SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Helmfors Henrik) "

Sökning: WFRF:(Helmfors Henrik)

  • Resultat 1-17 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Eriksson, Jonas, et al. (författare)
  • A High-Throughput Kinetic Assay for RNA-Cleaving Deoxyribozymes
  • 2015
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Determining kinetic constants is important in the field of RNA-cleaving deoxyribozymes (DNAzymes). Using todays conventional gel assays for DNAzyme assays is time-consuming and laborious. There have been previous attempts at producing new and improved assays; however these have drawbacks such as incompatibility with structured DNAzymes, enzyme or substrate modifications and increased cost. Here we present a new method for determining single-turnover kinetics of RNA-cleaving DNAzymes in real-time and in a high-throughput fashion. The assay is based on an intercalating fluorescent dye, PicoGreen, with high specificity for double-stranded DNA and heteroduplex DNA-RNA in this case formed between the DNAzyme and the target RNA. The fluorescence decreases as substrate is converted to product and is released from the enzyme. Using a Flexstation II multi-mode plate reader with built in liquid handling we could automate parts of the assay. This assay gives the possibility to determine single-turnover kinetics for up to 48 DNAzymes simultaneously. As the fluorescent probe is extrinsic there is no need for enzyme or substrate modifications, making this method less costly compared to other methods. The main novelty of this assay is the possibility of using full-length mRNA as the DNAzyme target.
  •  
2.
  • Ezzat, Kariem, et al. (författare)
  • Scavenger receptor-mediated uptake of cell-penetrating peptide nanoparticles with oligonucleotides
  • 2012
  • Ingår i: The FASEB Journal. - : Wiley. - 0892-6638 .- 1530-6860. ; 26:3, s. 1172-1180
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell-penetrating peptides (CPPs) are shortcationic peptides that penetrate cells by interacting withthe negatively charged plasma membrane; however, thedetailed uptake mechanism is not clear. In contrary to theconventional mode of action of CPPs, we show here thata CPP, PepFect14 (PF14), forms negatively charged nanocomplexeswith oligonucleotides and their uptake is mediatedby class-A scavenger receptors (SCARAs). Specificinhibitory ligands of SCARAs, such as fucoidin, polyinosinicacid, and dextran sulfate, totally inhibit the activityof PF14-oligonucleotide nanocomplexes in the HeLapLuc705 splice-correction cell model, while nonspecific,chemically related molecules do not. Furthermore, RNAinterference (RNAi) knockdown of SCARA subtypes(SCARA3 and SCARA5) that are expressed in this cell lineled to a significant reduction of the activity to <50%. Inline with this, immunostaining shows prevalent colocalizationof the nanocomplexes with the receptors, and electronmicroscopy images show no binding or internalizationof the nanocomplexes in the presence of theinhibitory ligands. Interestingly, naked oligonucleotidesalso colocalize with SCARAs when used at high concentrations.These results demonstrate the involvement ofSCARA3 and SCARA5 in the uptake of PF14-oligonucleotidenanocomplexes and suggest for the first time thatsome CPP-based systems function through scavenger receptors,which could yield novel possibilities to understandand improve the transfection by CPPs.
  •  
3.
  • Gestin, Maxime, 1990-, et al. (författare)
  • Effect of small molecule signaling in PepFect14 transfection
  • 2020
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell-penetrating peptides can be used to deliver oligonucleotide-based cargoes into cells. Previous studies have shown that the use of small molecule drugs could be an efficient method to increase the efficacy of delivery of oligonucleotides by cell-penetrating peptides either as targeting agents that can be used in formulation with the cell-penetrating peptide and its cargo or as cell signaling modulators that facilitates the cellular uptake of the treatment. This study presents two aims. The first aim is the identification of small molecule drugs that would induce a synergic effect on the transfection of splice correcting oligonucleotides assisted by PepFect14. The second aim is to identify the mechanisms behind the effect of small molecule drugs modulation of cell-penetrating peptide assisted transfection of oligonucleotides. Through an optimized, high-throughput luciferase assay for short oligonucleotide delivery using cell-penetrating peptides, and the simultaneous addition of a small molecule drug library, we show that three small molecule drugs (MPEP, VU0357121 and Ciproxifan) induced an increase in the transfection efficacy of PepFect14 in complex with a short single-stranded oligonucleotide in HeLa pLuc705 cells. These three drugs are described in the literature to be highly specific for their respective target receptors. However, none of those receptors are expressed in our cell line, indicating a yet non-described pathway of action for these small molecules. We show that the indicated small molecules, without interfering with the particles formed by PepFect14 and the oligonucleotide, interfere via still unidentified interactions in cell signaling, leading to an up-regulation of endocytosis and a higher efficacy in the delivery of short splice correcting oligonucleotides in complex with PepFect14.
  •  
4.
  • Helmfors, Henrik (författare)
  • Cell-penetrating peptides : an uptake mechanism & a new endosomolytic peptide
  • 2013
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Peptide-based drugs have slowly begun migrating from laboratories into pharmacies and now there are several on the market. However, currently only one gene based therapy that is relies on a viral delivery vector has been approved. The long-term goal of our research is to leverage the cell-penetrating peptide (CPP) technology into a potent, safe and simple delivery vector for oligonucleotide (ON) based therapies.Cell-penetrating peptides have been actively researched for more than 20 years, and many CPPs have been discovered. However, it is not fully understood how the peptides are able to enter cells. In this thesis we present a novel receptor for CPP:ON complexes. Pharmacological inhibition and siRNA knockdown of the class A scavenger receptors (SCARAs) demonstrate that these receptors are the main pathway by which CPP:ON complexes are taken up. As the intracellular fate of particles taken up by (receptor mediated) endocytosis is entrapment in endosomes this thesis also presents a new peptide for ON delivery that has endosomolytic properties. Additionally this new peptide (PepFect 15) is also taken up via receptor-mediated endocytosis by the SCARAs. 
  •  
5.
  • Helmfors, Henrik, 1981- (författare)
  • Cell-penetrating peptides : Uptake mechanism and the role of receptors
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Genes are the major regulators of biological processes in every living thing. Problems with gene regulation can cause serious problems for the organism; for example, most cancers have some kind of genetic component. Regulation of biological processes using oligonucleotides can potentially be a therapy for any ailment, not just cancer. The problem so far has been that the targets for oligonucleotide-based therapies all reside on the inside of cells, because the cellular plasma membrane is normally impermeable to large and charged molecules (such as oligonucleotides) a delivery method is needed. Cell-penetrating peptides are a class of carrier molecules that are able to induce the cellular membrane into taking them and their cargo molecules into the cells. Understanding how and why cell-penetrating peptides work is one of the first and most important steps towards improving them to the point where they become useful as carriers for oligonucleotide-based therapies. This thesis is comprised of four scientific papers that are steps toward finding an uptake mechanism for cell-penetrating peptides that have been non-covalently complexed with oligonucleotides. In Paper I, we show that the scavenger receptors are responsible for uptake of the cell-penetrating peptide PepFect14 in complex with a short single-stranded oligonucleotide. Paper II expands upon this first finding and shows that the same receptors are key players in the uptake of several other cell-penetrating peptides that have been complexed with either, long double-stranded plasmid DNA or short double-stranded RNA. Paper III improves the luciferase-based assay for short oligonucleotide delivery by increasing the throughput 4-fold and reducing the cost by 95 %. The fourth manuscript uses the assay developed in paper III to investigate the effects on cell-penetrating peptide-mediated delivery by each of the constituents of a 264-member library of ligands for G-protein coupled receptors. We identify three ligands that dose-dependently increase the luciferase expression compared to control cells. These three ligands are one positive-, one negative allosteric modulator of metabotropic glutamate receptor 5 and one antagonist of histamine receptor 3.
  •  
6.
  • Helmfors, Henrik, et al. (författare)
  • GPCR-ligands influence the short oligonucleotide transfection efficacy of the cell-penetrating peptide; Pepfect14
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Cell-penetrating peptides can be used to deliver oligonucleotide-based cargoes into cells. We have previously shown that inhibition or knock-down of scavenger receptor type A results in a decreased oligonucleotide uptake. The remaining question is if the scavenger receptors are the only cell-surface receptors that can affect the uptake. By utilizing an optimized, higher throughput assay, for short oligonucleotide delivery using cell-penetrating peptides, and simultaneously adding a G-protein coupled receptor-ligand library. We show that two allosteric modulators (MPEP and VU 0357121) of metabotropic glutamate receptor type 5 and one histamine H3 receptor antagonist (Ciproxifan) have effects that can increase the transfection efficacy of PepFect in complex with a short single stranded oligonucleotide. Five different estrogen receptor ligands have negative effects on the transfection efficacy.
  •  
7.
  • Helmfors, Henrik, et al. (författare)
  • Optimized luciferase assay for cell-penetrating peptide-mediated delivery of short oligonucleotides
  • 2015
  • Ingår i: Analytical Biochemistry. - : Elsevier BV. - 0003-2697 .- 1096-0309. ; 484, s. 136-142
  • Tidskriftsartikel (refereegranskat)abstract
    • An improved assay for screening for the intracellular delivery efficacy of short oligonucleotides using cell-penetrating peptides is suggested. This assay is an improvement over previous assays that use luciferase reporters for cell-penetrating peptides because it has been scaled up from a 24-well format to a 96-well format and no longer relies on a luciferin reagent that has been commercially sourced. In addition, the homemade luciferin reagent is useful in multiple cell lines and in different assays that rely on altering the expression of luciferase. To establish a new protocol, the composition of the luciferin reagent was optimized for both signal strength and longevity by multiple two-factorial experiments varying the concentrations of adenosine triphosphate, luciferin, coenzyme A, and dithiothreitol. In addition, the optimal conditions with respect to cell number and time of transfection for both short interfering RNA (siRNA) and splice-correcting oligonucleotides (SCOs) are established. Optimal transfection of siRNA and SCOs was achieved using the reverse transfection method where the oligonucleotide complexes are already present in the wells before the cells are plated. Z' scores were 0.73 for the siRNA assay and 0.71 for the SCO assay, indicating that both assays are suitable for high-throughput screening.
  •  
8.
  • Helmfors, Henrik, et al. (författare)
  • Recent developments in applications of cell penetrating peptides uptake mechanisms and oligonucleotide delivery
  • 2012
  • Ingår i: Chimica oggi. - 0392-839X .- 1973-8250. ; 30:2, s. 10-12
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we report on recent developments in cell-penetrating peptide mediated delivery of siRNA and other oligonucleotides. We also report on the latest discoveries regarding the debated uptake mechanism of cell-penetrating peptides. For the first time evidence of a cell surface receptor involvement in the uptake of cell-penetrating peptide/oligonucleotide complexes has been described, indicating that properties of the cargo are likely crucial for which pathway is responsible for uptake.
  •  
9.
  • Helmfors, Henrik, et al. (författare)
  • SCARA Involvement in the Uptake of Nanoparticles Formed by Cell-Penetrating Peptides
  • 2015
  • Ingår i: Cell-Penetrating Peptides. - New York, NY : Springer-Verlag New York. - 9781493928057 - 9781493928064 ; , s. 163-174
  • Bokkapitel (refereegranskat)abstract
    • The investigation of uptake mechanisms for cell-penetrating peptides (CPPs) is and has been an ongoing project for as long as the peptides have been known, a time period that now spans over two decades. The ultimate answer is yet to be revealed and the current understanding is that no "one" mechanism will ever be found. The reason for this is that the uptake mechanism seems to be dependent on a multitude of factors that include which CPP, what cells are used, whether or not there is cargo and what the cargo is. CPPs are capable of delivering a variety of bio-macromolecules that are by themselves unable to enter into cells. Our group has reported on many different peptides in recent years, many aimed at delivering various oligonucleotide-based cargoes. These peptides have utilized the inherent positive charge of the peptides and some rationally designed modifications to non-covalently complex oligonucleotides and bring them into cells. In this chapter, we present a brief overview of the current proposals for the uptake mechanisms of CPPs and describe methods for detecting and evaluating the role of scavenger receptor class A receptors in the uptake of non-covalent cell-penetrating peptide:oligonucleotide complexes.
  •  
10.
  • Helmfors, Linda, et al. (författare)
  • A protective role of lysozyme in Alzheimer disease
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Alzheimer disease (AD) is a devastating neurodegenerative disorder where extracellular plaques composed of amyloid β (Aβ) peptides and neuroinflammation are some of the main hallmarks of the disease. Activated microglial cells, which are the resident macrophages in the central nervous system, are suggested to trigger the inflammation response in AD. To discover neuroinflammation biomarkers would be important to reveal the pathological mechanisms of AD and develop therapies that target inflammation mediators. Lysozyme is part of the innate immune system and is secreted from macrophages during various inflammation conditions. However, the involvement of lysozyme in AD pathology has not been explored previously. We have discovered that lysozyme is up-regulated in cerebrospinal fluid from AD patients. Cells exposed to Aβ increased the expression of lysozyme indicating that Aβ might be responsible for the upregulation of lysozyme detected in cerebrospinal fluid. In vitro studies revealed that lysozyme binds to monomeric Aβ1-42 and alters the aggregation pathway counteracting formation of toxic Aβ species. In a newly developed Drosophila model, co-expression of lysozyme with Aβ in brain neurons reduced the formation of insoluble Aβ species, prolonged the survival and improved the activity of the double transgenic flies compared to flies only expressing Aβ. Our findings identify lysozyme as a modulator of Aβ aggregation and toxicity and our discoveries has the potential to be used for development of new treatment strategies and to use lysozyme as a biomarker for AD.
  •  
11.
  • Helmfors, Linda, et al. (författare)
  • Protective properties of lysozyme on β-amyloid pathology : implications for Alzheimer disease
  • 2015
  • Ingår i: Neurobiology of Disease. - : Elsevier. - 0969-9961 .- 1095-953X. ; 83, s. 122-133
  • Tidskriftsartikel (refereegranskat)abstract
    • The hallmarks of Alzheimer disease are amyloid-β plaques and neurofibrillary tangles accompanied by signs of neuroinflammation. Lysozyme is a major player in the innate immune system and has recently been shown to prevent the aggregation of amyloid-β1-40 in vitro. In this study we found that patients with Alzheimer disease have increased lysozyme levels in the cerebrospinal fluid and lysozyme co-localized with amyloid-β in plaques. In Drosophila neuronal co-expression of lysozyme and amyloid-β1-42 reduced the formation of soluble and insoluble amyloid-β species, prolonged survival and improved the activity of amyloid-β1-42 transgenic flies. This suggests that lysozyme levels rise in Alzheimer disease as a compensatory response to amyloid-β increases and aggregation. In support of this, in vitro aggregation assays revealed that lysozyme associates with amyloid-β1-42 and alters its aggregation pathway to counteract the formation of toxic amyloid-β species. Overall, these studies establish a protective role for lysozyme against amyloid-β associated toxicities and identify increased lysozyme in patients with Alzheimer disease. Therefore, lysozyme has potential as a new biomarker as well as a therapeutic target for Alzheimer disease.
  •  
12.
  • Kim, Tae Kyung, et al. (författare)
  • Dendritic Glutamate Receptor mRNAs Show Contingent Local Hotspot-Dependent Translational Dynamics
  • 2013
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 5:1, s. 114-125
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein synthesis in neuronal dendrites underlies long-term memory formation in the brain. Local translation of reporter mRNAs has demonstrated translation in dendrites at focal points called translational hotspots. Various reports have shown that hundreds to thousands of mRNAs are localized to dendrites, yet the dynamics of translation of multiple dendritic mRNAs has remained elusive. Here, we show that the protein translational activities of two dendritically localized mRNAs are spatiotemporally complex but constrained by the translational hotspots in which they are colocalized. Cotransfection of glutamate receptor 2 (GluR2) and GluR4 mRNAs (engineered to encode different fluorescent proteins) into rat hippocampal neurons demonstrates a heterogeneous distribution of translational hotspots for the two mRNAs along dendrites. Stimulation with s-3,5-dihydroxy-phenylglycine modifies the translational dynamics of both of these RNAs in a complex saturable manner. These results suggest that the translational hotspot is a primary structural regulator of the simultaneous yet differential translation of multiple mRNAs in the neuronal dendrite.
  •  
13.
  • Lindberg, Staffan, 1979-, et al. (författare)
  • A convergent uptake route for peptide- and polymer-based nucleotide delivery systems
  • 2015
  • Ingår i: Journal of Controlled Release. - : Elsevier BV. - 0168-3659 .- 1873-4995. ; 206, s. 58-66
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell-penetrating peptides (CPPs) have been used as vehicles to deliver various cargos into cells and are promising as tools to deliver therapeutic biomolecules such as oligonucleotides both in vitro and in vivo. CPPs are positively charged and it is believed that CPPs deliver their cargo in a receptor-independent manner by interactingwith the negatively charged plasmamembrane and thereby inducing endocytosis. In this study we examine the mechanism of uptake of several different, well known, CPPs that form complexes with oligonucleotides.We show that these CPP:oligonucleotide complexes are negatively charged in transfection-media and their uptake is mediated by class A scavenger receptors (SCARA). These receptors are known to promiscuously bind to, and mediate uptake of poly-anionic macromolecules. Uptake of CPP:oligonucleotide complexes was abolished using pharmacological SCARA inhibitors as well as siRNA-mediated knockdown of SCARA. Additionally, uptake of CPP:oligonucleotide was significantly increased by transiently overexpressing SCARA. Furthermore, SCARA inhibitors also blocked internalization of cationic polymer:oligonucleotide complexes.Our results demonstrate that the previous held belief that CPPs act receptor independently does not hold true for CPP:oligonucleotide complexes, as scavenger receptor class A (SCARA) mediates the uptake of all the examined CPP:oligonucleotide complexes in this study.
  •  
14.
  •  
15.
  • Lindberg, Staffan, 1979-, et al. (författare)
  • PepFect15, a novel endosomolytic cell-penetrating peptide for oligonucleotide delivery via scavenger receptors
  • 2012
  • Ingår i: International Journal of Pharmaceutics. - : Elsevier BV. - 0378-5173 .- 1873-3476. ; 441:1-2, s. 242-247
  • Tidskriftsartikel (refereegranskat)abstract
    • Gene-regulatory biomolecules such as splice-correcting oligonucleotides and anti-microRNA oligonucleotides are important tools in the struggle to understand and treat genetic disorders caused by defective gene expression or aberrant splicing. However, oligonucleotides generally suffer from low bioavailability, hence requiring efficient and non-toxic delivery vectors to reach their targets. Cell-penetrating peptides constitute a promising category of carrier molecules for intracellular delivery of bioactive cargo. In this study we present a novel cell-penetrating peptide, PepFect15, comprising the previously reported PepFect14 peptide modified with endosomolytic trifluoromethylquinoline moieties to facilitate endosomal escape. Pepfect15 efficiently delivers both splice-correcting oligonucleotides and anti-microRNA oligonucleotides into cells through a non-covalent complexation strategy. To our knowledge this is the first work that describes peptide-mediated anti-microRNA delivery. The peptide and its cargo form stable, negatively charged nanoparticles that are taken up by cells largely through scavenger receptor type A mediated endocytosis.
  •  
16.
  • Muñoz-Alarcón, Andrés, et al. (författare)
  • Cell-penetrating peptide fusion proteins
  • 2013
  • Ingår i: Fusion Protein Technologies for Biopharmaceuticals. - Hoboken, N.J. : John Wiley & Sons. - 9780470646274 - 9781118354599 ; , s. 397-411
  • Bokkapitel (refereegranskat)
  •  
17.
  • Sandin, Linnea, et al. (författare)
  • Beneficial effects of increased lysozyme levels in Alzheimer’s disease modelled in Drosophila melanogaster
  • 2016
  • Ingår i: The FEBS Journal. - : John Wiley & Sons. - 1742-464X .- 1742-4658. ; 283:19, s. 3508-3522
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic polymorphisms of immune genes that associate with higher risk to develop Alzheimer’s disease (AD) have led to an increased research interest on the involvement of the immune system in AD pathogenesis. A link between amyloid pathology and immune gene expression was suggested in a genome-wide gene expression study of transgenic amyloid mouse models. In this study, the gene expression of lysozyme, a major player in the innate immune system, was found to be increased in a comparable pattern as the amyloid pathology developed in transgenic mouse models of AD. A similar pattern was seen at protein levels of lysozyme in human AD brain and CSF, but this lysozyme pattern was not seen in a tau transgenic mouse model. Lysozyme was demonstrated to be beneficial for different Drosophila melanogaster models of AD. In flies that expressed Aβ1-42 or AβPP together with BACE1 in the eyes, the rough eye phenotype indicative of toxicity was completely rescued by coexpression of lysozyme. In Drosophila flies bearing the Aβ1-42 variant with the Arctic gene mutation, lysozyme increased the fly survival and decreased locomotor dysfunction dose dependently. An interaction between lysozyme and Aβ1-42 in the Drosophila eye was discovered. We propose that the increased levels of lysozyme, seen in mouse models of AD and in human AD cases, were triggered by Aβ1-42 and caused a beneficial effect by binding of lysozyme to toxic species of Aβ1-42, which prevented these from exerting their toxic effects. These results emphasize the possibility of lysozyme as biomarker and therapeutic target for AD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-17 av 17
Typ av publikation
tidskriftsartikel (10)
annan publikation (3)
bokkapitel (2)
doktorsavhandling (1)
licentiatavhandling (1)
Typ av innehåll
refereegranskat (12)
övrigt vetenskapligt/konstnärligt (5)
Författare/redaktör
Langel, Ülo (12)
Helmfors, Henrik (12)
Lindberg, Staffan, 1 ... (4)
Tudoran, Oana (3)
Janefjord, Camilla (3)
Kågedal, Katarina (3)
visa fler...
Nath, Sangeeta (3)
Sandin, Linnea (3)
Brorsson, Ann-Christ ... (3)
Eriksson, Jonas (3)
Helmfors, Linda (3)
Muñoz-Alarcón, André ... (3)
Blennow, Kaj (2)
Zetterberg, Henrik (2)
Garner, Brett (2)
Langel, Ülo, Profess ... (2)
Civitelli, Livia (2)
Ezzat, Kariem (2)
Gyllborg, Daniel (2)
Helmfors, Henrik, 19 ... (2)
Blennow, Kaj, 1958 (1)
Zetterberg, Henrik, ... (1)
Lindberg, Staffan (1)
Regberg, Jakob (1)
El-Andaloussi, Samir (1)
Halliday, Glenda (1)
Hallberg, Einar (1)
Armstrong, Andrea (1)
Pooga, Margus (1)
Barth, Andreas, Prof ... (1)
Eberwine, James (1)
Bergkvist, Liza (1)
Figueroa, Ricardo (1)
Padari, Kärt (1)
Boman, Andrea (1)
Kim, Junhyong (1)
Nilsberth, Camilla (1)
Juks, Carmen (1)
Falato, Luca (1)
Gestin, Maxime, 1990 ... (1)
Lorenzon, Nicola (1)
Michalakis, Filip Il ... (1)
Webling, Kristin E. ... (1)
Mørck Nielsen, Hanne ... (1)
McCann, Heather (1)
Sul, Jai-Yoon (1)
Kim, Tae Kyung (1)
Li, Hongyun (1)
Srimanee, Artita (1)
Muñoz-Alarcón, André ... (1)
visa färre...
Lärosäte
Stockholms universitet (14)
Linköpings universitet (3)
Göteborgs universitet (1)
Karolinska Institutet (1)
Språk
Engelska (17)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (16)
Medicin och hälsovetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy