SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Friend Richard) "

Sökning: WFRF:(Friend Richard)

  • Resultat 1-50 av 51
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pandya, Raj, et al. (författare)
  • Microcavity-like exciton-polaritons can be the primary photoexcitation in bare organic semiconductors
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Strong-coupling between excitons and confined photonic modes can lead to the formation of new quasi-particles termed exciton-polaritons which can display a range of interesting properties such as super-fluidity, ultrafast transport and Bose-Einstein condensation. Strong-coupling typically occurs when an excitonic material is confided in a dielectric or plasmonic microcavity. Here, we show polaritons can form at room temperature in a range of chemically diverse, organic semiconductor thin films, despite the absence of an external cavity. We find evidence of strong light-matter coupling via angle-dependent peak splittings in the reflectivity spectra of the materials and emission from collective polariton states. We additionally show exciton-polaritons are the primary photoexcitation in these organic materials by directly imaging their ultrafast (5 × 106 m s−1), ultralong (~270 nm) transport. These results open-up new fundamental physics and could enable a new generation of organic optoelectronic and light harvesting devices based on cavity-free exciton-polaritons.
  •  
2.
  • Campbell, Charles, et al. (författare)
  • Bridging model and real catalysts: general discussion
  • 2016
  • Ingår i: Faraday Discussions. - 1359-6640 .- 1364-5498. ; 188, s. 565-589
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Charles Campbell opened the discussion of the paper by Hans-JoachimFreund: If you have a 3D gold particle and it spreads out to be a 2D particle whenyou adsorb CO2, it must gain energy stability. Did you estimate the energy changeof the overall process to do that?
  •  
3.
  • Gray, Victor, Dr, 1988-, et al. (författare)
  • Ligand-Directed Self-Assembly of Organic-Semiconductor/Quantum-Dot Blend Films Enables Efficient Triplet Exciton-Photon Conversion
  • 2024
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 146:11, s. 7763-7770
  • Tidskriftsartikel (refereegranskat)abstract
    • Blends comprising organic semiconductors and inorganic quantum dots (QDs) are relevant for many optoelectronic applications and devices. However, the individual components in organic-QD blends have a strong tendency to aggregate and phase-separate during film processing, compromising both their structural and electronic properties. Here, we demonstrate a QD surface engineering approach using electronically active, highly soluble semiconductor ligands that are matched to the organic semiconductor host material to achieve well-dispersed inorganic-organic blend films, as characterized by X-ray and neutron scattering, and electron microscopies. This approach preserves the electronic properties of the organic and QD phases and also creates an optimized interface between them. We exemplify this in two emerging applications, singlet-fission-based photon multiplication (SF-PM) and triplet-triplet annihilation-based photon upconversion (TTA-UC). Steady-state and time-resolved optical spectroscopy shows that triplet excitons can be transferred with near unity efficiently across the organic-inorganic interface, while the organic films maintain efficient SF (190% yield) in the organic phase. By changing the relative energy between organic and inorganic components, yellow upconverted emission is observed upon 790 nm NIR excitation. Overall, we provide a highly versatile approach to overcome longstanding challenges in the blending of organic semiconductors with QDs that have relevance for many optical and optoelectronic applications.
  •  
4.
  • Pennington, Bruce, et al. (författare)
  • Individual prediction of dyslexia by single vs. multiple deficit models.
  • 2012
  • Ingår i: Journal of Abnormal Psychology. - : American Psychological Association. - 0021-843X .- 1939-1846. ; 121:1, s. 212-224
  • Tidskriftsartikel (refereegranskat)abstract
    • The overall goals of this study were to test single versus multiple cognitive deficit models of dyslexia (reading disability) at the level of individual cases and to determine the clinical utility of these models for prediction and diagnosis of dyslexia. To accomplish these goals, we tested five cognitive models of dyslexia-two single-deficit models, two multiple-deficit models, and one hybrid model-in two large population-based samples, one cross-sectional (Colorado Learning Disability Research Center) and one longitudinal (International longitudinal Twin Study). The cognitive deficits included in these cognitive models were in phonological awareness, language skill, and processing speed and/or naming speed. To determine whether an individual case fit one of these models, we used two methods: 1) the presence or absence of the predicted cognitive deficits, and 2) whether the individuals level of reading skill best fit the regression equation with the relevant cognitive predictors (i.e., whether their reading skill was proportional to those cognitive predictors.) We found that roughly equal proportions of cases met both tests of model fit for the multiple deficit models (30-36%) and single deficit models (24-28%); hence, the hybrid model provided the best overall fit to the data. The remaining roughly 40% of cases in each sample lacked the deficit or deficits that corresponded with their best-fitting regression model. We discuss the clinical implications of these results for both diagnosis of school-age children and preschool prediction of children at risk for dyslexia.
  •  
5.
  • Raghavan, Maanasa, et al. (författare)
  • Genomic evidence for the Pleistocene and recent population history of Native Americans
  • 2015
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 349:6250
  • Tidskriftsartikel (refereegranskat)abstract
    • Howand when the Americas were populated remains contentious. Using ancient and modern genome-wide data, we found that the ancestors of all present-day Native Americans, including Athabascans and Amerindians, entered the Americas as a single migration wave from Siberia no earlier than 23 thousand years ago (ka) and after no more than an 8000-year isolation period in Beringia. After their arrival to the Americas, ancestral Native Americans diversified into two basal genetic branches around 13 ka, one that is now dispersed across North and South America and the other restricted to North America. Subsequent gene flow resulted in some Native Americans sharing ancestry with present-day East Asians (including Siberians) and, more distantly, Australo-Melanesians. Putative "Paleoamerican" relict populations, including the historical Mexican Pericues and South American Fuego-Patagonians, are not directly related to modern Australo-Melanesians as suggested by the Paleoamerican Model.
  •  
6.
  • Toolan, Daniel T. W., et al. (författare)
  • Insights into the Structure and Self-Assembly of Organic-Semiconductor/Quantum-Dot Blends
  • 2022
  • Ingår i: Advanced Functional Materials. - : John Wiley & Sons. - 1616-301X .- 1616-3028. ; 32:13
  • Tidskriftsartikel (refereegranskat)abstract
    • Controlling the dispersibility of crystalline inorganic quantum dots (QD) within organic-QD nanocomposite films is critical for a wide range of optoelectronic devices. A promising way to control nanoscale structure in these nanocomposites is via the use of appropriate organic ligands on the QD, which help to compatibilize them with the organic host, both electronically and structurally. Here, using combined small-angle X-ray and neutron scattering, the authors demonstrate and quantify the incorporation of such a compatibilizing, electronically active, organic semiconductor ligand species into the native oleic acid ligand envelope of lead sulphide, QDs, and how this ligand loading may be easily controlled. Further more, in situ grazing incidence wide/small angle X-ray scattering demonstrate how QD ligand surface chemistry has a pronounced effect on the self-assembly of the nanocomposite film in terms of both small-molecule crystallization and QD dispersion versus ordering/aggregation. The approach demonstrated here shows the important role which the degree of incorporation of an active ligand, closely related in chemical structure to the host small-molecule organic matrix, plays in both the self-assembly of the QD and small-molecule components and in determining the final optoelectronic properties of the system.
  •  
7.
  • Toolan, Daniel T. W., et al. (författare)
  • Linking microscale morphologies to localised performance in singlet fission quantum dot photon multiplier thin films
  • 2022
  • Ingår i: Journal of Materials Chemistry C. - : Royal Society of Chemistry. - 2050-7526 .- 2050-7534. ; 10:31, s. 11192-11198
  • Tidskriftsartikel (refereegranskat)abstract
    • Hybrid small-molecule/quantum dot films have the potential to reduce thermalization losses in single-junction photovoltaics as photon multiplication devices. Here grazing incidence X-ray scattering, optical microscopy and IR fluorescence microscopy (probing materials at two distinct wavelengths), provide new insight into highly complex morphologies across nm and mu m lengthscales to provide direct links between morphologies and photon multiplication performance. Results show that within the small molecule crystallites three different QD morphologies may be identified; (i) large quantum dot aggregates at the crystallite nucleus, (ii) relatively well-dispersed quantum dots and (iii) as aggregated quantum dots "swept" from the growing crystallite and that regions containing aggregate quantum dot features lead to relatively poor photon multiplication performance. These results establish how combinations of scattering and microscopy may be employed to reveal new insights into the structure and function of small molecule:quantum dot blends.
  •  
8.
  • Weir, Michael P., et al. (författare)
  • Ligand Shell Structure in Lead Sulfide–Oleic Acid Colloidal Quantum Dots Revealed by Small-Angle Scattering
  • 2019
  • Ingår i: The Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 10:16, s. 4713-4719
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanocrystal quantum dots are generally coated with an organic ligand layer. These layers are a necessary consequence of their chemical synthesis, and in addition they play a key role in controlling the optical and electronic properties of the system. Here we describe a method for quantitative measurement of the ligand layer in 3 nm diameter lead sulfide–oleic acid quantum dots. Complementary small-angle X-ray and neutron scattering (SAXS and SANS) studies give a complete and quantitative picture of the nanoparticle structure. We find greater-than-monolayer coverage of oleic acid and a significant proportion of ligand remaining in solution, and we demonstrate reversible thermal cycling of the oleic acid coverage. We outline the effectiveness of simple purification procedures with applications in preparing dots for efficient ligand exchange. Our method is transferrable to a wide range of colloidal nanocrystals and ligand chemistries, providing the quantitative means to enable the rational design of ligand-exchange procedures.
  •  
9.
  • Abdi-Jalebi, Mojtaba, et al. (författare)
  • Dedoping of Lead Halide Perovskites Incorporating Monovalent Cations
  • 2018
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 12:7, s. 7301-7311
  • Tidskriftsartikel (refereegranskat)abstract
    • We report significant improvements in the optoelectronic properties of lead halide perovskites with the addition of monovalent ions with ionic radii close to Pb2+. We investigate the chemical distribution and electronic structure of solution processed CH3NH3PbI3 perovskite structures containing Na+, Cu+, and Ag+, which are lower valence metal ions than Pb2+ but have similar ionic radii. Synchrotron X-ray diffraction reveals a pronounced shift in the main perovskite peaks for the monovalent cation-based films, suggesting incorporation of these cations into the perovskite lattice as well as a preferential crystal growth in Ag+ containing perovskite structures. Furthermore, the synchrotron X-ray photoelectron measurements show a significant change in the valence band position for Cu- and Ag-doped films, although the perovskite bandgap remains the same, indicating a shift in the Fermi level position toward the middle of the bandgap. Such a shift infers that incorporation of these monovalent cations dedope the n-type perovskite films when formed without added cations. This dedoping effect leads to cleaner bandgaps as reflected by the lower energetic disorder in the monovalent cation-doped perovskite thin films as compared to pristine films. We also find that in contrast to Ag+ and Cu+, Na+ locates mainly at the grain boundaries and surfaces. Our theoretical calculations confirm the observed shifts in X-ray diffraction peaks and Fermi level as well as absence of intrabandgap states upon energetically favorable doping of perovskite lattice by the monovalent cations. We also model a significant change in the local structure, chemical bonding of metal-halide, and the electronic structure in the doped perovskites. In summary, our work highlights the local chemistry and influence of monovalent cation dopants on crystallization and the electronic structure in the doped perovskite thin films.
  •  
10.
  • Abdi-Jalebi, Mojtaba, et al. (författare)
  • Maximizing and stabilizing luminescence from halide perovskites with potassium passivation
  • 2018
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 555, s. 497-501
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal halide perovskites are of great interest for various high-performance optoelectronic applications. The ability to tune the perovskite bandgap continuously by modifying the chemical composition opens up applications for perovskites as coloured emitters, in building-integrated photovoltaics, and as components of tandem photovoltaics to increase the power conversion efficiency. Nevertheless, performance is limited by non-radiative losses, with luminescence yields in state-of-the-art perovskite solar cells still far from 100 per cent under standard solar illumination conditions. Furthermore, in mixed halide perovskite systems designed for continuous bandgap tunability2 (bandgaps of approximately 1.7 to 1.9 electronvolts), photoinduced ion segregation leads to bandgap instabilities. Here we demonstrate substantial mitigation of both non-radiative losses and photoinduced ion migration in perovskite films and interfaces by decorating the surfaces and grain boundaries with passivating potassium halide layers. We demonstrate external photoluminescence quantum yields of 66 per cent, which translate to internal yields that exceed 95 per cent. The high luminescence yields are achieved while maintaining high mobilities of more than 40 square centimetres per volt per second, providing the elusive combination of both high luminescence and excellent charge transport. When interfaced with electrodes in a solar cell device stack, the external luminescence yield—a quantity that must be maximized to obtain high efficiency—remains as high as 15 per cent, indicating very clean interfaces. We also demonstrate the inhibition of transient photoinduced ion-migration processes across a wide range of mixed halide perovskite bandgaps in materials that exhibit bandgap instabilities when unpassivated. We validate these results in fully operating solar cells. Our work represents an important advance in the construction of tunable metal halide perovskite films and interfaces that can approach the efficiency limits in tandem solar cells, coloured-light-emitting diodes and other optoelectronic applications.
  •  
11.
  • Abe, K., et al. (författare)
  • Neutron tagging following atmospheric neutrino events in a water Cherenkov detector
  • 2022
  • Ingår i: Journal of Instrumentation. - : Institute of Physics (IOP). - 1748-0221. ; 17:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the development of neutron-tagging techniques in Super-Kamiokande IV using a neural network analysis. The detection efficiency of neutron capture on hydrogen is estimated to be 26%, with a mis-tag rate of 0.016 per neutrino event. The uncertainty of the tagging efficiency is estimated to be 9.0%. Measurement of the tagging efficiency with data from an Americium-Beryllium calibration agrees with this value within 10%. The tagging procedure was performed on 3,244.4 days of SK-IV atmospheric neutrino data, identifying 18,091 neutrons in 26,473 neutrino events. The fitted neutron capture lifetime was measured as 218 +/- 9 mu s.
  •  
12.
  • Arnett, Anett, et al. (författare)
  • The SWAN captures variance at the negative and positive ends of the ADHD Symptom dimension
  • 2013
  • Ingår i: Journal of Attention Disorders. - : Sage Publications. - 1087-0547 .- 1557-1246. ; 17:2, s. 152-162
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: The Strengths and Weaknesses of ADHD Symptoms and Normal Behavior (SWAN) Rating Scale differs from previous parent reports of ADHD in that it was designed to also measure variability at the positive end of the symptom spectrum. Method: The psychometric properties of the SWAN were tested and compared with an established measure of ADHD, the Disruptive Behavior Rating Scale (DBRS). Results: The SWAN demonstrates comparable validity, reliability, and heritability to the DBRS. Furthermore, plots of the SWAN and DBRS reveal heteroscedasticity, which supports the SWAN as a preferred measure of positive attention and impulse regulation behaviors. Conclusion: The ability of the SWAN to measure additional variance at the adaptive end of the ADHD symptom dimensions makes it a promising tool for behavioral genetic studies of ADHD.
  •  
13.
  •  
14.
  • Campbell, Charles, et al. (författare)
  • Catalyst design from theory to practice: general discussion
  • 2016
  • Ingår i: Faraday Discussions. - 1359-6640 .- 1364-5498. ; 188, s. 279-307
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Hans-Joachim Freund opened the discussion of the paper by Alberto Roldan:How is the atomic hydrogen produced on the greigite surface? In the paper (DOI:10.1039/C5FD00186B) there is no comment whether you studied dissociatehydrogen adsorption.
  •  
15.
  • Chen, Shangshang, et al. (författare)
  • Efficient Nonfullerene Organic Solar Cells with Small Driving Forces for Both Hole and Electron Transfer
  • 2018
  • Ingår i: Advanced Materials. - : WILEY-V C H VERLAG GMBH. - 0935-9648 .- 1521-4095. ; 30:45
  • Tidskriftsartikel (refereegranskat)abstract
    • State-of-the-art organic solar cells (OSCs) typically suffer from large voltage loss (V-loss) compared to their inorganic and perovskite counterparts. There are some successful attempts to reduce the V-loss by decreasing the energy offsets between the donor and acceptor materials, and the OSC community has demonstrated efficient systems with either small highest occupied molecular orbital (HOMO) offset or negligible lowest unoccupied molecular orbital (LUMO) offset between donors and acceptors. However, efficient OSCs based on a donor/acceptor system with both small HOMO and LUMO offsets have not been demonstrated simultaneously. In this work, an efficient nonfullerene OSC is reported based on a donor polymer named PffBT2T-TT and a small-molecular acceptor (O-IDTBR), which have identical bandgaps and close energy levels. The Fourier-transform photocurrent spectroscopy external quantum efficiency (FTPS-EQE) spectrum of the blend overlaps with those of neat PffBT2T-TT and O-IDTBR, indicating the small driving forces for both hole and electron transfer. Meanwhile, the OSCs exhibit a high electroluminescence quantum efficiency (EQE(EL)) of approximate to 1 x 10(-4), which leads to a significantly minimized nonradiative V-loss of 0.24 V. Despite the small driving forces and a low V-loss, a maximum EQE of 67% and a high power conversion efficiency of 10.4% can still be achieved.
  •  
16.
  • Congrave, Daniel G., et al. (författare)
  • Suppressing aggregation induced quenching in anthracene based conjugated polymers
  • 2021
  • Ingår i: Polymer Chemistry. - : Royal Society of Chemistry. - 1759-9954 .- 1759-9962. ; 12:12, s. 1830-1836
  • Tidskriftsartikel (refereegranskat)abstract
    • Anthracene is a highly valuable building block for luminescent conjugated polymers, particularly when a large singlet-triplet energy gap (Delta E-ST) is desired. Unfortunately, the extended pi system of anthracene imparts a strong tendency for polymer aggregation, resulting in detrimental effects on its solid state photophysics. A large decrease in photoluminescence quantum yield (PLQY, phi(F)) on going from solution to the solid state is especially common, represented in terms of a low phi(R) (phi(R) = phi(F film)/phi(F sol.)). Significant and undesirable red-shifting of fluorescence in the solid state is also typical due to processes such as excimer formation. In this work a series of alkylene-encapsulated conjugated anthracene polymers is developed to overcome these challenging problems. We demonstrate a promising material which displays a good solid state PLQY that is effectively unchanged compared to solution measurements (phi(R) similar to 1, phi(F film) similar to 40%), alongside an identical PL 0-0 transition wavelength in solution and thin film. Such a direct transfer of luminescence properties from solution to the solid state is remarkable for a conjugated polymer and completely unprecedented for one based on anthracene.
  •  
17.
  • Fang, Junfeng, et al. (författare)
  • Conjugated Zwitterionic Polyelectrolyte as the Charge Injection Layer for High-Performance Polymer Light-Emitting Diodes
  • 2011
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society. - 0002-7863 .- 1520-5126. ; 133:4, s. 683-685
  • Tidskriftsartikel (refereegranskat)abstract
    • A new zwitterionic conjugated polyelectrolyte without free counterions has been used as an electron injection material in polymer light-emitting diodes. Both the efficiency and maximum brightness were considerably improved in comparison with standard Ca cathode devices. The devices showed very fast response times, indicating that the improved performance is, in addition to hole blocking, due to dipoles at the cathode interface, which facilitate electron injection.
  •  
18.
  • Ghosh, Emily, et al. (författare)
  • Building inclusive cities for a sustainable future
  • 2021
  • Ingår i: One Earth. - : Elsevier. - 2590-3330 .- 2590-3322. ; 4:2, s. 161-164
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • As engines of economic growth and pollution hotspots, cities have been cited as a prime opportunity to address a host of environmental grand challenges. Yet action taken is not always universally beneficial, and inequalities are spiraling. This Voices seeks to uncover the heterogeneity of urban inequality and identify necessary actions for a fairer future.
  •  
19.
  • Gillett, Alexander J., et al. (författare)
  • Spontaneous exciton dissociation enables spin state interconversion in delayed fluorescence organic semiconductors
  • 2021
  • Ingår i: Nature Communications. - : Nature Portfolio. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Engineering a low singlet-triplet energy gap (Delta E-ST) is necessary for efficient reverse intersystem crossing (rISC) in delayed fluorescence (DF) organic semiconductors but results in a small radiative rate that limits performance in LEDs. Here, we study a model DF material, BF2, that exhibits a strong optical absorption (absorption coefficient = 3.8 x 10(5) cm(-1)) and a relatively large Delta E-ST of 0.2 eV. In isolated BF2 molecules, intramolecular rISC is slow (delayed lifetime = 260 mu s), but in aggregated films, BF2 generates intermolecular charge transfer (inter-CT) states on picosecond timescales. In contrast to the microsecond intramolecular rISC that is promoted by spin-orbit interactions in most isolated DF molecules, photoluminescence-detected magnetic resonance shows that these inter-CT states undergo rISC mediated by hyperfine interactions on a similar to 24 ns timescale and have an average electron-hole separation of >= 1.5 nm. Transfer back to the emissive singlet exciton then enables efficient DF and LED operation. Thus, access to these inter-CT states, which is possible even at low BF2 doping concentrations of 4 wt%, resolves the conflicting requirements of fast radiative emission and low Delta E-ST in organic DF emitters.
  •  
20.
  • Gillett, Alexander J., et al. (författare)
  • The role of charge recombination to triplet excitons in organic solar cells
  • 2021
  • Ingår i: Nature. - : NATURE PORTFOLIO. - 0028-0836 .- 1476-4687. ; 597:7878, s. 666-
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of non-fullerene acceptors (NFAs) in organic solar cells has led to power conversion efficiencies as high as 18%(1). However, organic solar cells are still less efficient than inorganic solar cells, which typically have power conversion efficiencies of more than 20%(2). A key reason for this difference is that organic solar cells have low open-circuit voltages relative to their optical bandgaps(3), owing to non-radiative recombination(4). For organic solar cells to compete with inorganic solar cells in terms of efficiency, non-radiative loss pathways must be identified and suppressed. Here we show that in most organic solar cells that use NFAs, the majority of charge recombination under open-circuit conditions proceeds via the formation of non-emissive NFA triplet excitons; in the benchmark PM6:Y6 blend(5), this fraction reaches 90%, reducing the open-circuit voltage by 60 mV. We prevent recombination via this non-radiative channel by engineering substantial hybridization between the NFA triplet excitons and the spin-triplet charge-transfer excitons. Modelling suggests that the rate of back charge transfer from spin-triplet charge-transfer excitons to molecular triplet excitons may be reduced by an order of magnitude, enabling re-dissociation of the spin-triplet charge-transfer exciton. We demonstrate NFA systems in which the formation of triplet excitons is suppressed. This work thus provides a design pathway for organic solar cells with power conversion efficiencies of 20% or more. A substantial pathway for energy loss in organic solar cells may be suppressed by engineering hybridization between non-fullerene acceptor triplet excitons and spin-triplet charge transfer excitons.
  •  
21.
  • Gorman, Jeffrey, et al. (författare)
  • Deoxyribonucleic Acid Encoded and Size-Defined π-Stacking of Perylene Diimides
  • 2022
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 144:1, s. 368-376
  • Tidskriftsartikel (refereegranskat)abstract
    • Natural photosystems use protein scaffolds to control intermolecular interactions that enable exciton flow, charge generation, and long-range charge separation. In contrast, there is limited structural control in current organic electronic devices such as OLEDs and solar cells. We report here the DNA-encoded assembly of pi-conjugated perylene diimides (PDIs) with deterministic control over the number of electronically coupled molecules. The PDIs are integrated within DNA chains using phosphoramidite coupling chemistry, allowing selection of the DNA sequence to either side, and specification of intermolecular DNA hybridization. In this way, we have developed a "toolbox" for construction of any stacking sequence of these semiconducting molecules. We have discovered that we need to use a full hierarchy of interactions: DNA guides the semiconductors into specified close proximity, hydrophobic-hydrophilic differentiation drives aggregation of the semiconductor moieties, and local geometry and electrostatic interactions define intermolecular positioning. As a result, the PDIs pack to give substantial intermolecular pi wave function overlap, leading to an evolution of singlet excited states from localized excitons in the PDI monomer to excimers with wave functions delocalized over all five PDIs in the pentamer. This is accompanied by a change in the dominant triplet forming mechanism from localized spin-orbit charge transfer mediated intersystem crossing for the monomer toward a delocalized excimer process for the pentamer. Our modular DNA-based assembly reveals real opportunities for the rapid development of bespoke semiconductor architectures with molecule-by-molecule precision.
  •  
22.
  • Guo, Renjun, et al. (författare)
  • Degradation mechanisms of perovskite solar cells under vacuum and one atmosphere of nitrogen
  • 2021
  • Ingår i: Nature Energy. - : Springer Nature. - 2058-7546. ; 6:10, s. 977-
  • Tidskriftsartikel (refereegranskat)abstract
    • Extensive studies have focused on improving the operational stability of perovskite solar cells, but few have surveyed the fundamental degradation mechanisms. One aspect overlooked in earlier works is the effect of the atmosphere on device performance during operation. Here we investigate the degradation mechanisms of perovskite solar cells operated under vacuum and under a nitrogen atmosphere using synchrotron radiation-based operando grazing-incidence X-ray scattering methods. Unlike the observations described in previous reports, we find that light-induced phase segregation, lattice shrinkage and morphology deformation occur under vacuum. Under nitrogen, only lattice shrinkage appears during the operation of solar cells, resulting in better device stability. The different behaviour under nitrogen is attributed to a larger energy barrier for lattice distortion and phase segregation. Finally, we find that the migration of excessive PbI2 to the interface between the perovskite and the hole transport layer degrades the performance of devices under vacuum or under nitrogen. Understanding degradation mechanisms in perovskite solar cells is key to their development. Now, Guo et al. show a greater degradation of the perovskite structure and morphology for devices operated under vacuum than under nitrogen.
  •  
23.
  • Hassaan, Muhammad Umair, et al. (författare)
  • Highly Efficient Energy Transfer in Light Emissive Poly(9,9-dioctylfluorene) and Poly(p-phenylenevinylene) Blend System
  • 2018
  • Ingår i: ACS Photonics. - : AMER CHEMICAL SOC. - 2330-4022. ; 5:2, s. 607-613
  • Tidskriftsartikel (refereegranskat)abstract
    • A polymer blend system F8(1-x):SYx based on poly(9,9-dioctylfluorene) (F8) from the family of polyfluorenes (PFO) and a poly(para-phenylenevinylene) (PPV) derivative superyellow (SY) shows highly efficient energy transfer from F8 host to SY guest molecules. This has been realized due to a strong overlap between F8 photoemission and SY photoabsorption spectra and negligibly low self-absorption. The steady-state and time-correlated spectroscopic measurements show an increased photo-luminescence quantum efficiency (PLQE) and lifetime (tau) of SY, with an opposite trend of decreasing PLQE and tau of F8 excitons with increasing SY concentration, suggesting the Forster resonance energy transfer (FRET) to be the main decay pathway in the proposed system. The systematic study of the exciton dynamics shows a complete energy transfer at 10% of SY in the F8 host matrix and a Forster radius of similar to 6.3 nm. The polymer blend system exhibits low laser and amplified spontaneous emission thresholds. An ultrahigh efficiency (27 cd.A(-1)) in F8(1-x):SYx based light emitting diodes (LED) has been realized due to the intrinsic property of a well-balanced charge transport within the emissive layer. The dual pathway, that is, the efficient energy transfer between the blended molecules via resonance energy transfer, and the charge-traps-assisted balanced transport makes the system promising for achieving highly efficient devices and a potential candidate for lasing applications.
  •  
24.
  • He, Ximin, et al. (författare)
  • Formation of Nanopatterned Polymer Blends in Photovoltaic Devices
  • 2010
  • Ingår i: Nano letters (Print). - : American Chemical Society. - 1530-6984 .- 1530-6992. ; 10:4, s. 1302-1307
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, we demonstrate a double nanoimprinting process that allows the formation of nanostructured polymer heterojunctions of composition and morphology that can be selected independently. We fabricated photovoltaic (PV) devices with extremely high densities (10(14)/mm(2)) of interpenetrating nanoscale columnar features in the active polymer blend layer. The smallest feature sizes are as small as 25 nm on a 50 nm pitch, which results in a spacing of hererojunctions at or below the exciton diffusion length. Photovoltaic devices based on double-imprinted poly((9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-bis(3-hexylthien-5-yl)-2,1,3-benzothiadiazole]-2,2 diyl) (F8TBT)/poly(3-hexylthiophene) (P3HT) films are among the best polymer polymer blend devices reported to date with a power conversion efficiency (PCE, eta(e)) of 1.9%.
  •  
25.
  • He, Ximin, et al. (författare)
  • Formation of Well-Ordered Heterojunctions in Polymer: PCBM Photovoltaic Devices
  • 2011
  • Ingår i: Advanced Functional Materials. - : Wiley-VCH Verlag. - 1616-301X .- 1616-3028. ; 21:1, s. 139-146
  • Tidskriftsartikel (refereegranskat)abstract
    • The nanoscale morphology in polymer:PCBM based photovoltaic devices is a major contributor to overall device performance. The disordered nature of the phase-separated structure, in combination with the small length scales involved and the inherent difficulty of reproducing the exact morphologies when spin-coating and annealing thin blend films, have greatly hampered the development of a detailed understanding of how morphology impacts photo voltaic device functioning. In this paper we demonstrate a double nanoimprinting process that allows the formation of nanostructured polymer: PCBM heterojunctions of composition and morphology that can be selected independently. We fabricated photovoltaic (PV) devices with extremely high densities (10(14) mm(-2)) of interpenetrating nanoscale columnar features (as small as 25 nm; at or below the exciton diffusion length) in the active layer. By comparing device results of different feature sizes and two different polymer: PCBM combinations, we demonstrate how double imprinting can be a powerful tool to systematically study different parameters in polymer photovoltaic devices.
  •  
26.
  • Hou, Jianhui, et al. (författare)
  • Organic solar cells based on non-fullerene acceptors
  • 2018
  • Ingår i: Nature Materials. - : Nature Publishing Group. - 1476-1122 .- 1476-4660. ; 17:2, s. 119-128
  • Forskningsöversikt (refereegranskat)abstract
    • Organic solar cells (OSCs) have been dominated by donor: acceptor blends based on fullerene acceptors for over two decades. This situation has changed recently, with non-fullerene (NF) OSCs developing very quickly. The power conversion efficiencies of NF OSCs have now reached a value of over 13%, which is higher than the best fullerene-based OSCs. NF acceptors show great tunability in absorption spectra and electron energy levels, providing a wide range of new opportunities. The coexistence of low voltage losses and high current generation indicates that new regimes of device physics and photophysics are reached in these systems. This Review highlights these opportunities made possible by NF acceptors, and also discuss the challenges facing the development of NF OSCs for practical applications.
  •  
27.
  • Howard, Ian A., et al. (författare)
  • Charge Recombination and Exciton Annihilation Reactions in Conjugated Polymer Blends
  • 2010
  • Ingår i: Journal of the American Chemical Society. - 0002-7863. ; 132:1, s. 328-335
  • Tidskriftsartikel (refereegranskat)abstract
    • Bimolecular interactions between excitations in conjugated polymer thin films are important because they influence the efficiency of many optoelectronic devices that require high excitation densities. Using time-resolved optical spectroscopy, we measure the bimolecular interactions of charges, singlet excitons, and triplet excitons in intimately mixed polyfluorene blends with band-edge offsets optimized for photoinduced electron transfer. Bimolecular charge recombination and triplet−triplet annihilation are negligible, but exciton−charge interactions are efficient. The annihilation of singlet excitons by charges occurs on picosecond time-scales and reaches a rate equivalent to that of charge transfer. Triplet exciton annihilation by charges occurs on nanosecond time-scales. The surprising absence of nongeminate charge recombination is shown to be due to the limited mobility of charge carriers at the heterojunction. Therefore, extremely high densities of charge pairs can be maintained in the blend. The absence of triplet−triplet annihilation is a consequence of restricted triplet diffusion in the blend morphology. We suggest that the rate and nature of bimolecular interactions are determined by the stochastic excitation distribution in the polymer blend and the limited connectivity between the polymer domains. A model based on these assumptions quantitatively explains the effects. Our findings provide a comprehensive framework for understanding bimolecular recombination and annihilation processes in nanostructured materials.
  •  
28.
  • Hu, H., et al. (författare)
  • X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes
  • 2016
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 21:1, s. 133-148
  • Tidskriftsartikel (refereegranskat)abstract
    • X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of these males were previously tested negative for copy number variations and for mutations in a subset of known XLID genes by Sanger sequencing. In total, 745 X-chromosomal genes were screened. After stringent filtering, a total of 1297 non-recurrent exonic variants remained for prioritization. Co-segregation analysis of potential clinically relevant changes revealed that 80 families (20%) carried pathogenic variants in established XLID genes. In 19 families, we detected likely causative protein truncating and missense variants in 7 novel and validated XLID genes (CLCN4, CNKSR2, FRMPD4, KLHL15, LAS1L, RLIM and USP27X) and potentially deleterious variants in 2 novel candidate XLID genes (CDK16 and TAF1). We show that the CLCN4 and CNKSR2 variants impair protein functions as indicated by electrophysiological studies and altered differentiation of cultured primary neurons from Clcn4(-/-) mice or after mRNA knock-down. The newly identified and candidate XLID proteins belong to pathways and networks with established roles in cognitive function and intellectual disability in particular. We suggest that systematic sequencing of all X-chromosomal genes in a cohort of patients with genetic evidence for X-chromosome locus involvement may resolve up to 58% of Fragile X-negative cases.
  •  
29.
  • Jalebi, Mojtaba Abdi, et al. (författare)
  • Potassium- and Rubidium-Passivated Alloyed Perovskite Films : Optoelectronic Properties and Moisture Stability
  • 2018
  • Ingår i: ACS Energy Letters. - : American Chemical Society (ACS). - 2380-8195. ; 3:11, s. 2671-2678
  • Tidskriftsartikel (refereegranskat)abstract
    • Halide perovskites passivated with potassium or rubidium show superior photovoltaic device performance compared to unpassivated samples. However, it is unclear which passivation route is more effective for film stability. Here, we directly compare the optoelectronic properties and stability of thin films when passivating triple-cation perovskite films with potassium or rubidium species. The optoelectronic and chemical studies reveal that the alloyed perovskites are tolerant toward higher loadings of potassium than rubidium. Whereas potassium complexes with bromide from the perovskite precursor solution to form thin surface passivation layers, rubidium additives favor the formation of phase-segregated micron-sized rubidium halide crystals. This tolerance to higher loadings of potassium allows us to achieve superior passivation. We also find that exposure to a humid atmosphere drives phase luminescent properties with potassium segregation and grain coalescence for all compositions, with the rubidium-passivated sample showing the highest sensitivity to nonperovskite phase formation. Our work highlights the benefits but also the limitations of these passivation approaches in maximizing both optoelectronic properties and the stability of perovskite films.
  •  
30.
  • Karlsson, Max, et al. (författare)
  • Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Bright and efficient blue emission is key to further development of metal halide perovskite light-emitting diodes. Although modifying bromide/chloride composition is straightforward to achieve blue emission, practical implementation of this strategy has been challenging due to poor colour stability and severe photoluminescence quenching. Both detrimental effects become increasingly prominent in perovskites with the high chloride content needed to produce blue emission. Here, we solve these critical challenges in mixed halide perovskites and demonstrate spectrally stable blue perovskite light-emitting diodes over a wide range of emission wavelengths from 490 to 451 nanometres. The emission colour is directly tuned by modifying the halide composition. Particularly, our blue and deep-blue light-emitting diodes based on three-dimensional perovskites show high EQE values of 11.0% and 5.5% with emission peaks at 477 and 467 nm, respectively. These achievements are enabled by a vapour-assisted crystallization technique, which largely mitigates local compositional heterogeneity and ion migration.
  •  
31.
  • Li, Guangru, et al. (författare)
  • Highly Efficient Perovskite Nanocrystal Light-Emitting Diodes Enabled by a Universal Crosslinking Method
  • 2016
  • Ingår i: Advanced Materials. - : WILEY-V C H VERLAG GMBH. - 0935-9648 .- 1521-4095. ; 28:18, s. 3528-
  • Tidskriftsartikel (refereegranskat)abstract
    • The preparation of highly efficient perovskite nanocrystal light-emitting diodes is shown. A new trimethylaluminum vapor-based crosslinking method to render the nanocrystal films insoluble is applied. The resulting near-complete nanocrystal film coverage, coupled with the natural confinement of injected charges within the perovskite crystals, facilitates electron-hole capture and give rise to a remarkable electroluminescence yield of 5.7%.
  •  
32.
  • Liu, Xiaoke, et al. (författare)
  • Metal halide perovskites for light-emitting diodes
  • 2021
  • Ingår i: Nature Materials. - : NATURE PUBLISHING GROUP. - 1476-1122 .- 1476-4660. ; 20:1, s. 10-21
  • Forskningsöversikt (refereegranskat)abstract
    • The development of perovskite emitters, their use in light-emitting devices, and the challenges in enhancing the efficiency and stability, as well as reducing the potential toxicity of this technology are discussed in this Review. Metal halide perovskites have shown promising optoelectronic properties suitable for light-emitting applications. The development of perovskite light-emitting diodes (PeLEDs) has progressed rapidly over the past several years, reaching high external quantum efficiencies of over 20%. In this Review, we focus on the key requirements for high-performance PeLEDs, highlight recent advances on materials and devices, and emphasize the importance of reliable characterization of PeLEDs. We discuss possible approaches to improve the performance of blue and red PeLEDs, increase the long-term operational stability and reduce toxicity hazards. We also provide an overview of the application space made possible by recent developments in high-efficiency PeLEDs.
  •  
33.
  • Orsborne, Sarah R.E., et al. (författare)
  • Photogeneration of Spin Quintet Triplet-Triplet Excitations in DNA-Assembled Pentacene Stacks
  • 2023
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society. - 0002-7863 .- 1520-5126. ; 145:9, s. 5431-5438
  • Tidskriftsartikel (refereegranskat)abstract
    • Singlet fission (SF), an exciton-doubling process observed in certain molecular semiconductors where two triplet excitons are generated from one singlet exciton, requires correctly tuned intermolecular coupling to allow separation of the two triplets to different molecular units. We explore this using DNA-encoded assembly of SF-capable pentacenes into discrete π-stacked constructs of defined size and geometry. Precise structural control is achieved via a combination of the DNA duplex formation between complementary single-stranded DNA and the local molecular geometry that directs the SF chromophores into a stable and predictable slip-stacked configuration, as confirmed by molecular dynamics (MD) modeling. Transient electron spin resonance spectroscopy revealed that within these DNA-assembled pentacene stacks, SF evolves via a bound triplet pair quintet state, which subsequently converts into free triplets. SF evolution via a long-lived quintet state sets specific requirements on intermolecular coupling, rendering the quintet spectrum and its zero-field-splitting parameters highly sensitive to intermolecular geometry. We have found that the experimental spectra and zero-field-splitting parameters are consistent with a slight systematic strain relative to the MD-optimized geometry. Thus, the transient electron spin resonance analysis is a powerful tool to test and refine the MD-derived structure models. DNA-encoded assembly of coupled semiconductor molecules allows controlled construction of electronically functional structures, but brings with it significant dynamic and polar disorders. Our findings here of efficient SF through quintet states demonstrate that these conditions still allow efficient and controlled semiconductor operation and point toward future opportunities for constructing functional optoelectronic systems.
  •  
34.
  • Schmidt-Mende, Lukas, et al. (författare)
  • Self-organised Discotic Liquid Crystals for High Efficiency Organic Photovoltaics
  • 2001
  • Ingår i: Science. - Washington, DC, USA : American Association for the Advancement of Science. - 0036-8075 .- 1095-9203. ; 293:10 august, s. 1119-1122
  • Tidskriftsartikel (refereegranskat)abstract
    • Self-organization of liquid crystalline and crystalline-conjugated materials has been used to create, directly from solution, thin films with structures optimized for use in photodiodes. The discotic liquid crystal hexa-perihexabenzocoronene was used in combination with a perylene dye to produce thin films with vertically segregated perylene and hexabenzocoronene, with large interfacial surface area. When incorporated into diode structures, these films show photovoltaic response with external quantum efficiencies of more than 34 percent near 490 nanometers. These efficiencies result from efficient photoinduced charge transfer between the hexabenzocoronene and perylene, as well as from effective transport of charges through vertically segregated perylene and hexabenzocoronene psystems. This development demonstrates that complex structures can be engineered from novel materials by means of simple solution-processing steps and may enable inexpensive, high-performance, thin-film photovoltaic technology
  •  
35.
  • Schwartz, Erik, et al. (författare)
  • "Helter-Skelter-Like" Perylene Polyisocyanopeptides
  • 2009
  • Ingår i: Chemistry: A European Journal. - : Wiley. - 1521-3765 .- 0947-6539. ; 15:11, s. 2536-2547
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on a combined experimental and computational investigation on the synthesis and thorough characterization of the structure of perylene-functionalized polyisocyanides. Spectroscopic analyses and extensive molecular dynamics studies revealed a well defined 4, helix in which the perylene molecules form four "helter skelter-like" overlapping pathways along which excitons and electrons can rapidly migrate. The well-defined polymer scaffold stabilized by hydrogen bonding, to which the chromophores are attached, accounts for the precise architectural definition, and molecular stiffness observed for these molecules. Molecular-dynamics studies showed that the chirality present in these polymers is expressed in the formation of stable right-handed helices. The formation of chiral supramolecular structures is further supported by the measured and calculated bisignated Cotton effect. The structural definition of the chromophores aligned in one direction along the backbone is highlighted by the extremely efficient exciton migration rates and charge densities measured with Transient Absorption Spectroscopy.
  •  
36.
  • Umair Hassan, Muhammad, et al. (författare)
  • Low Thresholds for a Nonconventional Polymer Blend-Amplified Spontaneous Emission and Lasing in F8(1-x):SYx System
  • 2016
  • Ingår i: Journal of Polymer Science Part B. - : WILEY-BLACKWELL. - 0887-6266 .- 1099-0488. ; 54:1, s. 15-21
  • Tidskriftsartikel (refereegranskat)abstract
    • A mixture of two polymer materials, poly (9,9-dioctylfluorene) (F8), and one of the poly(para-phenylenevinylene) derivatives, superyellow (SY) have been used to make F8(1-x):SYx polymer blend system. Under a 3-5 ns pulsed-laser excitation, this system showed excellent optical properties with low threshold values of approximate to 14 mJ/cm(2) and approximate to 8 mJ/cm(2) for amplified spontaneous emission and optically pumped lasing, respectively. The proposed system was also electroluminescent and an interesting candidate for future research on polymer injection lasers. (C) 2015 Wiley Periodicals, Inc.
  •  
37.
  • Wang, Heyong, et al. (författare)
  • Perovskite-molecule composite thin films for efficient and stable light-emitting diodes
  • 2020
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Although perovskite light-emitting diodes (PeLEDs) have recently experienced significant progress, there are only scattered reports of PeLEDs with both high efficiency and long operational stability, calling for additional strategies to address this challenge. Here, we develop perovskite-molecule composite thin films for efficient and stable PeLEDs. The perovskite-molecule composite thin films consist of in-situ formed high-quality perovskite nanocrystals embedded in the electron-transport molecular matrix, which controls nucleation process of perovskites, leading to PeLEDs with a peak external quantum efficiency of 17.3% and half-lifetime of approximately 100 h. In addition, we find that the device degradation mechanism at high driving voltages is different from that at low driving voltages. This work provides an effective strategy and deep understanding for achieving efficient and stable PeLEDs from both material and device perspectives.
  •  
38.
  • Wang, Nana, et al. (författare)
  • Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells
  • 2016
  • Ingår i: Nature Photonics. - : NATURE PUBLISHING GROUP. - 1749-4885 .- 1749-4893. ; 10:11, s. 699-
  • Tidskriftsartikel (refereegranskat)abstract
    • Organometal halide perovskites can be processed from solutions at low temperatures to form crystalline direct-bandgap semiconductors with promising optoelectronic properties(1-5). However, the efficiency of their electroluminescence is limited by non-radiative recombination, which is associated with defects and leakage current due to incomplete surface coverage(6-9). Here we demonstrate a solution-processed perovskite light-emitting diode (LED) based on self-organized multiple quantum wells (MQWs) with excellent film morphologies. The MQW-based LED exhibits a very high external quantum efficiency of up to 11.7%, good stability and exceptional highpower performance with an energy conversion efficiency of 5.5% at a current density of 100 mA cm(-2). This outstanding performance arises because the lower bandgap regions that generate electroluminescence are effectively confined by perovskite MQWs with higher energy gaps, resulting in very efficient radiative decay. Surprisingly, there is no evidence that the large interfacial areas between different bandgap regions cause luminescence quenching.
  •  
39.
  • Westenhoff, Sebastian, et al. (författare)
  • Anomalous energy transfer dynamics due to torsional relaxation in a conjugated polymer
  • 2006
  • Ingår i: Physical Review Letters. - 1079-7114. ; 97:16
  • Tidskriftsartikel (refereegranskat)abstract
    • In isolated conjugated polymers two explanations are in discussion for the redshift of the emission on a picosecond time scale-exciton energy transfer (EET) between conjugated segments along the chains and conformational changes of these segments themselves, i.e., torsional relaxation. In order to resolve this question we perform femtosecond time-resolved transient absorption measurements of the energy relaxation of poly[3-(2,5-dioctylphenyl) thiophene] in toluene solution. We show that torsional relaxation can be distinguished from EET by site-selectively exciting low-energy conjugated segments. We present a unified model that integrates EET and torsional dynamics. In particular, comparison to ultrafast depolarization measurements shows that torsional dynamics cannot be neglected when analyzing EET dynamics and furthermore reveals that the exciton extends itself by about 2 monomer units during torsional relaxation.
  •  
40.
  •  
41.
  • Westenhoff, Sebastian, 1978, et al. (författare)
  • Probing the morphology and energy landscape of blends of conjugated polymers with sub-10 nm resolution.
  • 2008
  • Ingår i: Physical review letters. - 0031-9007. ; 101:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We have investigated the charge generation dynamics in intimately mixed blends of polyfluorene copolymers optimized for photocurrent generation. Using femtosecond transient absorption spectroscopy, we find that the charge generation time is limited by exciton diffusion to the interface. Combined with the kinetics of exciton energy migration, the data reveal the blend morphology on a length scale of sub-10 nm. Furthermore, we demonstrate that excitons are guided efficiently to the interface, which is consistent with an accumulation of low energy sites at the heterojunction.
  •  
42.
  • Wieduwilt, Matthew J., et al. (författare)
  • Haploidentical vs sibling, unrelated, or cord blood hematopoietic cell transplantation for acute lymphoblastic leukemia
  • 2022
  • Ingår i: Blood Advances. - : American Society of Hematology. - 2473-9529 .- 2473-9537. ; 6:1, s. 339-357
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of haploidentical hematopoietic cell transplantation (HCT) using posttransplant cyclophosphamide (PTCy) for acute lymphoblastic leukemia (ALL) is being defined. We performed a retrospective, multivariable analysis comparing outcomes of HCT approaches by donor for adults with ALL in remission. The primary objective was to compare overall survival (OS) among haploidentical HCTs using PTCy and HLA-matched sibling donor (MSD), 8/8 HLAmatched unrelated donor (MUD), 7 /8 HLA-MUD, or umbilical cord blood (UCB) HCT. Comparing haploidentical HCT to MSD HCT, we found that OS, leukemia-free survival (LFS), nonrelapse mortality (NRM), relapse, and acute graft-versus-host disease (aGVHD) were not different but chronic GVHD (cGVHD) was higher in MSD HCT. Compared with MUD HCT, OS, LFS, and relapse were not different, but MUD HCT had increased NRM (hazard ratio [HR], 1.42; P = .02), grade 3 to 4 aGVHD (HR, 1.59; P = .005), and cGVHD. Compared with 7/8 UD HCT, LFS and relapse were not different, but 7/8 UD HCT had worse OS (HR, 1.38; P = .01) and increased NRM (HR, 2.13; P <_ .001), grade 3 to 4 aGVHD (HR, 1.86; P = .003), and cGVHD (HR, 1.72; P <_ .001). Compared with UCB HCT, late OS, late LFS, relapse, and cGVHD were not different but UCB HCT had worse early OS (<_18 months; HR, 1.93; P < .001), worse early LFS (HR, 1.40; P = .007) and increased incidences of NRM (HR, 2.08; P < .001) and grade 3 to 4 aGVHD (HR, 1.97; P < .001). Haploidentical HCT using PTCy showed no difference in survival but less GVHD compared with traditional MSD and MUD HCT and is the preferred alternative donor HCT option for adults with ALL in complete remission.
  •  
43.
  • Yim, Keng-Hoong, et al. (författare)
  • Phase-Separated Thin Film Structures for Efficient Polymer Blend Light-Emitting Diodes
  • 2010
  • Ingår i: NANO LETTERS. - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 10:2, s. 385-392
  • Tidskriftsartikel (refereegranskat)abstract
    • We report laterally and vertically phase-separated thin film structures in conjugated polymer blends created by polymer molecular weight variation. We find that micrometer-scale lateral phase separation is critical in achieving high initial device efficiency of light-emitting diodes, whereas improved balance of charge carrier mobilities and film thickness uniformity are important in maintaining high efficiency at high voltages. The optoelectronic properties of these blend thin films and devices are strongly influenced by the polymer chain order/disorder and the interface state formed at polymer/polymer heterojunctions.
  •  
44.
  • Yu, Hongling, et al. (författare)
  • Efficient and Tunable Electroluminescence from In Situ Synthesized Perovskite Quantum Dots
  • 2019
  • Ingår i: Small. - : WILEY-V C H VERLAG GMBH. - 1613-6810 .- 1613-6829. ; 15:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Semiconductor quantum dots (QDs) are among the most promising next-generation optoelectronic materials. QDs are generally obtained through either epitaxial or colloidal growth and carry the promise for solution-processed high-performance optoelectronic devices such as light-emitting diodes (LEDs), solar cells, etc. Herein, a straightforward approach to synthesize perovskite QDs and demonstrate their applications in efficient LEDs is reported. The perovskite QDs with controllable crystal sizes and properties are in situ synthesized through one-step spin-coating from perovskite precursor solutions followed by thermal annealing. These perovskite QDs feature size-dependent quantum confinement effect (with readily tunable emissions) and radiative monomolecular recombination. Despite the substantial structural inhomogeneity, the in situ generated perovskite QDs films emit narrow-bandwidth emission and high color stability due to efficient energy transfer between nanostructures that sweeps away the unfavorable disorder effects. Based on these materials, efficient LEDs with external quantum efficiencies up to 11.0% are realized. This makes the technologically appealing in situ approach promising for further development of state-of-the-art LED systems and other optoelectronic devices.
  •  
45.
  •  
46.
  • Zhang, Jiangbin, et al. (författare)
  • Efficient non-fullerene organic solar cells employing sequentially deposited donor-acceptor layers
  • 2018
  • Ingår i: Journal of Materials Chemistry A. - : ROYAL SOC CHEMISTRY. - 2050-7488 .- 2050-7496. ; 6:37, s. 18225-18233
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-fullerene acceptors (NFAs) have recently outperformed their fullerene counterparts in binary bulk-heterojunction (BHJ) organic solar cells (OSCs). Further development of NFA OSCs may benefit other novel OSC device structures that alter or extend the standard BHJ concept. Here, we report such a new processing route that forms a BHJ-like morphology between sequentially processed polymer donor and NFA with high power conversion efficiencies in excess of 10%. Both devices show similar charge generation and recombination behaviours, supporting formation of similar BHJ active layers. We correlate the approximate to 30 meV smaller open-circuit voltage in sq-BHJ devices to more substantial non-radiative recombination by voltage loss analysis. We also determine the exciton diffusion length of benchmark polymer PBDB-T to be 10 +/- 3 nm. Our results demonstrate high-efficiency OSC devices using sequential deposition method and provide new opportunities to further improve performance of state-of-the-art OSCs.
  •  
47.
  • Zhao, Baodan, et al. (författare)
  • High-efficiency perovskite-polymer bulk heterostructure light-emitting diodes
  • 2018
  • Ingår i: Nature Photonics. - : NATURE PUBLISHING GROUP. - 1749-4885 .- 1749-4893. ; 12:12, s. 783-
  • Tidskriftsartikel (refereegranskat)abstract
    • Perovskite-based optoelectronic devices are gaining much attention owing to their remarkable performance and low processing cost, particularly for solar cells. However, for perovskite light-emitting diodes, non-radiative charge recombination has limited the electroluminescence efficiency. Here we demonstrate perovskite-polymer bulk heterostructure light-emitting diodes exhibiting external quantum efficiencies of up to 20.1% (at current densities of 0.1-1 mA cm(-2)). The light-emitting diode emissive layer comprises quasi-two-dimensional and three-dimensional (2D/3D) perovskites and an insulating polymer. Photogenerated excitations migrate from quasi-2D to lower-energy sites within 1 ps, followed by radiative bimolecular recombination in the 3D regions. From near-unity external photoluminescence quantum efficiencies and transient kinetics of the emissive layer with and without charge-transport contacts, we find non-radiative recombination pathways to be effectively eliminated, consistent with optical models giving near 100% internal quantum efficiencies. Although the device brightness and stability (T-50 = 46 h in air at peak external quantum efficiency) require further improvement, our results indicate the significant potential of perovskite-based photon sources.
  •  
48.
  • Zhao, Baodan, et al. (författare)
  • High Open-Circuit Voltages in Tin-Rich Low-Bandgap Perovskite-Based Planar Heterojunction Photovoltaics
  • 2017
  • Ingår i: Advanced Materials. - : Wiley-VCH Verlagsgesellschaft. - 0935-9648 .- 1521-4095. ; 29
  • Tidskriftsartikel (refereegranskat)abstract
    • Low-bandgap CH3NH3(PbxSn1–x)I3 (0 ≤ x ≤ 1) hybrid perovskites (e.g., ≈1.5–1.1 eV) demonstrating high surface coverage and superior optoelectronic properties are fabricated. State-of-the-art photovoltaic (PV) performance is reported with power conversion efficiencies approaching 10% in planar heterojunction architecture with small (<450 meV) energy loss compared to the bandgap and high (>100 cm2 V−1s−1) intrinsic carrier mobilities.
  •  
49.
  • Zhao, Baodan, et al. (författare)
  • Light management for perovskite light-emitting diodes
  • 2023
  • Ingår i: Nature Nanotechnology. - : NATURE PORTFOLIO. - 1748-3387 .- 1748-3395. ; 18:9, s. 981-992
  • Forskningsöversikt (refereegranskat)abstract
    • Perovskite light-emitting diodes (LEDs) have reached external quantum efficiencies of over 20% for various colours, showing great potential for display and lighting applications. Despite the internal quantum efficiencies of the best-performing devices already approaching unity, around 80% of the internally generated photons are trapped in the devices and lose energy through a variety of lossy channels. Significant opportunities for improving efficiency and maximizing photon extraction lie in the effective management of light. In this Review we analyse light management strategies based on the intrinsic optical properties of the perovskite materials and the extrinsic properties related to device structures. These approaches should allow the external quantum efficiencies of perovskite LEDs to substantially exceed the conventional limits of planar organic LED devices. By revisiting lessons learned from organic LEDs and perovskite solar cells, we highlight possible directions of future research towards perovskite LEDs with ultrahigh efficiencies. This Review analyses the mechanisms of light extraction from perovskite light-emitting diodes and suggests new approaches towards ultrahigh electroluminescence efficiencies.
  •  
50.
  • Zhao, Lichen, et al. (författare)
  • Enabling full-scale grain boundary mitigation in polycrystalline perovskite solids
  • 2022
  • Ingår i: Science Advances. - : American Association for the Advancement of Science. - 2375-2548. ; 8:35
  • Tidskriftsartikel (refereegranskat)abstract
    • There exists a considerable density of interaggregate grain boundaries (GBs) and intra-aggregate GBs in polycrystalline perovskites. Mitigation of intra- aggregate GBs is equally notable to that of interaggregate GBs as intra-aggregate GBs can also cause detrimental effects on the photovoltaic performances of perovskite solar cells (PSCs). Here, we demonstrate full-scale GB mitigation ranging from nanoscale intra-aggregate to submicron-scale interaggregate GBs, by modulating the crystallization kinetics using a judiciously designed brominated arylamine trimer. The optimized GB-mitigated perovskite films exhibit reduced nonradiative recombination, and their corresponding mesostructured PSCs show substantially enhanced device efficiency and long-term stability under illumination, humidity, or heat stress. The versatility of our strategy is also verified upon applying it to different categories of PSCs. Our discovery not only specifies a rarely addressed perspective concerning fundamental studies of perovskites at nanoscale but also opens a route to obtain high-quality solution-processed polycrystalline perovskites for high-performance optoelectronic devices.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 51
Typ av publikation
tidskriftsartikel (48)
forskningsöversikt (3)
Typ av innehåll
refereegranskat (47)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Friend, Richard H. (38)
Greenham, Neil C. (16)
Gao, Feng (14)
Rao, Akshay (9)
Pearson, Andrew J. (5)
Wang, Jianpu (5)
visa fler...
Liu, Xiaoke (5)
Ducati, Caterina (4)
Dowland, Simon (4)
Xiao, James (4)
Zhang, Zhilong (4)
Westenhoff, Sebastia ... (4)
Bai, Sai (4)
Abdi-Jalebi, Mojtaba (3)
Philippe, Bertrand, ... (3)
Alsari, Mejd (3)
Lilliu, Samuele (3)
Rensmo, Håkan (3)
Divitini, Giorgio (3)
Stranks, Samuel D. (3)
Anthony, John E. (3)
Huang, Wei (3)
Beljonne, David (3)
Jin, Yizheng (3)
Bakulin, Artem A. (3)
Xu, Weidong (3)
Dar, M. Ibrahim (2)
Sadhanala, Aditya (2)
Gratzel, Michael (2)
Cacovich, Stefania (2)
Richter, Johannes M. (2)
Liu, Yang (2)
Yartsev, Arkady (2)
Panas, Itai, 1959 (2)
Kotarba, Andrzej (2)
Campbell, Charles (2)
Budden, Peter (2)
Gao, Feng, 1981- (2)
Bao, Chunxiong (2)
Pennington, Bruce (2)
Byrne, Brian (2)
Samuelsson, Stefan (2)
Olson, Richard (2)
Friend, Angela (2)
Willcutt, Eric (2)
Huettner, Sven (2)
Behrends, Jan (2)
Corma, Avelino (2)
Westenhoff, Sebastia ... (2)
Brown, Tom (2)
visa färre...
Lärosäte
Linköpings universitet (24)
Uppsala universitet (15)
Göteborgs universitet (5)
Kungliga Tekniska Högskolan (3)
Lunds universitet (3)
Chalmers tekniska högskola (2)
visa fler...
Stockholms universitet (1)
Karlstads universitet (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (51)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (41)
Teknik (8)
Medicin och hälsovetenskap (2)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy