SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Floyd R A) "

Sökning: WFRF:(Floyd R A)

  • Resultat 1-31 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kanai, M, et al. (författare)
  • 2023
  • swepub:Mat__t
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Mahajan, Anubha, et al. (författare)
  • Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation
  • 2022
  • Ingår i: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 54:5, s. 560-572
  • Tidskriftsartikel (refereegranskat)abstract
    • We assembled an ancestrally diverse collection of genome-wide association studies (GWAS) of type 2 diabetes (T2D) in 180,834 affected individuals and 1,159,055 controls (48.9% non-European descent) through the Diabetes Meta-Analysis of Trans-Ethnic association studies (DIAMANTE) Consortium. Multi-ancestry GWAS meta-analysis identified 237 loci attaining stringent genome-wide significance (P < 5 x 10(-9)), which were delineated to 338 distinct association signals. Fine-mapping of these signals was enhanced by the increased sample size and expanded population diversity of the multi-ancestry meta-analysis, which localized 54.4% of T2D associations to a single variant with >50% posterior probability. This improved fine-mapping enabled systematic assessment of candidate causal genes and molecular mechanisms through which T2D associations are mediated, laying the foundations for functional investigations. Multi-ancestry genetic risk scores enhanced transferability of T2D prediction across diverse populations. Our study provides a step toward more effective clinical translation of T2D GWAS to improve global health for all, irrespective of genetic background. Genome-wide association and fine-mapping analyses in ancestrally diverse populations implicate candidate causal genes and mechanisms underlying type 2 diabetes. Trans-ancestry genetic risk scores enhance transferability across populations.
  •  
6.
  •  
7.
  • Zenteno, A., et al. (författare)
  • A joint SZ-X-ray-optical analysis of the dynamical state of 288 massive galaxy clusters
  • 2020
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 495:1, s. 705-725
  • Tidskriftsartikel (refereegranskat)abstract
    • We use imaging from the first three years of the Dark Energy Survey to characterize the dynamical state of 288 galaxy clusters at 0.1 less than or similar to z less than or similar to 0.9 detected in the South Pole Telescope (SPT) Sunyaev-Zeldovich (SZ) effect survey (SPT-SZ). We examine spatial offsets between the position of the brightest cluster galaxy (BCG) and the centre of the gas distribution as traced by the SPT-SZ centroid and by the X-ray centroid/peak position from Chandra and XMM data. We show that the radial distribution of offsets provides no evidence that SPT SZ-selected cluster samples include a higher fraction of mergers than X-ray-selected cluster samples. We use the offsets to classify the dynamical state of the clusters, selecting the 43 most disturbed clusters, with half of those at z greater than or similar to 0.5, a region seldom explored previously. We find that Schechter function fits to the galaxy population in disturbed clusters and relaxed clusters differ at z > 0.55 but not at lower redshifts. Disturbed clusters at z > 0.55 have steeper faint-end slopes and brighter characteristic magnitudes. Within the same redshift range, we find that the BCGs in relaxed clusters tend to be brighter than the BCGs in disturbed samples, while in agreement in the lower redshift bin. Possible explanations includes a higher merger rate, and a more efficient dynamical friction at high redshift. The red-sequence population is less affected by the cluster dynamical state than the general galaxy population.
  •  
8.
  •  
9.
  • Leebens-Mack, James H., et al. (författare)
  • One thousand plant transcriptomes and the phylogenomics of green plants
  • 2019
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 574:7780, s. 679-
  • Tidskriftsartikel (refereegranskat)abstract
    • Green plants (Viridiplantae) include around 450,000-500,000 species(1,2) of great diversity and have important roles in terrestrial and aquatic ecosystems. Here, as part of the One Thousand Plant Transcriptomes Initiative, we sequenced the vegetative transcriptomes of 1,124 species that span the diversity of plants in a broad sense (Archaeplastida), including green plants (Viridiplantae), glaucophytes (Glaucophyta) and red algae (Rhodophyta). Our analysis provides a robust phylogenomic framework for examining the evolution of green plants. Most inferred species relationships are well supported across multiple species tree and supermatrix analyses, but discordance among plastid and nuclear gene trees at a few important nodes highlights the complexity of plant genome evolution, including polyploidy, periods of rapid speciation, and extinction. Incomplete sorting of ancestral variation, polyploidization and massive expansions of gene families punctuate the evolutionary history of green plants. Notably, we find that large expansions of gene families preceded the origins of green plants, land plants and vascular plants, whereas whole-genome duplications are inferred to have occurred repeatedly throughout the evolution of flowering plants and ferns. The increasing availability of high-quality plant genome sequences and advances in functional genomics are enabling research on genome evolution across the green tree of life.
  •  
10.
  • Chami, Nathalie, et al. (författare)
  • Exome Genotyping Identifies Pleiotropic Variants Associated with Red Blood Cell Traits
  • 2016
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 99:1, s. 8-21
  • Tidskriftsartikel (refereegranskat)abstract
    • Red blood cell (RBC) traits are important heritable clinical biomarkers and modifiers of disease severity. To identify coding genetic variants associated with these traits, we conducted meta-analyses of seven RBC phenotypes in 130,273 multi-ethnic individuals from studies genotyped on an exome array. After conditional analyses and replication in 27,480 independent individuals, we identified 16 new RBC variants. We found low-frequency missense variants in MAP1A (rs55707100, minor allele frequency [MAF] = 3.3%, p = 2 x 10(-10) for hemoglobin [HGB]) and HNF4A (rs1800961, MAF = 2.4%, p < 3 x 10(-8) for hematocrit [HCT] and HGB). In African Americans, we identified a nonsense variant in CD36 associated with higher RBC distribution width (rs3211938, MAF = 8.7%, p = 7 x 10(-11)) and showed that it is associated with lower CD36 expression and strong allelic imbalance in ex vivo differentiated human erythroblasts. We also identified a rare missense variant in ALAS2 (rs201062903, MAF = 0.2%) associated with lower mean corpuscular volume and mean corpuscular hemoglobin (p < 8 x 10(-9)). Mendelian mutations in ALAS2 are a cause of sideroblastic anemia and erythropoietic protoporphyria. Gene-based testing highlighted three rare missense variants in PKLR, a gene mutated in Mendelian non-spherocytic hemolytic anemia, associated with HGB and HCT (SKAT p < 8 x 10(-7)). These rare, low-frequency, and common RBC variants showed pleiotropy, being also associated with platelet, white blood cell, and lipid traits. Our association results and functional annotation suggest the involvement of new genes in human erythropoiesis. We also confirm that rare and low-frequency variants play a role in the architecture of complex human traits, although their phenotypic effect is generally smaller than originally anticipated.
  •  
11.
  •  
12.
  •  
13.
  • Eicher, John D., et al. (författare)
  • Platelet-Related Variants Identified by Exomechip Meta-analysis in 157,293 Individuals
  • 2016
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 99:1, s. 40-55
  • Tidskriftsartikel (refereegranskat)abstract
    • Platelet production, maintenance, and clearance are tightly controlled processes indicative of platelets' important roles in hemostasis and thrombosis. Platelets are common targets for primary and secondary prevention of several conditions. They are monitored clinically by complete blood counts, specifically with measurements of platelet count (PLT) and mean platelet volume (MPV). Identifying genetic effects on PLT and MPV can provide mechanistic insights into platelet biology and their role in disease. Therefore, we formed the Blood Cell Consortium (BCX) to perform a large-scale meta-analysis of Exomechip association results for PLT and MPV in 157,293 and 57,617 individuals, respectively. Using the low-frequency/rare coding variant-enriched Exomechip genotyping array, we sought to identify genetic variants associated with PLT and MPV. In addition to confirming 47 known PLT and 20 known MPV associations, we identified 32 PLT and 18 MPV associations not previously observed in the literature across the allele frequency spectrum, including rare large effect (FCER1A), low-frequency (IQGAP2, MAP1A, LY75), and common(ZMIZ2, SMG6, PEAR1, ARFGAP3/PACSIN2) variants. Several variants associated with PLT/MPV(PEAR1, MRVI1, PTGES3) were also associated with platelet reactivity. In concurrent BCX analyses, there was overlap of platelet-associated variants with red (MAP1A, TMPRSS6, ZMIZ2) and white (PEAR1, ZMIZ2, LY75) blood cell traits, suggesting common regulatory pathways with shared genetic architecture among these hematopoietic lineages. Our large-scale Exomechip analyses identified previously undocumented associations with platelet traits and further indicate that several complex quantitative hematological, lipid, and cardiovascular traits share genetic factors.
  •  
14.
  • Tajuddin, Salman M., et al. (författare)
  • Large-Scale Exome-wide Association Analysis Identifies Loci for White Blood Cell Traits and Pleiotropy with Immune-Mediated Diseases
  • 2016
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 99:1, s. 22-39
  • Tidskriftsartikel (refereegranskat)abstract
    • White blood cells play diverse roles in innate and adaptive immunity. Genetic association analyses of phenotypic variation in circulating white blood cell (WBC) counts from large samples of otherwise healthy individuals can provide insights into genes and biologic pathways involved in production, differentiation, or clearance of particular WBC lineages (myeloid, lymphoid) and also potentially inform the genetic basis of autoimmune, allergic, and blood diseases. We performed an exome array-based meta-analysis of total WBC and subtype counts (neutrophils, monocytes, lymphocytes, basophils, and eosinophils) in a multi-ancestry discovery and replication sample of similar to 157,622 individuals from 25 studies. We identified 16 common variants (8 of which were coding variants) associated with one or more WBC traits, the majority of which are pleiotropically associated with autoimmune diseases. Based on functional annotation, these loci included genes encoding surface markers of myeloid, lymphoid, or hematopoietic stem cell differentiation (CD69, CD33, CD87), transcription factors regulating lineage specification during hematopoiesis (ASXL1, IRF8, IKZF1, JMJD1C, ETS2-PSMG1), and molecules involved in neutrophil clearance/apoptosis (C10orf54, LTA), adhesion (TNXB), or centrosome and microtubule structure/function (KIF9, TUBD1). Together with recent reports of somatic ASXL1 mutations among individuals with idiopathic cytopenias or clonal hematopoiesis of undetermined significance, the identification of a common regulatory 3 ' UTR variant of ASXL1 suggests that both germline and somatic ASXL1 mutations contribute to lower blood counts in otherwise asymptomatic individuals. These association results shed light on genetic mechanisms that regulate circulating WBC counts and suggest a prominent shared genetic architecture with inflammatory and autoimmune diseases.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  • Hageman, Steven H. J., et al. (författare)
  • Prediction of individual lifetime cardiovascular risk and potential treatment benefit: development and recalibration of the LIFE-CVD2 model to four European risk regions
  • 2024
  • Ingår i: EUROPEAN JOURNAL OF PREVENTIVE CARDIOLOGY. - 2047-4873 .- 2047-4881.
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims The 2021 European Society of Cardiology prevention guidelines recommend the use of (lifetime) risk prediction models to aid decisions regarding initiation of prevention. We aimed to update and systematically recalibrate the LIFEtime-perspective CardioVascular Disease (LIFE-CVD) model to four European risk regions for the estimation of lifetime CVD risk for apparently healthy individuals.Methods and results The updated LIFE-CVD (i.e. LIFE-CVD2) models were derived using individual participant data from 44 cohorts in 13 countries (687 135 individuals without established CVD, 30 939 CVD events in median 10.7 years of follow-up). LIFE-CVD2 uses sex-specific functions to estimate the lifetime risk of fatal and non-fatal CVD events with adjustment for the competing risk of non-CVD death and is systematically recalibrated to four distinct European risk regions. The updated models showed good discrimination in external validation among 1 657 707 individuals (61 311 CVD events) from eight additional European cohorts in seven countries, with a pooled C-index of 0.795 (95% confidence interval 0.767-0.822). Predicted and observed CVD event risks were well calibrated in population-wide electronic health records data in the UK (Clinical Practice Research Datalink) and the Netherlands (Extramural LUMC Academic Network). When using LIFE-CVD2 to estimate potential gain in CVD-free life expectancy from preventive therapy, projections varied by risk region reflecting important regional differences in absolute lifetime risk. For example, a 50-year-old smoking woman with a systolic blood pressure (SBP) of 140 mmHg was estimated to gain 0.9 years in the low-risk region vs. 1.6 years in the very high-risk region from lifelong 10 mmHg SBP reduction. The benefit of smoking cessation for this individual ranged from 3.6 years in the low-risk region to 4.8 years in the very high-risk region.Conclusion By taking into account geographical differences in CVD incidence using contemporary representative data sources, the recalibrated LIFE-CVD2 model provides a more accurate tool for the prediction of lifetime risk and CVD-free life expectancy for individuals without previous CVD, facilitating shared decision-making for cardiovascular prevention as recommended by 2021 European guidelines. The study introduces LIFE-CVD2, a new tool that helps predict the risk of heart disease over a person's lifetime, and highlights how where you live in Europe can affect this risk. Using health information from over 687 000 people, LIFE-CVD2 looks at things like blood pressure and whether someone smokes to figure out their chance of having heart problems later in life. Health information from another 1.6 million people in seven different European countries was used to show that it did a good job of predicting who might develop heart disease.Knowing your heart disease risk over your whole life helps doctors give you the best advice to keep your heart healthy. Let us say there is a 50-year-old woman who smokes and has a bit high blood pressure. Right now, she might not look like she is in danger. But with the LIFE-CVD2 tool, doctors can show her how making changes today, like lowering her blood pressure or stopping smoking, could mean many more years without heart problems. These healthy changes can make a big difference over many years.
  •  
22.
  • Shafer, Aaron B. A., et al. (författare)
  • Genomics and the challenging translation into conservation practice
  • 2015
  • Ingår i: Trends in Ecology & Evolution. - : Elsevier. - 0169-5347 .- 1872-8383. ; 30:2, s. 78-87
  • Tidskriftsartikel (refereegranskat)abstract
    • The global loss of biodiversity continues at an alarming rate. Genomic approaches have been suggested as a promising tool for conservation practice as scaling up to genome-wide data can improve traditional conservation genetic inferences and provide qualitatively novel insights. However, the generation of genomic data and subsequent analyses and interpretations remain challenging and largely confined to academic research in ecology and evolution. This generates a gap between basic research and applicable solutions for conservation managers faced with multifaceted problems. Before the real-world conservation potential of genomic research can be realized, we suggest that current infrastructures need to be modified, methods must mature, analytical pipelines need to be developed, and successful case studies must be disseminated to practitioners.
  •  
23.
  •  
24.
  • Shafer, Aaron B A, et al. (författare)
  • Reply to Garner et al
  • 2016
  • Ingår i: Trends in Ecology & Evolution. - : Elsevier BV. - 0169-5347 .- 1872-8383. ; 31:2, s. 83-84
  • Tidskriftsartikel (refereegranskat)
  •  
25.
  • Ferrarini, MG, et al. (författare)
  • Genome-wide bioinformatic analyses predict key host and viral factors in SARS-CoV-2 pathogenesis
  • 2021
  • Ingår i: Communications biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 4:1, s. 590-
  • Tidskriftsartikel (refereegranskat)abstract
    • The novel betacoronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a worldwide pandemic (COVID-19) after emerging in Wuhan, China. Here we analyzed public host and viral RNA sequencing data to better understand how SARS-CoV-2 interacts with human respiratory cells. We identified genes, isoforms and transposable element families that are specifically altered in SARS-CoV-2-infected respiratory cells. Well-known immunoregulatory genes including CSF2, IL32, IL-6 and SERPINA3 were differentially expressed, while immunoregulatory transposable element families were upregulated. We predicted conserved interactions between the SARS-CoV-2 genome and human RNA-binding proteins such as the heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) and eukaryotic initiation factor 4 (eIF4b). We also identified a viral sequence variant with a statistically significant skew associated with age of infection, that may contribute to intracellular host–pathogen interactions. These findings can help identify host mechanisms that can be targeted by prophylactics and/or therapeutics to reduce the severity of COVID-19.
  •  
26.
  • Floyd, Kyle A., et al. (författare)
  • Adhesive Fiber Stratification in Uropathogenic Escherichia coli Biofilms Unveils Oxygen-Mediated Control of Type 1 Pili
  • 2015
  • Ingår i: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 11:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacterial biofilms account for a significant number of hospital-acquired infections and complicate treatment options, because bacteria within biofilms are generally more tolerant to antibiotic treatment. This resilience is attributed to transient bacterial subpopulations that arise in response to variations in the microenvironment surrounding the biofilm. Here, we probed the spatial proteome of surface-associated single-species biofilms formed by uropathogenic Escherichia coli (UPEC), the major causative agent of community-acquired and catheter-associated urinary tract infections. We used matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) imaging mass spectrometry (IMS) to analyze the spatial proteome of intact biofilms in situ. MALDI-TOF IMS revealed protein species exhibiting distinct localizations within surface-associated UPEC biofilms, including two adhesive fibers critical for UPEC biofilm formation and virulence: type 1 pili (Fim) localized exclusively to the air-exposed region, while curli amyloid fibers localized to the air-liquid interface. Comparison of cells grown aerobically, fermentatively, or utilizing an alternative terminal electron acceptor showed that the phase-variable fim promoter switched to the "FF" orientation under oxygen-deplete conditions, leading to marked reduction of type 1 pili on the bacterial cell surface. Conversely, S pili whose expression is inversely related to fim expression were upregulated under anoxic conditions. Tethering the fim promoter in the "ON" orientation in anaerobically grown cells only restored type 1 pili production in the presence of an alternative terminal electron acceptor beyond oxygen. Together these data support the presence of at least two regulatory mechanisms controlling fim expression in response to oxygen availability and may contribute to the stratification of extracellular matrix components within the biofilm. MALDI IMS facilitated the discovery of these mechanisms, and we have demonstrated that this technology can be used to interrogate subpopulations within bacterial biofilms.
  •  
27.
  • Knoop, K. A., et al. (författare)
  • In vivo labeling of epithelial cell-associated antigen passages in the murine intestine
  • 2020
  • Ingår i: Lab Animal. - : Springer Science and Business Media LLC. - 0093-7355 .- 1548-4475. ; 49, s. 79-88
  • Tidskriftsartikel (refereegranskat)abstract
    • Goblet cell-associated antigen passages can deliver luminal substances to antigen-presenting cells to induce antigen-specific T cell responses. This protocol describes how to identify and quantify intestinal epithelial cells that have the capacity to take up luminal substances, by intraluminal injection of fluorescent dextran, tissue sectioning for slide preparation and imaging with fluorescence microscopy. The intestinal immune system samples luminal contents to induce adaptive immune responses that include tolerance in the steady state and protective immunity during infection. How luminal substances are delivered to the immune system has not been fully investigated. Goblet cells have an important role in this process by delivering luminal substances to the immune system through the formation of goblet cell-associated antigen passages (GAPs). Soluble antigens in the intestinal lumen are transported across the epithelium transcellularly through GAPs and delivered to dendritic cells for presentation to T cells and induction of immune responses. GAPs can be identified and quantified by using the ability of GAP-forming goblet cells to take up fluorescently labeled dextran. Here, we describe a method to visualize GAPs and other cells that have the capacity to take up luminal substances by intraluminal injection of fluorescent dextran in mice under anesthesia, tissue sectioning for slide preparation and imaging with fluorescence microscopy. In contrast to in vivo two-photon imaging previously used to identify GAPs, this technique is not limited by anatomical constraints and can be used to visualize GAP formation throughout the length of the intestine. In addition, this method can be combined with common immunohistochemistry protocols to visualize other cell types. This approach can be used to compare GAP formation following different treatments or changes to the luminal environment and to uncover how sampling of luminal substances is altered in pathophysiological conditions. This protocol requires 8 working hours over 2-3 d to be completed.
  •  
28.
  • Russell, Floyd A., et al. (författare)
  • Stemodin-derived analogues with lipid peroxidation, cyclooxygenase enzymes and human tumour cell proliferation inhibitory activities
  • 2011
  • Ingår i: Phytochemistry. - : Elsevier BV. - 0031-9422. ; 72:18, s. 2361-2368
  • Tidskriftsartikel (refereegranskat)abstract
    • A series of analogues, derived from the antiviral and cytotoxic diterpene stemodin, were prepared and evaluated for their lipid peroxidation (LPO), cyclooxygenase enzyme-1 (COX-1) and -2 (COX-2), and tumour cell proliferation inhibitory activities. Oxidation of stemodin produced stemodinone, which was then converted to stemod-12-en-2-one. Reaction of the latter under Petrow conditions (bromine; silver acetate/pyridine) yielded mainly dibrominated abeo-stachanes. Solvolysis of the dibromo compounds gave products of hydrolysis, some with rearranged skeleta. In the lipid peroxidation inhibitory assay three of the compounds exhibited prominent activity. Interestingly, all the analogues showed higher COX-1 enzyme inhibition than COX-2. Although a few of the diterpenes limited the growth of some human tumour cell lines, most compounds induced proliferation of such cells.
  •  
29.
  • Yates, James A. Fellows, et al. (författare)
  • The evolution and changing ecology of the African hominid oral microbiome
  • 2021
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences (PNAS). - 0027-8424 .- 1091-6490. ; 118:20
  • Tidskriftsartikel (refereegranskat)abstract
    • The oral microbiome plays key roles in human biology, health, and disease, but little is known about the global diversity, variation, or evolution of this microbial community. To better understand the evolution and changing ecology of the human oral microbiome, we analyzed 124 dental biofilm metagenomes from humans, including Neanderthals and Late Pleistocene to present-day modern humans, chimpanzees, and gorillas, as well as New World howler monkeys for comparison. We find that a core microbiome of primarily biofilm structural taxa has been maintained throughout African hominid evolution, and these microbial groups are also shared with howler monkeys, suggesting that they have been important oral members since before the catarrhine-platyrrhine split ca. 40 Mya. However, community structure and individual microbial phylogenies do not closely reflect host relationships, and the dental biofilms of Homo and chimpanzees are distinguished by major taxonomic and functional differences. Reconstructing oral metagenomes from up to 100 thousand years ago, we show that the microbial profiles of both Neanderthals and modern humans are highly similar, sharing functional adaptations in nutrient metabolism. These include an apparent Homo-specific acquisition of salivary amylase-binding capability by oral streptococci, suggesting microbial coadaptation with host diet. We additionally find evidence of shared genetic diversity in the oral bacteria of Neanderthal and Upper Paleolithic modern humans that is not observed in later modern human populations. Differences in the oral microbiomes of African hominids provide insights into human evolution, the ancestral state of the human microbiome, and a temporal framework for understanding microbial health and disease.
  •  
30.
  • Lindgren, Paula, et al. (författare)
  • Signatures of the post-hydration heating of highly aqueously altered CM carbonaceous chondrites and implications for interpreting asteroid sample returns
  • 2020
  • Ingår i: Geochimica et Cosmochimica Acta. - : Elsevier BV. - 0016-7037. ; 289, s. 69-92
  • Tidskriftsartikel (refereegranskat)abstract
    • The CM carbonaceous chondrites have all been aqueously altered, and some of them were subsequently heated in a parent body environment. Here we have sought to understand the impact of short duration heating on a highly aqueously altered CM through laboratory experiments on Allan Hills (ALH) 83100. Unheated ALH 83100 contains 83 volume per cent serpentine within the fine-grained matrix and altered chondrules. The matrix also hosts grains of calcite and dolomite, which are often intergrown with tochilinite, Fe(Ni) sulphides (pyrrhotite, pentlandite), magnetite and organic matter. Some of the magnetite formed by replacement of Fe(Ni) sulphides that were accreted from the nebula. Laboratory heating to 400 °C has caused partial dehydroxylation of serpentine and loss of isotopically light oxygen leading to an increase in bulk δ18O and fall in Δ17O. Tochilinite has decomposed to magnetite, whereas carbonates have remained unaltered. With regards to infrared spectroscopy (4000–400 cm−1; 2.5–25 µm), heating to 400 °C has resulted in decreased emissivity (increased reflectance), a sharper and more symmetric OH band at 3684 cm−1 (2.71 µm), a broadening of the Si[sbnd]O stretching band together with movement of its minimum to longer wavenumbers, and a decreasing depth of the Mg[sbnd]OH band (625 cm−1; 16 µm). The Si[sbnd]O bending band is unmodified by mild heating. With heating to 800 °C the serpentine has fully dehydroxylated and recrystallized to ∼Fo60/70 olivine. Bulk δ18O has further increased and Δ17O decreased. Troilite and pyrrhotite have formed, and recrystallization of pentlandite has produced Fe,Ni metal. Calcite and dolomite were calcined at ∼700 °C and in their place is an un-named Ca-Fe oxysulphide. Heating changes the structural order of organic matter so that Raman spectroscopy of carbon in the 800 °C sample shows an increased (D1 + D4) proportional area parameter. The infrared spectrum of the 800 °C sample confirms the abundance of Fe-bearing olivine and is very similar to the spectrum of naturally heated stage IV CM Pecora Escarpment 02010. The temperature-related mineralogical, chemical, isotopic and spectroscopic signatures defined in ALH 83100 will help to track the post-hydration thermal histories of carbonaceous chondrite meteorites, and samples returned from the primitive asteroids Ryugu and Bennu.
  •  
31.
  • McFarlane, G., et al. (författare)
  • Enamel daily secretion rates of deciduous molars from a global sample of children
  • 2021
  • Ingår i: Archives of Oral Biology. - : Elsevier BV. - 0003-9969. ; 132
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: To investigate and describe the variation in enamel daily secretion rates (DSRs) of naturally exfoliated deciduous molars (n = 345) from five modern-day populations (Aotearoa New Zealand, Britain, Canada, France, and Sweden). Design: Each tooth was thin sectioned and examined using a high-powered Olympus BX51 microscope and DP25 digital microscope camera. Mean DSRs were recorded for the inner, mid, and outer regions of cuspal and lateral enamel, excluding enamel nearest the enamel-dentin junction and at the outermost crown surface. Results: Mean DSRs did not vary significantly between populations, or by sex. Cuspal enamel grew slightly faster than lateral enamel (mean difference 0.16 mu m per day; p < 0.001). The trajectory of DSRs remained relatively constant from inner to outer cuspal enamel and increased slightly in lateral enamel (p = 0.003). Conclusions: The DSRs of deciduous molars from modern-day children are remarkably consistent when compared among populations. While growth rates are faster in cuspal than lateral enamel, the trajectory of enamel formation changes only slightly from inner to outer regions. The trajectory of DSRs for deciduous molars differs to that of permanent molar enamel, which typically display a steep increase in matrix deposition from inner to outer enamel.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-31 av 31

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy