SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Komorowski A) "

Sökning: WFRF:(Komorowski A)

  • Resultat 1-36 av 36
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Campbell, PJ, et al. (författare)
  • Pan-cancer analysis of whole genomes
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 82-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1–3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10–18.
  •  
2.
  •  
3.
  •  
4.
  • Birney, Ewan, et al. (författare)
  • Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project
  • 2007
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 447:7146, s. 799-816
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.
  •  
5.
  • Rheinbay, E, et al. (författare)
  • Analyses of non-coding somatic drivers in 2,658 cancer whole genomes
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 102-
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of drivers of cancer has traditionally focused on protein-coding genes1–4. Here we present analyses of driver point mutations and structural variants in non-coding regions across 2,658 genomes from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium5 of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). For point mutations, we developed a statistically rigorous strategy for combining significance levels from multiple methods of driver discovery that overcomes the limitations of individual methods. For structural variants, we present two methods of driver discovery, and identify regions that are significantly affected by recurrent breakpoints and recurrent somatic juxtapositions. Our analyses confirm previously reported drivers6,7, raise doubts about others and identify novel candidates, including point mutations in the 5′ region of TP53, in the 3′ untranslated regions of NFKBIZ and TOB1, focal deletions in BRD4 and rearrangements in the loci of AKR1C genes. We show that although point mutations and structural variants that drive cancer are less frequent in non-coding genes and regulatory sequences than in protein-coding genes, additional examples of these drivers will be found as more cancer genomes become available.
  •  
6.
  • Carlevaro-Fita, J, et al. (författare)
  • Cancer LncRNA Census reveals evidence for deep functional conservation of long noncoding RNAs in tumorigenesis
  • 2020
  • Ingår i: Communications biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1, s. 56-
  • Tidskriftsartikel (refereegranskat)abstract
    • Long non-coding RNAs (lncRNAs) are a growing focus of cancer genomics studies, creating the need for a resource of lncRNAs with validated cancer roles. Furthermore, it remains debated whether mutated lncRNAs can drive tumorigenesis, and whether such functions could be conserved during evolution. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, we introduce the Cancer LncRNA Census (CLC), a compilation of 122 GENCODE lncRNAs with causal roles in cancer phenotypes. In contrast to existing databases, CLC requires strong functional or genetic evidence. CLC genes are enriched amongst driver genes predicted from somatic mutations, and display characteristic genomic features. Strikingly, CLC genes are enriched for driver mutations from unbiased, genome-wide transposon-mutagenesis screens in mice. We identified 10 tumour-causing mutations in orthologues of 8 lncRNAs, including LINC-PINT and NEAT1, but not MALAT1. Thus CLC represents a dataset of high-confidence cancer lncRNAs. Mutagenesis maps are a novel means for identifying deeply-conserved roles of lncRNAs in tumorigenesis.
  •  
7.
  •  
8.
  •  
9.
  • Rada-Iglesias, A., et al. (författare)
  • Histone H3 lysine 27 trimethylation in adult differentiated colon associated to cancer DNA hypermethylation
  • 2009
  • Ingår i: Epigenetics. - 1559-2294. ; 4:2, s. 107-13
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA hypermethylation of gene promoters is a common epigenetic alteration occurring in cancer cells. However, little is known about the mechanisms instructing these cancer-specific DNA hypermethylation events. Recent reports have suggested that genes bound by polycomb/Histone H3 lysine 27 trimethylation (H3K27me3) in embryonic stem (ES) cells are frequent targets for cancer-specific DNA hypermethylation. This polycomb-premarking is assumed to be restrained to ES cells, even though almost no polycomb/H3K27me3 binding profiles are available for differentiated tissues. We generated H3K27me3 profiles in human normal colon and they significantly overlapped with those of ES cells and genes hypermethylated in colorectal cancer (CRC). Moreover, colon H3K27me3 was more restricted to genes hypermethylated in CRC, while ES H3K27me3 was also common in genes hypermethylated in other tumors. Therefore, the suggested polycomb pre-marking of genes for cancer DNA hypermethylation is not necessarily limited to ES or early precursor cells but can occur later in differentiated tissues.
  •  
10.
  •  
11.
  •  
12.
  • Stratmann, Svea, 1989-, et al. (författare)
  • Genomic characterization of relapsed acute myeloid leukemia reveals novel putative therapeutic targets
  • 2021
  • Ingår i: Blood Advances. - : American Society of Hematology. - 2473-9529 .- 2473-9537. ; 5:3, s. 900-912
  • Tidskriftsartikel (refereegranskat)abstract
    • Relapse is the leading cause of death of adult and pediatric patients with acute myeloid leukemia (AML). Numerous studies have helped to elucidate the complex mutational landscape at diagnosis of AML, leading to improved risk stratification and new therapeutic options. However, multi-whole-genome studies of adult and pediatric AML at relapse are necessary for further advances. To this end, we performed whole-genome and whole-exome sequencing analyses of longitudinal diagnosis, relapse, and/or primary resistant specimens from 48 adult and 25 pediatric patients with AML. We identified mutations recurrently gained at relapse in ARID1A and CSF1R, both of which represent potentially actionable therapeutic alternatives. Further, we report specific differences in the mutational spectrum between adult vs pediatric relapsed AML, with MGA and H3F3A p.Lys28Met mutations recurrently found at relapse in adults, whereas internal tandem duplications in UBTF were identified solely in children. Finally, our study revealed recurrent mutations in IKZF1, KANSL1, and NIPBL at relapse. All of the mentioned genes have either never been reported at diagnosis in de novo AML or have been reported at low frequency, suggesting important roles for these alterations predominantly in disease progression and/or resistance to therapy. Our findings shed further light on the complexity of relapsed AML and identified previously unappreciated alterations that may lead to improved outcomes through personalized medicine.
  •  
13.
  • Stratmann, Svea, 1989-, et al. (författare)
  • Transcriptomic analysis reveals proinflammatory signatures associated with acute myeloid leukemia progression
  • 2022
  • Ingår i: Blood Advances. - : American Society of Hematology. - 2473-9529 .- 2473-9537. ; 6:1, s. 152-164
  • Tidskriftsartikel (refereegranskat)abstract
    • Numerous studies have been performed over the last decade to exploit the complexity of genomic and transcriptomic lesions driving the initiation of acute myeloid leukemia (AML). These studies have helped improve risk classification and treatment options. Detailed molecular characterization of longitudinal AML samples is sparse, however; meanwhile, relapse and therapy resistance represent the main challenges in AML care. To this end, we performed transcriptome-wide RNA sequencing of longitudinal diagnosis, relapse, and/or primary resistant samples from 47 adult and 23 pediatric AML patients with known mutational background. Gene expression analysis revealed the association of short event-free survival with overexpression of GLI2 and IL1R1, as well as downregulation of ST18. Moreover, CR1 downregulation and DPEP1 upregulation were associated with AML relapse both in adults and children. Finally, machine learning–based and network-based analysis identified overexpressed CD6 and downregulated INSR as highly copredictive genes depicting important relapse-associated characteristics among adult patients with AML. Our findings highlight the importance of a tumor-promoting inflammatory environment in leukemia progression, as indicated by several of the herein identified differentially expressed genes. Together, this knowledge provides the foundation for novel personalized drug targets and has the potential to maximize the benefit of current treatments to improve cure rates in AML. ß 2022 by The American Society of Hematology. Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other rights reserved.
  •  
14.
  • Barrenäs, Fredrik, et al. (författare)
  • Macrophage-associated wound healing contributes to African green monkey SIV pathogenesis control
  • 2019
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Natural hosts of simian immunodeficiency virus (SIV) avoid AIDS despite lifelong infection. Here, we examined how this outcome is achieved by comparing a natural SIV host, African green monkey (AGM) to an AIDS susceptible species, rhesus macaque (RM). To asses gene expression profiles from acutely SIV infected AGMs and RMs, we developed a systems biology approach termed Conserved Gene Signature Analysis (CGSA), which compared RNA sequencing data from rectal AGM and RM tissues to various other species. We found that AGMs rapidly activate, and then maintain, evolutionarily conserved regenerative wound healing mechanisms in mucosal tissue. The wound healing protein fibronectin shows distinct tissue distribution and abundance kinetics in AGMs. Furthermore, AGM monocytes exhibit an embryonic development and repair/regeneration signature featuring TGF-beta and concomitant reduced expression of inflammatory genes compared to RMs. This regenerative wound healing process likely preserves mucosal integrity and prevents inflammatory insults that underlie immune exhaustion in RMs.
  •  
15.
  •  
16.
  • Bergström, Ulrika, et al. (författare)
  • Differential gene expression in the olfactory bulb following exposure to the olfactory toxicant 2,6-dichlorophenyl methylsulphone and its 2,5-dichlorinated isomer in mice
  • 2007
  • Ingår i: Neurotoxicology. - : Elsevier BV. - 0161-813X .- 1872-9711. ; 28:6, s. 1120-1128
  • Tidskriftsartikel (refereegranskat)abstract
    • 2,6-Dichlorophenyl methylsulphone and a number of structurally related chemicals are CYP-activated toxicants in the olfactory mucosa in mice and rats. This toxicity involves both the olfactory neuroepithelium and its subepithelial nerves. In addition, 2,6-dichlorophenyl methylsulphone, induces glial acidic fibrillary protein expression (Gfap, a biomarker for gliosis) in the olfactory bulb, as well as long-lasting learning deficits and changes in spontaneous behavior in mice and rats. So far the 2,5-dichlorinated isomer has not been reported to cause toxicity in the olfactory system, although it gives rise to transient changes in spontaneous behavior. In the present study we used 15k cDNA gene arrays and real-time RTPCR to determine 2,6-dichlorophenyl methylsulphone-induced effects on gene expression in the olfactory bulb in mice. Seven days following a single ip dose of 2,6-dichlorophenyl methylsulphone, 56 genes were found to be differentially expressed in the olfactory bulb. Forty-one of these genes clustered into specific processes regulating, for instance, cell differentiation, cell migration and apoptosis. The genes selected for real-time RT-PCR were chosen to cover the range of B-values in the cDNA array analysis. Altered expression of Gfap, mt-Rnr2, Ncor1 and Olfml3 was confirmed. The expression of these genes was measured also in mice dosed with 2,5-dichlorophenyl methylsulphone, and mt-Rnr2 and Olfml3 were found to be altered also by this isomer. Combined with previous data, the results support the possibility that the persistent neurotoxicity induced by 2,6-dichlorophenyl methylsulphone in mice represents both an indirect and a direct effect on the brain. The 2,5-dichlorinated isomer, negative with regard to CYP-catalyzed toxicity in the olfactory mucosa, may prove useful to resolve this issue.
  •  
17.
  • Bruder, Carl E G, et al. (författare)
  • Phenotypically concordant and discordant monozygotic twins display different DNA copy-number-variation profiles
  • 2008
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 82:3, s. 763-71
  • Tidskriftsartikel (refereegranskat)abstract
    • The exploration of copy-number variation (CNV), notably of somatic cells, is an understudied aspect of genome biology. Any differences in the genetic makeup between twins derived from the same zygote represent an irrefutable example of somatic mosaicism. We studied 19 pairs of monozygotic twins with either concordant or discordant phenotype by using two platforms for genome-wide CNV analyses and showed that CNVs exist within pairs in both groups. These findings have an impact on our views of genotypic and phenotypic diversity in monozygotic twins and suggest that CNV analysis in phenotypically discordant monozygotic twins may provide a powerful tool for identifying disease-predisposition loci. Our results also imply that caution should be exercised when interpreting disease causality of de novo CNVs found in patients based on analysis of a single tissue in routine disease-related DNA diagnostics.
  •  
18.
  • Cavalli, Marco, et al. (författare)
  • A Multi-Omics Approach to Liver Diseases : Integration of Single Nuclei Transcriptomics with Proteomics and HiCap Bulk Data in Human Liver
  • 2020
  • Ingår i: Omics. - : Mary Ann Liebert Inc. - 1536-2310 .- 1557-8100. ; 24:4, s. 180-194
  • Tidskriftsartikel (refereegranskat)abstract
    • The liver is the largest solid organ and a primary metabolic hub. In recent years, intact cell nuclei were used to perform single-nuclei RNA-seq (snRNA-seq) for tissues difficult to dissociate and for flash-frozen archived tissue samples to discover unknown and rare cell subpopulations. In this study, we performed snRNA-seq of a liver sample to identify subpopulations of cells based on nuclear transcriptomics. In 4282 single nuclei, we detected, on average, 1377 active genes and we identified seven major cell types. We integrated data from 94,286 distal interactions (p < 0.05) for 7682 promoters from a targeted chromosome conformation capture technique (HiCap) and mass spectrometry proteomics for the same liver sample. We observed a reasonable correlation between proteomics and in silico bulk snRNA-seq (r = 0.47) using tissue-independent gene-specific protein abundancy estimation factors. We specifically looked at genes of medical importance. The DPYD gene is involved in the pharmacogenetics of fluoropyrimidine toxicity and some of its variants are analyzed for clinical purposes. We identified a new putative polymorphic regulatory element, which may contribute to variation in toxicity. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and we investigated all known risk genes. We identified a complex regulatory landscape for the SLC2A2 gene with 16 candidate enhancers. Three of them harbor somatic motif breaking and other mutations in HCC in the Pan Cancer Analysis of Whole Genomes dataset and are candidates to contribute to malignancy. Our results highlight the potential of a multi-omics approach in the study of human diseases.
  •  
19.
  • Dabrowski, Michal J., et al. (författare)
  • Unveiling new interdependencies between significant DNA methylation sites, gene expression profiles and glioma patients survival
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • In order to find clinically useful prognostic markers for glioma patients' survival, we employed Monte Carlo Feature Selection and Interdependencies Discovery (MCFS-ID) algorithm on DNA methylation (HumanMethylation450 platform) and RNA-seq datasets from The Cancer Genome Atlas (TCGA) for 88 patients observed until death. The input features were ranked according to their importance in predicting patients' longer (400+ days) or shorter (<= 400 days) survival without prior classification of the patients. Interestingly, out of the 65 most important features found, 63 are methylation sites, and only two mRNAs. Moreover, 61 out of the 63 methylation sites are among those detected by the 450 k array technology, while being absent in the HumanMethylation27. The most important methylation feature (cg15072976) overlaps with the RE1 Silencing Transcription Factor (REST) binding site, and was confirmed to intersect with the REST binding motif in human U87 glioma cells. Six additional methylation sites from the top 63 overlap with REST sites. We found that the methylation status of the cg15072976 site affects transcription factor binding in U87 cells in gel shift assay. The cg15072976 methylation status discriminates <= 400 and 400+ patients in an independent dataset from TCGA and shows positive association with survival time as evidenced by Kaplan-Meier plots.
  •  
20.
  •  
21.
  • Diamanti, Klev, 1987-, et al. (författare)
  • Organ-specific metabolic pathways distinguish prediabetes, type 2 diabetes, and normal tissues
  • 2022
  • Ingår i: Cell Reports Medicine. - : Elsevier BV. - 2666-3791. ; 3:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Environmental and genetic factors cause defects in pancreatic islets driving type 2 diabetes (T2D) together with the progression of multi-tissue insulin resistance. Mass spectrometry proteomics on samples from five key metabolic tissues of a cross-sectional cohort of 43 multi-organ donors provides deep coverage of their proteomes. Enrichment analysis of Gene Ontology terms provides a tissue-specific map of altered biological processes across healthy, prediabetes (PD), and T2D subjects. We find widespread alterations in several relevant biological pathways, including increase in hemostasis in pancreatic islets of PD, increase in the complement cascade in liver and pancreatic islets of PD, and elevation in cholesterol biosynthesis in liver of T2D. Our findings point to inflammatory, immune, and vascular alterations in pancreatic islets in PD that are hypotheses to be tested for potential contributions to hormonal perturbations such as impaired insulin and increased glucagon production. This multi-tissue proteomic map suggests tissue-specific metabolic dysregulations in T2D. © 2022 The Author(s)
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  • Jenssen, T.-K., et al. (författare)
  • A literature network of human genes for high-throughput analysis of gene expression
  • 2001
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 28:1, s. 21-28
  • Tidskriftsartikel (refereegranskat)abstract
    • We have carried out automated extraction of explicit and implicit biomedical knowledge from publicly available gene and text databases to create a gene-to-gene co-citation network for 13,712 named human genes by automated analysis of titles and abstracts in over 10 million MEDLINE records. The associations between genes have been annotated by linking genes to terms from the medical subject heading (MeSH) index and terms from the gene ontology (GO) database. The extracted database and accompanying web tools for gene-expression analysis have collectively been named 'PubGene'. We validated the extracted networks by three large-scale experiments showing that co-occurrence reflects biologically meaningful relationships, thus providing an approach to extract and structure known biology. We validated the applicability of the tools by analyzing two publicly available microarray data sets.
  •  
27.
  •  
28.
  • Midelfart, H, et al. (författare)
  • Learning rough set classifiers from gene expressions and clinical data
  • 2002
  • Ingår i: Fundamenta Informaticae. ; 53:2, s. 155-183
  • Tidskriftsartikel (refereegranskat)abstract
    • Biological research is currently undergoing a revolution. With the advent of microarray technology the behavior of thousands of genes can be measured simultaneously. This capability opens a wide range of research opportunities in biology, but the technology generates a vast amount of data that cannot be handled manually. Computational analysis is thus a prerequisite for the success of this technology, and research and development of computational tools for microarray analysis are of great importance.One application of microarray technology is cancer studies where supervised learning may be used for predicting tumor subtypes and clinical parameters. We present a general Rough Set approach for classification of tumor samples analyzed with microarrays. This approach is tested on a data set of gastric tumors, and we develop classifiers for six clinical parameters.One major obstacle in training classifiers from microarray data is that the number of objects is much smaller that the number of attributes. We therefore introduce a feature selection method based on bootstrapping for selecting genes that discriminate significantly between the classes, and study the performance of this method.Moreover, the efficacy of several learning and discretization methods implemented in the ROSETTA system [18] is examined. Their performance is compared to that of linear and quadratic discrimination analysis. The classifiers are also biologically validated. One of the best classifiers is selected for each clinical parameter, and the connection between the genes used in these classifiers and the parameters are compared to the establish knowledge in the biomedical literature.
  •  
29.
  •  
30.
  • Stepniak, Karolina, et al. (författare)
  • Mapping chromatin accessibility and active regulatory elements reveals pathological mechanisms in human gliomas
  • 2021
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Chromatin structure and accessibility, and combinatorial binding of transcription factors to regulatory elements in genomic DNA control transcription. Genetic variations in genes encoding histones, epigenetics-related enzymes or modifiers affect chromatin structure/dynamics and result in alterations in gene expression contributing to cancer development or progression. Gliomas are brain tumors frequently associated with epigenetics-related gene deregulation. We perform whole-genome mapping of chromatin accessibility, histone modifications, DNA methylation patterns and transcriptome analysis simultaneously in multiple tumor samples to unravel epigenetic dysfunctions driving gliomagenesis. Based on the results of the integrative analysis of the acquired profiles, we create an atlas of active enhancers and promoters in benign and malignant gliomas. We explore these elements and intersect with Hi-C data to uncover molecular mechanisms instructing gene expression in gliomas. Gliomas are tumors often associated with epigenetics-related gene deregulation. Here the authors reveal an atlas of active enhancers and promoters in benign and malignant gliomas by performing whole-genome mapping of chromatin accessibility, histone modifications, DNA methylation patterns and transcriptome analysis simultaneously in multiple tumor samples.
  •  
31.
  •  
32.
  •  
33.
  • Wilczynski, B., Hvidsten, T., Kryshtafovych, A., Stubbs, L., Komorowski, J., Fidelis, K. (författare)
  • A rule-based framework for gene regulation pathways discovery
  • 2003
  • Ingår i: IEEE Computer Society Bioinformatics Conference (CSB2003) Stanford, CA, USA, August 11-14. ; , s. 435-436
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)
  •  
34.
  • Yones, Sara A., et al. (författare)
  • Interpretable machine learning identifies paediatric Systemic Lupus Erythematosus subtypes based on gene expression data
  • 2022
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Transcriptomic analyses are commonly used to identify differentially expressed genes between patients and controls, or within individuals across disease courses. These methods, whilst effective, cannot encompass the combinatorial effects of genes driving disease. We applied rule-based machine learning (RBML) models and rule networks (RN) to an existing paediatric Systemic Lupus Erythematosus (SLE) blood expression dataset, with the goal of developing gene networks to separate low and high disease activity (DA1 and DA3). The resultant model had an 81% accuracy to distinguish between DA1 and DA3, with unsupervised hierarchical clustering revealing additional subgroups indicative of the immune axis involved or state of disease flare. These subgroups correlated with clinical variables, suggesting that the gene sets identified may further the understanding of gene networks that act in concert to drive disease progression. This included roles for genes i) induced by interferons (IFI35 and OTOF), ii) key to SLE cell types (KLRB1 encoding CD161), or iii) with roles in autophagy and NF-κB pathway responses (CKAP4). As demonstrated here, RBML approaches have the potential to reveal novel gene patterns from within a heterogeneous disease, facilitating patient clinical and therapeutic stratification. 
  •  
35.
  • Yones, Sara A., et al. (författare)
  • MetaFetcheR : An R Package for Complete Mapping of Small-Compound Data
  • 2021
  • Ingår i: Metabolites. - : MDPI. - 2218-1989 .- 2218-1989. ; 11:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Small-compound databases contain a large amount of information for metabolites and metabolic pathways. However, the plethora of such databases and the redundancy of their information lead to major issues with analysis and standardization. A lack of preventive establishment of means of data access at the infant stages of a project might lead to mislabelled compounds, reduced statistical power, and large delays in delivery of results. We developed MetaFetcheR, an open-source R package that links metabolite data from several small-compound databases, resolves inconsistencies, and covers a variety of use-cases of data fetching. We showed that the performance of MetaFetcheR was superior to existing approaches and databases by benchmarking the performance of the algorithm in three independent case studies based on two published datasets.
  •  
36.
  • Yones, Sara A., et al. (författare)
  • Supplementary material: Interpretable machine learning identifies paediatric Systemic Lupus Erythematosus subtypes based on gene expression data
  • 2021
  • Annan publikationabstract
    • Transcriptomic analyses are commonly used to identify differentially expressed genes between patients and controls, or within individuals across disease courses. These methods, whilst effective, cannot encompass the combinatorial effects of genes driving disease. We applied rule-based machine learning (RBML) models and rule networks (RN) to an existing paediatric Systemic Lupus Erythematosus (SLE) blood expression dataset, with the goal of developing gene networks to separate low and high disease activity (DA1 and DA3). The resultant model had an 81% accuracy to distinguish between DA1 and DA3, with unsupervised hierarchical clustering revealing additional subgroups indicative of the immune axis involved or state of disease flare. These subgroups correlated with clinical variables, suggesting that the gene sets identified may further the understanding of gene networks that act in concert to drive disease progression. This included roles for genes i) induced by interferons (IFI35 and OTOF), ii) key to SLE cell types (KLRB1 encoding CD161), or iii) with roles in autophagy and NF-κB pathway responses (CKAP4). As demonstrated here, RBML approaches have the potential to reveal novel gene patterns from within a heterogeneous disease, facilitating patient clinical and therapeutic stratification. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-36 av 36

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy