star TOI-5678. Our spectroscopic analysis shows that TOI-5678 is a star with a solar metallicity. The TESS light curve of TOI-5678 presents two transit events separated by almost two years. In addition, CHEOPS observed the target as part of its Guaranteed Time Observation program. After four non-detections corresponding to possible periods, CHEOPS detected a transit event matching a unique period alias. Follow-up radial velocity observations were carried out with the ground-based high-resolution spectrographs CORALIE and HARPS. Joint modeling reveals that TOI-5678 hosts a 47.73 day period planet, and we measure an orbital eccentricity consistent with zero at 2σ. The planet TOI-5678 b has a mass of 20 ± 4 Earth masses (M) and a radius of 4.91 ± 0.08 R Using interior structure modeling, we find that TOI-5678 b is composed of a low-mass core surrounded by a large H/He layer with a mass of 3.2±1.7-1.3 M. Conclusions. TOI-5678 b is part of a growing sample of well-characterized transiting gas giants receiving moderate amounts of stellar insolation (11 S). Precise density measurement gives us insight into their interior composition, and the objects orbiting bright stars are suitable targets to study the atmospheric composition of cooler gas giants.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 76

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view