SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Flis P) "

Sökning: WFRF:(Flis P)

  • Resultat 1-50 av 93
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Aartsen, M. G., et al. (författare)
  • Multiwavelength follow-up of a rare IceCube neutrino multiplet
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 607
  • Tidskriftsartikel (refereegranskat)abstract
    • On February 17, 2016, the IceCube real-time neutrino search identified, for the first time, three muon neutrino candidates arriving within 100 s of one another, consistent with coming from the same point in the sky. Such a triplet is expected once every 13.7 years as a random coincidence of background events. However, considering the lifetime of the follow-up program the probability of detecting at least one triplet from atmospheric background is 32%. Follow-up observatories were notified in order to search for an electromagnetic counterpart. Observations were obtained by Swift's X-ray telescope, by ASAS-SN, LCO and MASTER at optical wavelengths, and by VERITAS in the very-high-energy gamma-ray regime. Moreover, the Swift BAT serendipitously observed the location 100 s after the first neutrino was detected, and data from the Fermi LAT and HAWC observatory were analyzed. We present details of the neutrino triplet and the follow-up observations. No likely electromagnetic counterpart was detected, and we discuss the implications of these constraints on candidate neutrino sources such as gamma-ray bursts, core-collapse supernovae and active galactic nucleus flares. This study illustrates the potential of and challenges for future follow-up campaigns.
  •  
5.
  • Aartsen, M. G., et al. (författare)
  • Very high-energy gamma-ray follow-up program using neutrino triggers from IceCube
  • 2016
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe and report the status of a neutrino-triggered program in IceCube that generates real-time alerts for gamma-ray follow-up observations by atmospheric-Cherenkov telescopes (MAGIC and VERITAS). While IceCube is capable of monitoring the whole sky continuously, high-energy gamma-ray telescopes have restricted fields of view and in general are unlikely to be observing a potential neutrino-flaring source at the time such neutrinos are recorded. The use of neutrino-triggered alerts thus aims at increasing the availability of simultaneous multi-messenger data during potential neutrino flaring activity, which can increase the discovery potential and constrain the phenomenological interpretation of the high-energy emission of selected source classes (e. g. blazars). The requirements of a fast and stable online analysis of potential neutrino signals and its operation are presented, along with first results of the program operating between 14 March 2012 and 31 December 2015.
  •  
6.
  • Aartsen, M. G., et al. (författare)
  • Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert
  • 2018
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 361:6398, s. 147-151
  • Tidskriftsartikel (refereegranskat)abstract
    • A high-energy neutrino event detected by IceCube on 22 September 2017 was coincident in direction and time with a gamma-ray flare from the blazar TXS 0506+056. Prompted by this association, we investigated 9.5 years of IceCube neutrino observations to search for excess emission at the position of the blazar. We found an excess of high-energy neutrino events, with respect to atmospheric backgrounds, at that position between September 2014 and March 2015. Allowing for time-variable flux, this constitutes 3.5 sigma evidence for neutrino emission from the direction of TXS 0506+056, independent of and prior to the 2017 flaring episode. This suggests that blazars are identifiable sources of the high-energy astrophysical neutrino flux.
  •  
7.
  • Aartsen, M. G., et al. (författare)
  • Differential limit on the extremely-high-energy cosmic neutrino flux in the presence of astrophysical background from nine years of IceCube data
  • 2018
  • Ingår i: Physical Review D. - : AMER PHYSICAL SOC. - 2470-0010 .- 2470-0029. ; 98:6
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a quasidifferential upper limit on the extremely-high-energy (EHE) neutrino flux above 5 x 10(6) GeV based on an analysis of nine years of IceCube data. The astrophysical neutrino flux measured by IceCube extends to PeV energies, and it is a background flux when searching for an independent signal flux at higher energies, such as the cosmogenic neutrino signal. We have developed a new method to place robust limits on the EHE neutrino flux in the presence of an astrophysical background, whose spectrum has yet to be understood with high precision at PeV energies. A distinct event with a deposited energy above 10(6) GeV was found in the new two-year sample, in addition to the one event previously found in the seven-year EHE neutrino search. These two events represent a neutrino flux that is incompatible with predictions for a cosmogenic neutrino flux and are considered to be an astrophysical background in the current study. The obtained limit is the most stringent to date in the energy range between 5 x 10(6) and 2 x 10(10) GeV. This result constrains neutrino models predicting a three-flavor neutrino flux of E-nu(2)phi(nu e+nu mu+nu tau) similar or equal to 2 x 10(-8) GeV/cm(2) sec sr at 10(9) GeV. A significant part of the parameter space for EHE neutrino production scenarios assuming a proton-dominated composition of ultra-high-energy cosmic rays is disfavored independently of uncertain models of the extragalactic background light which previous IceCube constraints partially relied on.
  •  
8.
  • Aartsen, M. G., et al. (författare)
  • A Search for Neutrino Emission from Fast Radio Bursts with Six Years of IceCube Data
  • 2018
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 857:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a search for coincidence between IceCube TeV neutrinos and fast radio bursts (FRBs). During the search period from 2010 May 31 to 2016 May 12, a total of 29 FRBs with 13 unique locations have been detected in the whole sky. An unbinned maximum likelihood method was used to search for spatial and temporal coincidence between neutrinos and FRBs in expanding time windows, in both the northern and southern hemispheres. No significant correlation was found in six years of IceCube data. Therefore, we set upper limits on neutrino fluence emitted by FRBs as a function of time window duration. We set the most stringent limit obtained to date on neutrino fluence from FRBs with an E-2 energy spectrum assumed, which is 0.0021 GeV cm(-2) per burst for emission timescales up to similar to 10(2) s from the northern hemisphere stacking search.
  •  
9.
  • Acharyya, A., et al. (författare)
  • Monte Carlo studies for the optimisation of the Cherenkov Telescope Array layout
  • 2019
  • Ingår i: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 111, s. 35-53
  • Tidskriftsartikel (refereegranskat)abstract
    • The Cherenkov Telescope Array (CTA) is the major next-generation observatory for ground-based veryhigh-energy gamma-ray astronomy. It will improve the sensitivity of current ground-based instruments by a factor of five to twenty, depending on the energy, greatly improving both their angular and energy resolutions over four decades in energy (from 20 GeV to 300 TeV). This achievement will be possible by using tens of imaging Cherenkov telescopes of three successive sizes. They will be arranged into two arrays, one per hemisphere, located on the La Palma island (Spain) and in Paranal (Chile). We present here the optimised and final telescope arrays for both CTA sites, as well as their foreseen performance, resulting from the analysis of three different large-scale Monte Carlo productions.
  •  
10.
  • Aartsen, M. G., et al. (författare)
  • Constraints on Galactic Neutrino Emission with Seven Years of IceCube Data
  • 2017
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 849:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The origins of high-energy astrophysical neutrinos remain a mystery despite extensive searches for their sources. We present constraints from seven years of IceCube Neutrino Observatory muon data on the neutrino flux coming from the Galactic plane. This flux is expected from cosmic-ray interactions with the interstellar medium or near localized sources. Two methods were developed to test for a spatially extended flux from the entire plane, both of which are maximum likelihood fits but with different signal and background modeling techniques. We consider three templates for Galactic neutrino emission based primarily on gamma-ray observations and models that cover a wide range of possibilities. Based on these templates and in the benchmark case of an unbroken E-2.5 power-law energy spectrum, we set 90% confidence level upper limits, constraining the possible Galactic contribution to the diffuse neutrino flux to be relatively small, less than 14% of the flux reported in Aartsen et al. above 1 TeV. A stacking method is also used to test catalogs of known high-energy Galactic gamma-ray sources.
  •  
11.
  • Aartsen, M. G., et al. (författare)
  • Measurement of Atmospheric Neutrino Oscillations at 6-56 GeV with IceCube DeepCore
  • 2018
  • Ingår i: Physical Review Letters. - : AMER PHYSICAL SOC. - 0031-9007 .- 1079-7114. ; 120:7
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a measurement of the atmospheric neutrino oscillation parameters using three years of data from the IceCube Neutrino Observatory. The DeepCore infill array in the center of IceCube enables the detection and reconstruction of neutrinos produced by the interaction of cosmic rays in Earth's atmosphere at energies as low as similar to 5 GeV. That energy threshold permits measurements of muon neutrino disappearance, over a range of baselines up to the diameter of the Earth, probing the same range of L/E-v. as long-baseline experiments but with substantially higher- energy neutrinos. This analysis uses neutrinos from the full sky with reconstructed energies from 5.6 to 56 GeV. We measure Delta m(32)(2) = 2.31(-0.13)(+0.11) x 10(-3) eV(2) and sin(2) theta(23) = 0.51(- 0.09)(+0.07), assuming normal neutrino mass ordering. These results are consistent with, and of similar precision to, those from accelerator- and reactor-based experiments.
  •  
12.
  • Aartsen, M. G., et al. (författare)
  • Measurement of the multi-TeV neutrino interaction cross-section with IceCube using Earth absorption
  • 2017
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 551:7682, s. 596-600
  • Tidskriftsartikel (refereegranskat)abstract
    • Neutrinos interact only very weakly, so they are extremely penetrating. The theoretical neutrino-nucleon interaction cross-section, however, increases with increasing neutrino energy, and neutrinos with energies above 40 teraelectronvolts (TeV) are expected to be absorbed as they pass through the Earth. Experimentally, the cross-section has been determined only at the relatively low energies (below 0.4 TeV) that are available at neutrino beams fromaccelerators(1,2). Here we report a measurement of neutrino absorption by the Earth using a sample of 10,784 energetic upward-going neutrino-induced muons. The flux of high-energy neutrinos transiting long paths through the Earth is attenuated compared to a reference sample that follows shorter trajectories. Using a fit to the two-dimensional distribution of muon energy and zenith angle, we determine the neutrino-nucleon interaction cross-section for neutrino energies 6.3-980 TeV, more than an order of magnitude higher than previous measurements. The measured cross-section is about 1.3 times the prediction of the standard model(3), consistent with the expectations for charged-and neutral-current interactions. We do not observe a large increase in the crosssection with neutrino energy, in contrast with the predictions of some theoretical models, including those invoking more compact spatial dimensions(4) or the production of leptoquarks(5). This cross-section measurement can be used to set limits on the existence of some hypothesized beyond-standard-model particles, including leptoquarks.
  •  
13.
  • Aartsen, M. G., et al. (författare)
  • Neutrino interferometry for high-precision tests of Lorentz symmetry with IceCube
  • 2018
  • Ingår i: Nature Physics. - : NATURE PUBLISHING GROUP. - 1745-2473 .- 1745-2481. ; 14:9, s. 961-966
  • Tidskriftsartikel (refereegranskat)abstract
    • Lorentz symmetry is a fundamental spacetime symmetry underlying both the standard model of particle physics and general relativity. This symmetry guarantees that physical phenomena are observed to be the same by all inertial observers. However, unified theories, such as string theory, allow for violation of this symmetry by inducing new spacetime structure at the quantum gravity scale. Thus, the discovery of Lorentz symmetry violation could be the first hint of these theories in nature. Here we report the results of the most precise test of spacetime symmetry in the neutrino sector to date. We use high-energy atmospheric neutrinos observed at the IceCube Neutrino Observatory to search for anomalous neutrino oscillations as signals of Lorentz violation. We find no evidence for such phenomena. This allows us to constrain the size of the dimension-four operator in the standard-model extension for Lorentz violation to the 10(-28) level and to set limits on higher-dimensional operators in this framework. These are among the most stringent limits on Lorentz violation set by any physical experiment.
  •  
14.
  • Aartsen, M. G., et al. (författare)
  • Search for neutrinos from dark matter self-annihilations in the center of the Milky Way with 3 years of IceCube/DeepCore
  • 2017
  • Ingår i: European Physical Journal C. - : SPRINGER. - 1434-6044 .- 1434-6052. ; 77:9
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a search for a neutrino signal from dark matter self-annihilations in the Milky Way using the Ice-Cube Neutrino Observatory (IceCube). In 1005 days of data we found no significant excess of neutrinos over the background of neutrinos produced in atmospheric air showers from cosmic ray interactions. We derive upper limits on the velocity averaged product of the darkmatter self-annihilation cross section and the relative velocity of the dark matter particles . Upper limits are set for darkmatter particle candidate masses ranging from 10GeV up to 1TeV while considering annihilation through multiple channels. This work sets the most stringent limit on a neutrino signal from dark matter with mass between 10 and 100GeV, with a limit of 1.18 . 10-23 cm(3)s(-1) for 100GeV dark matter particles self-annihilating via iota(+)iota(-) t-to neutrinos (assuming the Navarro-Frenk-White dark matter halo profile).
  •  
15.
  • Aartsen, M. G., et al. (författare)
  • Search for nonstandard neutrino interactions with IceCube DeepCore
  • 2018
  • Ingår i: Physical Review D. - : AMER PHYSICAL SOC. - 2470-0010 .- 2470-0029. ; 97:7
  • Tidskriftsartikel (refereegranskat)abstract
    • As atmospheric neutrinos propagate through the Earth, vacuumlike oscillations are modified by Standard Model neutral-and charged-current interactions with electrons. Theories beyond the Standard Model introduce heavy, TeV-scale bosons that can produce nonstandard neutrino interactions. These additional interactions may modify the Standard Model matter effect producing a measurable deviation from the prediction for atmospheric neutrino oscillations. The result described in this paper constrains nonstandard interaction parameters, building upon a previous analysis of atmospheric muon-neutrino disappearance with three years of IceCube DeepCore data. The best fit for the muon to tau flavor changing term is epsilon(mu tau) = -0.0005, with a 90% C.L. allowed range of -0.0067 < epsilon(mu tau) < 0.0081. This result is more restrictive than recent limits from other experiments for.mu t. Furthermore, our result is complementary to a recent constraint on epsilon(mu tau) using another publicly available IceCube high-energy event selection. Together, they constitute the world's best limits on nonstandard interactions in the mu - tau sector.
  •  
16.
  • Aartsen, M. G., et al. (författare)
  • The IceCube Neutrino Observatory : instrumentation and online systems
  • 2017
  • Ingår i: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • The IceCube Neutrino Observatory is a cubic-kilometer-scale high-energy neutrino detector built into the ice at the South Pole. Construction of IceCube, the largest neutrino detector built to date, was completed in 2011 and enabled the discovery of high-energy astrophysical neutrinos. We describe here the design, production, and calibration of the IceCube digital optical module (DOM), the cable systems, computing hardware, and our methodology for drilling and deployment. We also describe the online triggering and data filtering systems that select candidate neutrino and cosmic ray events for analysis. Due to a rigorous pre-deployment protocol, 98.4% of the DOMs in the deep ice are operating and collecting data. IceCube routinely achieves a detector uptime of 99% by emphasizing software stability and monitoring. Detector operations have been stable since construction was completed, and the detector is expected to operate at least until the end of the next decade.
  •  
17.
  • Adrian-Martinez, S., et al. (författare)
  • The First Combined Search For Neutrino Point-Sources In The Southern Hemisphere With The Antares And Icecube Neutrino Telescopes
  • 2016
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 823:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of searches for point-like sources of neutrinos based on the first combined analysis of data from both the ANTARES and IceCube neutrino telescopes. The combination of both detectors, which differ in size and location, forms a window in the southern sky where the sensitivity to point sources improves by up to a factor of 2 compared with individual analyses. Using data recorded by ANTARES from 2007 to 2012, and by IceCube from 2008 to 2011, we search for sources of neutrino emission both across the southern sky and from a preselected list of candidate objects. No significant excess over background has been found in these searches, and flux upper limits for the candidate sources are presented for E-2.5 and E-2 power-law spectra with different energy cut-offs.
  •  
18.
  • Aartsen, M. G., et al. (författare)
  • Search for Astrophysical Sources of Neutrinos Using Cascade Events in IceCube
  • 2017
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 846:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The IceCube neutrino observatory has established the existence of a flux of high-energy astrophysical neutrinos, which is inconsistent with the expectation from atmospheric backgrounds at a significance greater than 5 sigma. This flux has been observed in analyses of both track events from muon neutrino interactions and cascade events from interactions of all neutrino flavors. Searches for astrophysical neutrino sources have focused on track events due to the significantly better angular resolution of track reconstructions. To date, no such sources have been confirmed. Here we present the first search for astrophysical neutrino sources using cascades interacting in IceCube with deposited energies as small as 1 TeV. No significant clustering was observed in a selection of 263 cascades collected from 2010 May to 2012 May. We show that compared to the classic approach using tracks, this statistically independent search offers improved sensitivity to sources in the southern sky, especially if the emission is spatially extended or follows a soft energy spectrum. This enhancement is due to the low background from atmospheric neutrinos forming cascade events and the additional veto of atmospheric neutrinos at declinations less than or similar to-30 degrees.
  •  
19.
  • Aartsen, M. G., et al. (författare)
  • Flavor Ratio of Astrophysical Neutrinos above 35 TeV in IceCube
  • 2015
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 114:17
  • Tidskriftsartikel (refereegranskat)abstract
    • A diffuse flux of astrophysical neutrinos above 100 TeV has been observed at the IceCube Neutrino Observatory. Here we extend this analysis to probe the astrophysical flux down to 35 TeV and analyze its flavor composition by classifying events as showers or tracks. Taking advantage of lower atmospheric backgrounds for showerlike events, we obtain a shower-biased sample containing 129 showers and 8 tracks collected in three years from 2010 to 2013. We demonstrate consistency with the (f(e) : f(mu) : f(tau))(circle plus) approximate to (1 : 1 : 1)(circle plus) flavor ratio at Earth commonly expected from the averaged oscillations of neutrinos produced by pion decay in distant astrophysical sources. Limits are placed on nonstandard flavor compositions that cannot be produced by averaged neutrino oscillations but could arise in exotic physics scenarios. A maximally tracklike composition of (0 : 1 : 0)(circle plus) is excluded at 3.3 sigma, and a purely showerlike composition of (1 : 0 : 0)(circle plus) is excluded at 2.3 sigma.
  •  
20.
  • Aartsen, M. G., et al. (författare)
  • SEARCHES FOR TIME-DEPENDENT NEUTRINO SOURCES WITH ICECUBE DATA FROM 2008 TO 2012
  • 2015
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 807:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper searches for flaring astrophysical neutrino sources and sources with periodic emission with the IceCube neutrino telescope are presented. In contrast to time-integrated searches, where steady emission is assumed, the analyses presented here look for a time-dependent signal of neutrinos using the information from the neutrino arrival times to enhance the discovery potential. A search was performed for correlations between neutrino arrival times and directions, as well as neutrino emission following time-dependent light curves, sporadic emission, or periodicities of candidate sources. These include active galactic nuclei, soft gamma-ray repeaters, supernova remnants hosting pulsars, microquasars, and X-ray binaries. The work presented here updates and extends previously published results to a longer period that covers 4 years. of data from 2008 April 5 to 2012 May 16, including the first year of operation of the completed 86 string detector. The analyses did not find any significant time-dependent point sources of neutrinos, and the results were used to set upper limits on the neutrino flux from source candidates.
  •  
21.
  • Aartsen, M. G., et al. (författare)
  • Atmospheric and astrophysical neutrinos above 1 TeV interacting in IceCube
  • 2015
  • Ingår i: Physical Review D. - 1550-7998 .- 1550-2368. ; 91:2, s. 022001-
  • Tidskriftsartikel (refereegranskat)abstract
    • The IceCube Neutrino Observatory was designed primarily to search for high-energy (TeV-PeV) neutLrinos produced in distant astrophysical objects. A search for. greater than or similar to 100 TeV neutrinos interacting inside the instrumented volume has recently provided evidence for an isotropic flux of such neutrinos. At lower energies, IceCube collects large numbers of neutrinos from the weak decays of mesons in cosmic-ray air showers. Here we present the results of a search for neutrino interactions inside IceCube's instrumented volume between 1 TeV and 1 PeV in 641 days of data taken from 2010-2012, lowering the energy threshold for neutrinos from the southern sky below 10 TeV for the first time, far below the threshold of the previous high-energy analysis. Astrophysical neutrinos remain the dominant component in the southern sky down to a deposited energy of 10 TeV. From these data we derive new constraints on the diffuse astrophysical neutrino spectrum, Phi(v) = 2.06(-0.3)(+0.4) x 10(-18) (E-v = 10(5) GeV)-2.46 +/- 0.12GeV-1 cm(-2) sr(-1) s(-1) for 25 TeV < E-v < 1.4 PeV, as well as the strongest upper limit yet on the flux of neutrinos from charmed-meson decay in the atmosphere, 1.52 times the benchmark theoretical prediction used in previous IceCube results at 90% confidence.
  •  
22.
  • Aartsen, M. G., et al. (författare)
  • Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data
  • 2015
  • Ingår i: Physical Review D. - 1550-7998 .- 1550-2368. ; 91:7
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a measurement of neutrino oscillations via atmospheric muon neutrino disappearance with three years of data of the completed IceCube neutrino detector. DeepCore, a region of denser IceCube instrumentation, enables the detection and reconstruction of atmospheric muon neutrinos between 10 and 100 GeV, where a strong disappearance signal is expected. The IceCube detector volume surrounding DeepCore is used as a veto region to suppress the atmospheric muon background. Neutrino events are selected where the detected Cherenkov photons of the secondary particles minimally scatter, and the neutrino energy and arrival direction are reconstructed. Both variables are used to obtain the neutrino oscillation parameters from the data, with the best fit given by Delta m(32)(2) = 2.72(-0.20)(+0.19) x 10(-3) eV(2) and sin(2)theta(23) = 0.53(-0.12)(+0.09) (normal mass ordering assumed). The results are compatible, and comparable in precision, to those of dedicated oscillation experiments.
  •  
23.
  • Aartsen, M. G., et al. (författare)
  • Development of a general analysis and unfolding scheme and its application to measure the energy spectrum of atmospheric neutrinos with IceCube
  • 2015
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 75:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the development and application of a generic analysis scheme for the measurement of neutrino spectra with the IceCube detector. This scheme is based on regularized unfolding, preceded by an event selection which uses a Minimum Redundancy Maximum Relevance algorithm to select the relevant variables and a random forest for the classification of events. The analysis has been developed using IceCube data from the 59-string configuration of the detector. 27,771 neutrino candidates were detected in 346 days of livetime. A rejection of 99.9999 % of the atmospheric muon background is achieved. The energy spectrum of the atmospheric neutrino flux is obtained using the TRUEE unfolding program. The unfolded spectrum of atmospheric muon neutrinos covers an energy range from 100 GeV to 1 PeV. Compared to the previous measurement using the detector in the 40-string configuration, the analysis presented here, extends the upper end of the atmospheric neutrino spectrum by more than a factor of two, reaching an energy region that has not been previously accessed by spectral measurements.
  •  
24.
  • Aartsen, M. G., et al. (författare)
  • Multipole analysis of IceCube data to search for dark matter accumulated in the Galactic halo
  • 2015
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 75:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Dark matter which is bound in the Galactic halo might self-annihilate and produce a flux of stable final state particles, e. g. high energy neutrinos. These neutrinos can be detected with IceCube, a cubic-kilometer sized Cherenkov detector. Given IceCube's large field of view, a characteristic anisotropy of the additional neutrino flux is expected. In this paper we describe a multipole method to search for such a large-scale anisotropy in IceCube data. This method uses the expansion coefficients of a multipole expansion of neutrino arrival directions and incorporates signal-specific weights for each expansion coefficient. We apply the technique to a high-purity muon neutrino sample from the Northern Hemisphere. The final result is compatible with the null-hypothesis. As no signal was observed, we present limits on the self-annihilation cross-section averaged over the relative velocity distribution down to 1.9x10(-23) cm(3) s(-1) for a dark matter particle mass of 700-1,000 GeV and direct annihilation into nu(nu) over bar. The resulting exclusion limits come close to exclusion limits from gamma-ray experiments, that focus on the outer Galactic halo, for high dark matter masses of a few TeV and hard annihilation channels.
  •  
25.
  • Aartsen, M. G., et al. (författare)
  • Observation And Characterization Of A Cosmic Muon Neutrino Flux From The Northern Hemisphere Using Six Years Of Icecube Data
  • 2016
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 833:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The IceCube Collaboration has previously discovered a high-energy astrophysical neutrino flux using neutrino events with interaction vertices contained within the instrumented volume of the IceCube detector. We present a complementary measurement using charged current muon neutrino events where the interaction vertex can be outside this volume. As a consequence of the large muon range the effective area is significantly larger but the field of view is restricted to the Northern Hemisphere. IceCube data from 2009 through 2015 have been analyzed using a likelihood approach based on the reconstructed muon energy and zenith angle. At the highest neutrino energies between 194 TeV and 7.8 PeV a significant astrophysical contribution is observed, excluding a purely atmospheric origin of these events at 5.6 sigma significance. The data are well described by an isotropic, unbroken power-law flux with a normalization at 100 TeV neutrino energy of (0.90(-0.27)(+0.30)) x 10(-18) GeV-1 cm(-2) s(-1) sr(-1) and a hard spectral index of gamma = 2.13 +/- 0.13. The observed spectrum is harder in comparison to previous IceCube analyses with lower energy thresholds which may indicate a break in the astrophysical neutrino spectrum of unknown origin. The highest-energy event observed has a reconstructed muon energy of (4.5 +/- 1.2) PeV which implies a probability of less than 0.005% for this event to be of atmospheric origin. Analyzing the arrival directions of all events with reconstructed muon energies above 200 TeV no correlation with known gamma-ray sources was found. Using the high statistics of atmospheric neutrinos we report the current best constraints on a prompt atmospheric muon neutrino flux originating from charmed meson decays which is below 1.06 in units of the flux normalization of the model in Enberg et al.
  •  
26.
  • Aartsen, M. G., et al. (författare)
  • Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data
  • 2014
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 113:10, s. 101101-
  • Tidskriftsartikel (refereegranskat)abstract
    • A search for high-energy neutrinos interacting within the IceCube detector between 2010 and 2012 provided the first evidence for a high-energy neutrino flux of extraterrestrial origin. Results from an analysis using the same methods with a third year (2012-2013) of data from the complete IceCube detector are consistent with the previously reported astrophysical flux in the 100 TeV-PeV range at the level of 10(-8) GeV cm(-2) s(-1) sr(-1) per flavor and reject a purely atmospheric explanation for the combined three-year data at 5.7 sigma. The data are consistent with expectations for equal fluxes of all three neutrino flavors and with isotropic arrival directions, suggesting either numerous or spatially extended sources. The three-year data set, with a live time of 988 days, contains a total of 37 neutrino candidate events with deposited energies ranging from 30 to 2000 TeV. The 2000-TeV event is the highest-energy neutrino interaction ever observed.
  •  
27.
  • Aartsen, M. G., et al. (författare)
  • PINGU : a vision for neutrino and particle physics at the South Pole
  • 2017
  • Ingår i: Journal of Physics G. - : IOP Publishing. - 0954-3899 .- 1361-6471. ; 44:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The Precision IceCube Next Generation Upgrade (PINGU) is a proposed low-energy in-fill extension to the IceCube Neutrino Observatory. With detection technology modeled closely on the successful IceCube example, PINGU will provide a 6 Mton effective mass for neutrino detection with an energy threshold of a few GeV. With an unprecedented sample of over 60 000 atmospheric neutrinos per year in this energy range, PINGU will make highly competitive measurements of neutrino oscillation parameters in an energy range over an order of magnitude higher than long-baseline neutrino beam experiments. PINGU will measure the mixing parameters theta(23) and Delta m(32)(2), including the octant of theta(23) for a wide range of values, and determine the neutrino mass ordering at 3 sigma median significance within five years of operation. PINGU's high precision measurement of the rate of nu(T) appearance will provide essential tests of the unitarity of the 3 x 3 PMNS neutrino mixing matrix. PINGU will also improve the sensitivity of searches for low mass dark matter in the Sun, use neutrino tomography to directly probe the composition of the Earth's core, and improve IceCube's sensitivity to neutrinos from Galactic supernovae. Reoptimization of the PINGU design has permitted substantial reduction in both cost and logistical requirements while delivering performance nearly identical to configurations previously studied.
  •  
28.
  • Aartsen, M. G., et al. (författare)
  • Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 59-string configuration
  • 2014
  • Ingår i: Physical Review D. - 1550-7998 .- 1550-2368. ; 89:6, s. 062007-
  • Tidskriftsartikel (refereegranskat)abstract
    • A search for high-energy neutrinos was performed using data collected by the IceCube Neutrino Observatory from May 2009 to May 2010, when the array was running in its 59-string configuration. The data sample was optimized to contain muon neutrino induced events with a background contamination of atmospheric muons of less than 1%. These data, which are dominated by atmospheric neutrinos, are analyzed with a global likelihood fit to search for possible contributions of prompt atmospheric and astrophysical neutrinos, neither of which have yet been identified. Such signals are expected to follow a harder energy spectrum than conventional atmospheric neutrinos. In addition, the zenith angle distribution differs for astrophysical and atmospheric signals. A global fit of the reconstructed energies and directions of observed events is performed, including possible neutrino flux contributions for an astrophysical signal and atmospheric backgrounds as well as systematic uncertainties of the experiment and theoretical predictions. The best fit yields an astrophysical signal flux for nu(mu) + (nu) over bar (mu) of E-2. Phi(E) = 0.25 x 10(-8) GeV cm(-2) s(-1) sr(-1), and a zero prompt component. Although the sensitivity of this analysis for astrophysical neutrinos surpasses the Waxman and Bahcall upper bound, the experimental limit at 90% confidence level is a factor of 1.5 above at a flux of E-2 . Phi(E) = 1.44 x 10(-8) GeV cm(-2) s(-1) sr(-1).
  •  
29.
  • Aartsen, M. G., et al. (författare)
  • Search for neutrino-induced particle showers with IceCube-40
  • 2014
  • Ingår i: Physical Review D. - 1550-7998 .- 1550-2368. ; 89:10, s. 102001-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the search for neutrino-induced particle showers, so-called cascades, in the IceCube-40 detector. The data for this search were collected between April 2008 and May 2009 when the first 40 IceCube strings were deployed and operational. Three complementary searches were performed, each optimized for different energy regimes. The analysis with the lowest energy threshold (2 TeV) targeted atmospheric neutrinos. A total of 67 events were found, consistent with the expectation of 41 atmospheric muons and 30 atmospheric neutrino events. The two other analyses targeted a harder, astrophysical neutrino flux. The analysis with an intermediate threshold of 25 TeV leads to the observation of 14 cascadelike events, again consistent with the prediction of 3.0 atmospheric neutrino and 7.7 atmospheric muon events. We hence set an upper limit of E-2 Phi(lim) <= 7.46 x 10(-8) GeV sr(-1) s(-1) cm(-2) (90% C.L.) on the diffuse flux from astrophysical neutrinos of all neutrino flavors, applicable to the energy range 25 TeV to 5 PeV, assuming an E-nu(-2) spectrum and a neutrino flavor ratio of 1: 1: 1 at the Earth. The third analysis utilized a larger and optimized sample of atmospheric muon background simulation, leading to a higher energy threshold of 100 TeV. Three events were found over a background prediction of 0.04 atmospheric muon events and 0.21 events from the flux of conventional and prompt atmospheric neutrinos. Including systematic errors this corresponds to a 2.7 sigma excess with respect to the background-only hypothesis. Our observation of neutrino event candidates above 100 TeV complements IceCube's recently observed evidence for high-energy astrophysical neutrinos.
  •  
30.
  • Aartsen, M. G., et al. (författare)
  • Search for non-relativistic magnetic monopoles with IceCube
  • 2014
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 74:7, s. 2938-
  • Tidskriftsartikel (refereegranskat)abstract
    • The IceCube Neutrino Observatory is a large Cherenkov detector instrumenting of Antarctic ice. The detector can be used to search for signatures of particle physics beyond the Standard Model. Here, we describe the search for non-relativistic, magnetic monopoles as remnants of the Grand Unified Theory (GUT) era shortly after the Big Bang. Depending on the underlying gauge group these monopoles may catalyze the decay of nucleons via the Rubakov-Callan effect with a cross section suggested to be in the range of to . In IceCube, the Cherenkov light from nucleon decays along the monopole trajectory would produce a characteristic hit pattern. This paper presents the results of an analysis of first data taken from May 2011 until May 2012 with a dedicated slow-particle trigger for DeepCore, a subdetector of IceCube. A second analysis provides better sensitivity for the brightest non-relativistic monopoles using data taken from May 2009 until May 2010. In both analyses no monopole signal was observed. For catalysis cross sections of the flux of non-relativistic GUT monopoles is constrained up to a level of at a 90 % confidence level, which is three orders of magnitude below the Parker bound. The limits assume a dominant decay of the proton into a positron and a neutral pion. These results improve the current best experimental limits by one to two orders of magnitude, for a wide range of assumed speeds and catalysis cross sections.
  •  
31.
  • Aartsen, M. G., et al. (författare)
  • Search for Prompt Neutrino Emission from Gamma-Ray Bursts with IceCube
  • 2015
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 805:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present constraints derived from a search of four years of IceCube data for a prompt neutrino flux from gammaray bursts (GRBs). A single low-significance neutrino, compatible with the atmospheric neutrino background, was found in coincidence with one of the 506 observed bursts. Although GRBs have been proposed as candidate sources for ultra-high-energy cosmic rays, our limits on the neutrino flux disfavor much of the parameter space for the latest models. We also find that no more than similar to 1% of the recently observed astrophysical neutrino flux consists of prompt emission from GRBs that are potentially observable by existing satellites.
  •  
32.
  • Aartsen, M. G., et al. (författare)
  • SEARCHES FOR EXTENDED AND POINT-LIKE NEUTRINO SOURCES WITH FOUR YEARS OF ICECUBE DATA
  • 2014
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 796:2, s. 109-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present results on searches for point-like sources of neutrinos using four years of IceCube data, including the first year of data from the completed 86 string detector. The total livetime of the combined data set is 1373 days. For an E-2 spectrum, the observed 90% C. L. flux upper limits are similar to 10(-12) TeV-1 cm(-2) s(-1) for energies between 1 TeV and 1 PeV in the northern sky and similar to 10(-11) TeV-1 cm(-2) s(-1) for energies between 100 TeV and 100 PeV in the southern sky. This represents a 40% improvement compared to previous publications, resulting from both the additional year of data and the introduction of improved reconstructions. In addition, we present the first results from an all-sky search for extended sources of neutrinos. We update the results of searches for neutrino emission from stacked catalogs of sources and test five new catalogs; two of Galactic supernova remnants and three of active galactic nuclei. In all cases, the data are compatible with the background-only hypothesis, and upper limits on the flux of muon neutrinos are reported for the sources considered.
  •  
33.
  • Abbasi, R., et al. (författare)
  • IceTop : The surface component of IceCube
  • 2013
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 700, s. 188-220
  • Tidskriftsartikel (refereegranskat)abstract
    • IceTop, the surface component of the IceCube Neutrino Observatory at the South Pole, is an air shower array with an area of 1 km(2). The detector allows a detailed exploration of the mass composition of primary cosmic rays in the energy range from about 100 TeV to 1 EeV by exploiting the correlation between the shower energy measured in IceTop and the energy deposited by muons in the deep ice. In this paper we report on the technical design, construction and installation, the trigger and data acquisition systems as well as the software framework for calibration, reconstruction and simulation. Finally the first experience from commissioning and operating the detector and the performance as an air shower detector will be discussed.
  •  
34.
  • Scott, P., et al. (författare)
  • Use of event-level neutrino telescope data in global fits for theories of new physics
  • 2012
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :11, s. 057-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a fast likelihood method for including event-level neutrino telescope data in parameter explorations of theories for new physics, and announce its public release as part of DarkSUSY 5.0.6. Our construction includes both angular and spectral information about neutrino events, as well as their total number. We also present a corresponding measure for simple model exclusion, which can be used for single models without reference to the rest of a parameter space. We perform a number of supersymmetric parameter scans with IceCube data to illustrate the utility of the method: example global fits and a signal recovery in the constrained minimal supersymmetric standard model (CMSSM), and a model exclusion exercise in a 7-parameter phenomenological version of the MSSM. The final IceCube detector con figuration will probe almost the entire focus-point region of the CMSSM, as well as a number of MSSM-7 models that will not otherwise be accessible to e. g. direct detection. Our method accurately recovers the mock signal, and provides tight constraints on model parameters and derived quantities. We show that the inclusion of spectral information significantly improves the accuracy of the recovery, providing motivation for its use in future IceCube analyses.
  •  
35.
  • Aartsen, M. G., et al. (författare)
  • A Combined Maximum-Likelihood Analysis Of The High-Energy Astrophysical Neutrino Flux Measured With Icecube
  • 2015
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 809:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Evidence for an extraterrestrial flux of high-energy neutrinos has now been found in multiple searches with the IceCube detector. The first solid evidence was provided by a search for neutrino events with deposited energies greater than or similar to 30 TeV and interaction vertices inside the instrumented volume. Recent analyses suggest that the extraterrestrial flux extends to lower energies and is also visible with throughgoing, nu(mu)-induced tracks from the Northern Hemisphere. Here, we combine the results from six different IceCube searches for astrophysical neutrinos in a maximum-likelihood analysis. The combined event sample features high-statistics samples of shower-like and track-like events. The data are fit in up to three observables: energy, zenith angle, and event topology. Assuming the astrophysical neutrino flux to be isotropic and to consist of equal flavors at Earth, the all-flavor spectrum with neutrino energies between 25 TeV and 2.8 PeV is well described by an unbroken power law with best-fit spectral index -2.50 +/- 0.09 and a flux at 100 TeV of (6.7(-1.2)(+1.1)) x 10(-18) GeV-1 s(-1) sr(-1) cm(-2). Under the same assumptions, an unbroken power law with index -2 is disfavored with a significance of 3.8 sigma (p = 0.0066%) with respect to the best fit. This significance is reduced to 2.1 sigma (p = 1.7%) if instead we compare the best fit to a spectrum with index -2 that has an exponential cut-off at high energies. Allowing the electron-neutrino flux to deviate from the other two flavors, we find a nu(e) fraction of 0.18 +/- 0.11 at Earth. The sole production of electron neutrinos, which would be characteristic of neutron-decay-dominated sources, is rejected with a significance of 3.6 sigma ( p = 0.014%).
  •  
36.
  • Aartsen, M. G., et al. (författare)
  • All-sky Search for Time-integrated Neutrino Emission from Astrophysical Sources with 7 yr of IceCube Data
  • 2017
  • Ingår i: Astrophysical Journal. - : IOP PUBLISHING LTD. - 0004-637X .- 1538-4357. ; 835:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Since the recent detection of an astrophysical flux of high-energy neutrinos, the question of its origin has not yet fully been answered. Much of what is known about this flux comes from a small event sample of high neutrino purity, good energy resolution, but large angular uncertainties. In searches for point-like sources, on the other hand, the best performance is given by using large statistics and good angular reconstructions. Track-like muon events produced in neutrino interactions satisfy these requirements. We present here the results of searches for point-like sources with neutrinos using data acquired by the IceCube detector over 7 yr from 2008 to 2015. The discovery potential of the analysis in the northern sky is now significantly below E(nu)(2)d phi/dE(nu) = 10(-12) TeV cm(-2) s(-1), on average 38% lower than the sensitivity of the previously published analysis of 4 yr exposure. No significant clustering of neutrinos above background expectation was observed, and implications for prominent neutrino source candidates are discussed.
  •  
37.
  • Aartsen, M. G., et al. (författare)
  • Astrophysical neutrinos and cosmic rays observed by IceCube
  • 2018
  • Ingår i: Advances in Space Research. - : Elsevier BV. - 0273-1177 .- 1879-1948. ; 62:10, s. 2902-2930
  • Tidskriftsartikel (refereegranskat)abstract
    • The core mission of the IceCube neutrino observatory is to study the origin and propagation of cosmic rays. IceCube, with its surface component IceTop, observes multiple signatures to accomplish this mission. Most important are the astrophysical neutrinos that are produced in interactions of cosmic rays, close to their sources and in interstellar space. IceCube is the first instrument that measures the properties of this astrophysical neutrino flux and constrains its origin. In addition, the spectrum, composition, and anisotropy of the local cosmic-ray flux are obtained from measurements of atmospheric muons and showers. Here we provide an overview of recent findings from the analysis of IceCube data, and their implications to our understanding of cosmic rays.
  •  
38.
  • Aartsen, M. G., et al. (författare)
  • Characterization of the atmospheric muon flux in IceCube
  • 2016
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 78, s. 1-27
  • Tidskriftsartikel (refereegranskat)abstract
    • Muons produced in atmospheric cosmic ray showers account for the by far dominant part of the event yield in large-volume underground particle detectors. The IceCube detector, with an instrumented volume of about a cubic kilometer, has the potential to conduct unique investigations on atmospheric muons by exploiting the large collection area and the possibility to track particles over a long distance. Through detailed reconstruction of energy deposition along the tracks, the characteristics of muon bundles can be quantified, and individual particles of exceptionally high energy identified. The data can then be used to constrain the cosmic ray primary flux and the contribution to atmospheric lepton fluxes from prompt decays of short-lived hadrons. In this paper, techniques for the extraction of physical measurements from atmospheric muon events are described and first results are presented. The multiplicity spectrum of TeV muons in cosmic ray air showers for primaries in the energy range from the knee to the ankle is derived and found to be consistent with recent results from surface detectors. The single muon energy spectrum is determined up to PeV energies and shows a clear indication for the emergence of a distinct spectral component from prompt decays of short-lived hadrons. The magnitude of the prompt flux, which should include a substantial contribution from light vector meson di-muon decays, is consistent with current theoretical predictions. The variety of measurements and high event statistics can also be exploited for the evaluation of systematic effects. In the course of this study, internal inconsistencies in the zenith angle distribution of events were found which indicate the presence of an unexplained effect outside the currently applied range of detector systematics. The underlying cause could be related to the hadronic interaction models used to describe muon production in air showers.
  •  
39.
  • Aartsen, M. G., et al. (författare)
  • Constraints on Ultrahigh-Energy Cosmic-Ray Sources from a Search for Neutrinos above 10 PeV with IceCube
  • 2016
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 117:24
  • Tidskriftsartikel (refereegranskat)abstract
    • We report constraints on the sources of ultrahigh-energy cosmic rays (UHECRs) above 10(9) GeV, based on an analysis of seven years of IceCube data. This analysis efficiently selects very high-energy neutrino-induced events which have deposited energies from 5 x 10(5) GeV to above 10(11) GeV. Two neutrino-induced events with an estimated deposited energy of (2.6 +/- 0.3) x 10(6) GeV, the highest neutrino energy observed so far, and (7.7 +/- 2.0) x 10(5) GeV were detected. The atmospheric background-only hypothesis of detecting these events is rejected at 3.6 sigma. The hypothesis that the observed events are of cosmogenic origin is also rejected at > 99% CL because of the limited deposited energy and the nonobservation of events at higher energy, while their observation is consistent with an astrophysical origin. Our limits on cosmogenic neutrino fluxes disfavor the UHECR sources having a cosmological evolution stronger than the star formation rate, e.g., active galactic nuclei and gamma-ray bursts, assuming proton-dominated UHECRs. Constraints on UHECR sources including mixed and heavy UHECR compositions are obtained for models of neutrino production within UHECR sources. Our limit disfavors a significant part of parameter space for active galactic nuclei and new-born pulsar models. These limits on the ultrahigh-energy neutrino flux models are the most stringent to date.
  •  
40.
  • Aartsen, M. G., et al. (författare)
  • Energy reconstruction methods in the IceCube neutrino telescope
  • 2014
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 9, s. P03009-
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate measurement of neutrino energies is essential to many of the scientific goals of large-volume neutrino telescopes. The fundamental observable in such detectors is the Cherenkov light produced by the transit through a medium of charged particles created in neutrino interactions. The amount of light emitted is proportional to the deposited energy, which is approximately equal to the neutrino energy for v(e) and v(mu) charged-current interactions and can be used to set a lower bound on neutrino energies and to measure neutrino spectra statistically in other channels. Here we describe methods and performance of reconstructing charged-particle energies and topologies from the observed Cherenkov light yield, including techniques to measure the energies of uncontained muon tracks, achieving average uncertainties in electromagnetic-equivalent deposited energy of similar to 15% above 10 TeV.
  •  
41.
  • Aartsen, M. G., et al. (författare)
  • Evidence for Astrophysical Muon Neutrinos from the Northern Sky with IceCube
  • 2015
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 115:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Results from the IceCube Neutrino Observatory have recently provided compelling evidence for the existence of a high energy astrophysical neutrino flux utilizing a dominantly Southern Hemisphere data set consisting primarily of nu(e) and nu(tau) charged-current and neutral-current ( cascade) neutrino interactions. In the analysis presented here, a data sample of approximately 35 000 muon neutrinos from the Northern sky is extracted from data taken during 659.5 days of live time recorded between May 2010 and May 2012. While this sample is composed primarily of neutrinos produced by cosmic ray interactions in Earth's atmosphere, the highest energy events are inconsistent with a hypothesis of solely terrestrial origin at 3.7 sigma significance. These neutrinos can, however, be explained by an astrophysical flux per neutrino flavor at a level of Phi(E-nu) = 9.9(-3.4)(+3.9) x 10(-19) GeV-1 cm(-2) sr(-1) s(-1) (E-nu/100 TeV)(-2), consistent with IceCube's Southern-Hemisphere-dominated result. Additionally, a fit for an astrophysical flux with an arbitrary spectral index is performed. We find a spectral index of 2.2(-0.2)(+0.2), which is also in good agreement with the Southern Hemisphere result.
  •  
42.
  • Aartsen, M. G., et al. (författare)
  • Extending the Search for Muon Neutrinos Coincident with Gamma-Ray Bursts in IceCube Data
  • 2017
  • Ingår i: Astrophysical Journal. - : IOP PUBLISHING LTD. - 0004-637X .- 1538-4357. ; 843:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an all-sky search for muon neutrinos produced during the prompt γ-ray emission of 1172 gamma-ray bursts (GRBs) with the IceCube Neutrino Observatory. The detection of these neutrinos would constitute evidence for ultra-high-energy cosmic-ray (UHECR) production in GRBs, as interactions between accelerated protons and the prompt γ-ray field would yield charged pions, which decay to neutrinos. A previously reported search for muon neutrino tracks from northern hemisphere GRBs has been extended to include three additional years of IceCube data. A search for such tracks from southern hemisphere GRBs in five years of IceCube data has been introduced to enhance our sensitivity to the highest energy neutrinos. No significant correlation between neutrino events and observed GRBs is seen in the new data. Combining this result with previous muon neutrino track searches and a search for cascade signature events from all neutrino flavors, we obtain new constraints for single-zone fireball models of GRB neutrino and UHECR production.
  •  
43.
  • Aartsen, M. G., et al. (författare)
  • First Observation of PeV-Energy Neutrinos with IceCube
  • 2013
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 111:2, s. 021103-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the observation of two neutrino-induced events which have an estimated deposited energy in the IceCube detector of 1.04 +/- 0.16 and 1.14 +/- 0.17 PeV, respectively, the highest neutrino energies observed so far. These events are consistent with fully contained particle showers induced by neutral-current nu(e,mu,tau) ((nu) over bar (e,mu,tau)) or charged-current nu(e) ((nu) over bar (e)) interactions within the IceCube detector. The events were discovered in a search for ultrahigh energy neutrinos using data corresponding to 615.9 days effective live time. The expected number of atmospheric background is 0.082 +/- 0.004(stat)(-0.057)(+0.041)(syst). The probability of observing two or more candidate events under the atmospheric background-only hypothesis is 2.9 x 10(-3) (2.8 sigma) taking into account the uncertainty on the expected number of background events. These two events could be a first indication of an astrophysical neutrino flux; the moderate significance, however, does not permit a definitive conclusion at this time.
  •  
44.
  • Aartsen, M. G., et al. (författare)
  • First search for dark matter annihilations in the Earth with the IceCube detector
  • 2017
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 77:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of the first IceCube search for dark matter annihilation in the center of the Earth. Weakly interacting massive particles (WIMPs), candidates for dark matter, can scatter off nuclei inside the Earth and fall below its escape velocity. Over time the captured WIMPs will be accumulated and may eventually self-annihilate. Among the annihilation products only neutrinos can escape from the center of the Earth. Large-scale neutrino telescopes, such as the cubic kilometer IceCube Neutrino Observatory located at the South Pole, can be used to search for such neutrino fluxes. Data from 327 days of detector livetime during 2011/2012 were analyzed. No excess beyond the expected background from atmospheric neutrinos was detected. The derived upper limits on the annihilation rate of WIMPs in the Earth (Gamma(A) = 1.12 x 10(14) s(-1) for WIMP masses of 50 GeV annihilating into tau leptons) and the resulting muon flux are an order of magnitude stronger than the limits of the last analysis performed with data from IceCube's predecessor AMANDA. The limits can be translated in terms of a spin-independent WIMP-nucleon cross section. For a WIMP mass of 50GeV this analysis results in the most restrictive limits achieved with IceCube data.
  •  
45.
  • Aartsen, M. G., et al. (författare)
  • Improved limits on dark matter annihilation in the Sun with the 79-string IceCube detector and implications for supersymmetry
  • 2016
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :4
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an improved event-level likelihood formalism for including neutrino telescope data in global fits to new physics. We derive limits on spin-dependent dark matter-proton scattering by employing the new formalism in a re-analysis of data from the 79-string IceCube search for dark matter annihilation in the Sun, including explicit energy information for each event. The new analysis excludes a number of models in the weak-scale minimal supersymmetric standard model (MSSM) for the first time. This work is accompanied by the public release of the 79-string IceCube data, as well as an associated computer code for applying the new likelihood to arbitrary dark matter models.
  •  
46.
  • Aartsen, M. G., et al. (författare)
  • Measurement of Atmospheric Neutrino Oscillations with IceCube
  • 2013
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 111:8, s. 081801-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first statistically significant detection of neutrino oscillations in the high-energy regime (> 20 GeV) from an analysis of IceCube Neutrino Observatory data collected in 2010 and 2011. This measurement is made possible by the low-energy threshold of the DeepCore detector (similar to 20 GeV) and benefits from the use of the IceCube detector as a veto against cosmic-ray-induced muon background. The oscillation signal was detected within a low-energy muon neutrino sample (20-100 GeV) extracted from data collected by DeepCore. A high-energy muon neutrino sample (100 GeV-10 TeV) was extracted from IceCube data to constrain systematic uncertainties. The disappearance of low-energy upward-going muon neutrinos was observed, and the nonoscillation hypothesis is rejected with more than 5 sigma significance. In a two-neutrino flavor formalism, our data are best described by the atmospheric neutrino oscillation parameters vertical bar Delta m(32)(2)vertical bar = (2.3(-0.5)(+0.6)) x 10(-3) eV(2) and sin(2) (2 theta(23)) > 0.93, and maximum mixing is favored.
  •  
47.
  • Aartsen, M. G., et al. (författare)
  • Measurement of the Atmospheric nu(e) Spectrum with IceCube
  • 2015
  • Ingår i: Physical Review D. - 1550-7998 .- 1550-2368. ; 91:12
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a measurement of the atmospheric nu(e) spectrum at energies between 0.1 and 100 TeV using data from the first year of the complete IceCube detector. Atmospheric nu(e) originate mainly from the decays of kaons produced in cosmic-ray air showers. This analysis selects 1078 fully contained events in 332 days of live time, and then identifies those consistent with particle showers. A likelihood analysis with improved event selection extends our previous measurement of the conventional v(e) fluxes to higher energies. The data constrain the conventional nu(e) flux to be 1.3(-0.3)(+0.4) times a baseline prediction from a Honda's calculation, including the knee of the cosmic-ray spectrum. A fit to the kaon contribution (xi) to the neutrino flux finds a kaon component that is xi = 1.3(-0.4)(+0.5) times the baseline value. The fitted/measured prompt neutrino flux from charmed hadron decays strongly depends on the assumed astrophysical flux and shape. If the astrophysical component follows a power law, the result for the prompt flux is 0.0(-0.0)(+3.0) times a calculated flux based on the work by Enberg, Reno, and Sarcevic.
  •  
48.
  • Aartsen, M. G., et al. (författare)
  • Measurement of the nu(mu) energy spectrum with IceCube-79
  • 2017
  • Ingår i: European Physical Journal C. - : SPRINGER. - 1434-6044 .- 1434-6052. ; 77:10
  • Tidskriftsartikel (refereegranskat)abstract
    • IceCube is a neutrino observatory deployed in the glacial ice at the geographic South Pole. The nu(mu) energy unfolding described in this paper is based on data taken with IceCube in its 79-string configuration. A sample of muon neutrino charged-current interactions with a purity of 99.5% was selected by means of amultivariate classification process based on machine learning. The subsequent unfolding was performed using the software TRUEE. The resulting spectrum covers an E-nu-range of more than four orders of magnitude from 125 GeV to 3.2 PeV. Compared to the Honda atmospheric neutrino flux model, the energy spectrum shows an excess of more than 1.9 sigma in four adjacent bins for neutrino energies E-nu >= 177.8 TeV. The obtained spectrum is fully compatible with previous measurements of the atmospheric neutrino flux and recent IceCube measurements of a flux of high-energy astrophysical neutrinos.
  •  
49.
  • Aartsen, M. G., et al. (författare)
  • Observation of Cosmic-Ray Anisotropy with the Icetop Air Shower Array
  • 2013
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 765:1, s. 55-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the observation of anisotropy in the arrival direction distribution of cosmic rays at PeV energies. The analysis is based on data taken between 2009 and 2012 with the IceTop air shower array at the south pole. IceTop, an integral part of the IceCube detector, is sensitive to cosmic rays between 100 TeV and 1 EeV. With the current size of the IceTop data set, searches for anisotropy at the 10(-3) level can, for the first time, be extended to PeV energies. We divide the data set into two parts with median energies of 400 TeV and 2 PeV, respectively. In the low energy band, we observe a strong deficit with an angular size of about 30 degrees and an amplitude of (-1.58 +/- 0.46(stat) +/- 0.52(sys)) x 10(-3) at a location consistent with previous observations of cosmic rays with the IceCube neutrino detector. The study of the high energy band shows that the anisotropy persists to PeV energies and increases in amplitude to (-3.11 +/- 0.38(stat) +/- 0.96(sys)) x 10(-3).
  •  
50.
  • Aartsen, M. G., et al. (författare)
  • Observation of the cosmic-ray shadow of the Moon with IceCube
  • 2014
  • Ingår i: Physical Review D. - 1550-7998 .- 1550-2368. ; 89:10, s. 102004-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the observation of a significant deficit of cosmic rays from the direction of the Moon with the IceCube detector. The study of this "Moon shadow" is used to characterize the angular resolution and absolute pointing capabilities of the detector. The detection is based on data taken in two periods before the completion of the detector: between April 2008 and May 2009, when IceCube operated in a partial configuration with 40 detector strings deployed in the South Pole ice, and between May 2009 and May 2010 when the detector operated with 59 strings. Using two independent analysis methods, the Moon shadow has been observed to high significance (> 6 sigma) in both detector configurations. The observed location of the shadow center is within 0.2 degrees of its expected position when geomagnetic deflection effects are taken into account. This measurement validates the directional reconstruction capabilities of IceCube.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 93

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy