SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Garcia David Vállez) "

Sökning: WFRF:(Garcia David Vállez)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bollack, Ariane, et al. (författare)
  • Investigating reliable amyloid accumulation in Centiloids : Results from the AMYPAD Prognostic and Natural History Study
  • 2024
  • Ingår i: Alzheimer's and Dementia. - 1552-5260 .- 1552-5279. ; 20:5, s. 3429-3441
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: To support clinical trial designs focused on early interventions, our study determined reliable early amyloid-β (Aβ) accumulation based on Centiloids (CL) in pre-dementia populations. METHODS: A total of 1032 participants from the Amyloid Imaging to Prevent Alzheimer's Disease–Prognostic and Natural History Study (AMYPAD-PNHS) and Insight46 who underwent [18F]flutemetamol, [18F]florbetaben or [18F]florbetapir amyloid-PET were included. A normative strategy was used to define reliable accumulation by estimating the 95th percentile of longitudinal measurements in sub-populations (NPNHS = 101/750, NInsight46 = 35/382) expected to remain stable over time. The baseline CL threshold that optimally predicts future accumulation was investigated using precision-recall analyses. Accumulation rates were examined using linear mixed-effect models. RESULTS: Reliable accumulation in the PNHS was estimated to occur at >3.0 CL/year. Baseline CL of 16 [12,19] best predicted future Aβ-accumulators. Rates of amyloid accumulation were tracer-independent, lower for APOE ε4 non-carriers, and for subjects with higher levels of education. DISCUSSION: Our results support a 12–20 CL window for inclusion into early secondary prevention studies. Reliable accumulation definition warrants further investigations.
  •  
2.
  • Pemberton, Hugh G., et al. (författare)
  • Quantification of amyloid PET for future clinical use : a state-of-the-art review
  • 2022
  • Ingår i: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 49:10, s. 3508-3528
  • Forskningsöversikt (refereegranskat)abstract
    • Amyloid-β (Aβ) pathology is one of the earliest detectable brain changes in Alzheimer’s disease (AD) pathogenesis. The overall load and spatial distribution of brain Aβ can be determined in vivo using positron emission tomography (PET), for which three fluorine-18 labelled radiotracers have been approved for clinical use. In clinical practice, trained readers will categorise scans as either Aβ positive or negative, based on visual inspection. Diagnostic decisions are often based on these reads and patient selection for clinical trials is increasingly guided by amyloid status. However, tracer deposition in the grey matter as a function of amyloid load is an inherently continuous process, which is not sufficiently appreciated through binary cut-offs alone. State-of-the-art methods for amyloid PET quantification can generate tracer-independent measures of Aβ burden. Recent research has shown the ability of these quantitative measures to highlight pathological changes at the earliest stages of the AD continuum and generate more sensitive thresholds, as well as improving diagnostic confidence around established binary cut-offs. With the recent FDA approval of aducanumab and more candidate drugs on the horizon, early identification of amyloid burden using quantitative measures is critical for enrolling appropriate subjects to help establish the optimal window for therapeutic intervention and secondary prevention. In addition, quantitative amyloid measurements are used for treatment response monitoring in clinical trials. In clinical settings, large multi-centre studies have shown that amyloid PET results change both diagnosis and patient management and that quantification can accurately predict rates of cognitive decline. Whether these changes in management reflect an improvement in clinical outcomes is yet to be determined and further validation work is required to establish the utility of quantification for supporting treatment endpoint decisions. In this state-of-the-art review, several tools and measures available for amyloid PET quantification are summarised and discussed. Use of these methods is growing both clinically and in the research domain. Concurrently, there is a duty of care to the wider dementia community to increase visibility and understanding of these methods.
  •  
3.
  • Quenon, Lisa, et al. (författare)
  • Amyloid-PET imaging predicts functional decline in clinically normal individuals
  • 2024
  • Ingår i: Alzheimer's Research and Therapy. - 1758-9193. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: There is good evidence that elevated amyloid-β (Aβ) positron emission tomography (PET) signal is associated with cognitive decline in clinically normal (CN) individuals. However, it is less well established whether there is an association between the Aβ burden and decline in daily living activities in this population. Moreover, Aβ-PET Centiloids (CL) thresholds that can optimally predict functional decline have not yet been established. Methods: Cross-sectional and longitudinal analyses over a mean three-year timeframe were performed on the European amyloid-PET imaging AMYPAD-PNHS dataset that phenotypes 1260 individuals, including 1032 CN individuals and 228 participants with questionable functional impairment. Amyloid-PET was assessed continuously on the Centiloid (CL) scale and using Aβ groups (CL < 12 = Aβ-, 12 ≤ CL ≤ 50 = Aβ-intermediate/Aβ±, CL > 50 = Aβ+). Functional abilities were longitudinally assessed using the Clinical Dementia Rating (Global-CDR, CDR-SOB) and the Amsterdam Instrumental Activities of Daily Living Questionnaire (A-IADL-Q). The Global-CDR was available for the 1260 participants at baseline, while baseline CDR-SOB and A-IADL-Q scores and longitudinal functional data were available for different subsamples that had similar characteristics to those of the entire sample. Results: Participants included 765 Aβ- (61%, Mdnage = 66.0, IQRage = 61.0–71.0; 59% women), 301 Aβ± (24%; Mdnage = 69.0, IQRage = 64.0–75.0; 53% women) and 194 Aβ+ individuals (15%, Mdnage = 73.0, IQRage = 68.0–78.0; 53% women). Cross-sectionally, CL values were associated with CDR outcomes. Longitudinally, baseline CL values predicted prospective changes in the CDR-SOB (bCL*Time = 0.001/CL/year, 95% CI [0.0005,0.0024], p =.003) and A-IADL-Q (bCL*Time = -0.010/CL/year, 95% CI [-0.016,-0.004], p =.002) scores in initially CN participants. Increased clinical progression (Global-CDR > 0) was mainly observed in Aβ+ CN individuals (HRAβ+ vs Aβ- = 2.55, 95% CI [1.16,5.60], p =.020). Optimal thresholds for predicting decline were found at 41 CL using the CDR-SOB (bAβ+ vs Aβ- = 0.137/year, 95% CI [0.069,0.206], p <.001) and 28 CL using the A-IADL-Q (bAβ+ vs Aβ- = -0.693/year, 95% CI [-1.179,-0.208], p =.005). Conclusions: Amyloid-PET quantification supports the identification of CN individuals at risk of functional decline. Trial registration: The AMYPAD PNHS is registered at www.clinicaltrialsregister.eu with the EudraCT Number: 2018-002277-22.
  •  
4.
  • Timmers, Elze R., et al. (författare)
  • Serotonergic system in vivo with [11C]DASB PET scans in GTP-cyclohydrolase deficient dopa-responsive dystonia patients
  • 2022
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • GTP-cyclohydrolase deficiency in dopa-responsive dystonia (DRD) patients impairs the biosynthesis of dopamine, but also of serotonin. The high prevalence of non-motor symptoms suggests involvement of the serotonergic pathway. Our study aimed to investigate the serotonergic system in vivo in the brain of`DRD patients and correlate this to (non-)motor symptoms. Dynamic [11C]DASB PET scans, a marker of serotonin transporter availability, were performed. Ten DRD, 14 cervical dystonia patients and 12 controls were included. Univariate- and network-analysis did not show differences in binding between DRD patients compared to controls. Sleep disturbances were correlated with binding in the dorsal raphe nucleus (all participants: rs = 0.45, p = 0.04; patients: rs = 0.64, p = 0.05) and participants with a psychiatric disorder had a lower binding in the hippocampus (all participants: p = 0.00; patients: p = 0.06). Post-hoc analysis with correction for psychiatric co-morbidity showed a significant difference in binding in the hippocampus between DRD patients and controls (p = 0.00). This suggests that psychiatric symptoms might mask the altered serotonergic metabolism in DRD patients, but definite conclusions are difficult as psychiatry is considered part of the phenotype. We hypothesize that an imbalance between different neurotransmitter systems is responsible for the non-motor symptoms, and further research investigating multiple neurotransmitters and psychiatry in DRD is necessary.
  •  
5.
  • Tranfa, Mario, et al. (författare)
  • Alzheimer's Disease and Small Vessel Disease Differentially Affect White Matter Microstructure
  • 2024
  • Ingår i: ANNALS OF CLINICAL AND TRANSLATIONAL NEUROLOGY. - 2328-9503. ; 11:6, s. 1541-1556
  • Tidskriftsartikel (refereegranskat)abstract
    • ObjectiveAlzheimer's disease (AD) and cerebral small vessel disease (cSVD), the two most common causes of dementia, are characterized by white matter (WM) alterations diverging from the physiological changes occurring in healthy aging. Diffusion tensor imaging (DTI) is a valuable tool to quantify WM integrity non-invasively and identify the determinants of such alterations. Here, we investigated main effects and interactions of AD pathology, APOE-epsilon 4, cSVD, and cardiovascular risk on spatial patterns of WM alterations in non-demented older adults.MethodsWithin the prospective European Prevention of Alzheimer's Dementia study, we selected 606 participants (64.9 +/- 7.2 years, 376 females) with baseline cerebrospinal fluid samples of amyloid beta 1-42 and p-Tau181 and MRI scans, including DTI scans. Longitudinal scans (mean follow-up time = 1.3 +/- 0.5 years) were obtained in a subset (n = 223). WM integrity was assessed by extracting fractional anisotropy and mean diffusivity in relevant tracts. To identify the determinants of WM disruption, we performed a multimodel inference to identify the best linear mixed-effects model for each tract.ResultsAD pathology, APOE-epsilon 4, cSVD burden, and cardiovascular risk were all associated with WM integrity within several tracts. While limbic tracts were mainly impacted by AD pathology and APOE-epsilon 4, commissural, associative, and projection tract integrity was more related to cSVD burden and cardiovascular risk. AD pathology and cSVD did not show any significant interaction effect.InterpretationOur results suggest that AD pathology and cSVD exert independent and spatially different effects on WM microstructure, supporting the role of DTI in disease monitoring and suggesting independent targets for preventive medicine approaches.
  •  
6.
  • Wink, Alle Meije, et al. (författare)
  • Quantifying AD-related brain amyloid with linearised progression models : model-based vs. data-based.
  • 2022
  • Ingår i: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 18:S1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Brain amyloid-β (Aβ) is the pathological hallmark of Alzheimer's disease (AD). In logistic disease models, Aβ accumulation is a sigmoid function of time-since-disease-onset (TSDO) (figure 1). Previous positron emission tomography (PET)-based models vary accumulation onset(t50) and duration(r) globally; capacity(K) and baseline(NS) regionally (Whittington2018). We confirm existing approaches and propose a more powerful ICA-based approach to quantify disease severity and estimate TSDO. Method: We used 1071 18F-florbetapir standard uptake value ratio (SUVR) images from the ADNI-2 study (adni.loni.usc.edu/data-samples/data-types/pet). Images were mapped into MNI space. Averages were extracted using the Harvard-Oxford brain-atlas. Whole-brain tracer-specific sigmoid parameters (Jack2013) obtained from the literature were used to estimate TSDO. Of 16 models of regional Aβ accumulation (each of the 4 regional sigmoid parameters varied either regionally or globally), the optimal Bayesian information criterion was found with global t50 and r, and regional NS and K (figure 1) with global values r=6.16y and t50=4.10y. Linearised maps of NS and K were obtained by regressing the SUVR maps onto the global sigmoid. We also estimated these maps as independent components, using a 2-component ICA on the SUVR maps. Both outcomes were used to quantify Aβ accumulation from SUVR images as weighting factors of the accumulation map. We compared the weights from the logistic model and the ICA model in ADNI, using effect size measured with Hedges' g between cognitively normal (CN), subjective memory complaints (SMC), mild cognitive impairment (EMCI/MCI/LMCI) and AD groups. We compared 3 longitudinal visits (N=112) in the OASIS-3 study (see www.oasis-brains.org) with both methods, global SUVR and Centiloid (Klunk2015) using 11C-PiB PET SUVR images. Result: Maps of accumulation capacity from both models had spatial correlation of 0.86 (figure 2); baseline maps had spatial correlation of 0.95. Hedges' g between ADNI groups was 2.25 for K, and 2.42 for ICA (1.46 for global SUVR). In OASIS-3, Hedges' g between visits was 1.24 for K, 1.46 for ICA (global SUVR 0.15, Centiloid 0.4). Conclusion: We demonstrate that linear accumulation models can be used to quantify brain Aβ with PET; maps obtained by ICA yield larger effect sizes than the logistic method for differentiating groups and measuring changes between visits.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy