SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kondo Masayuki) "

Sökning: WFRF:(Kondo Masayuki)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Ciais, Philippe, et al. (författare)
  • Definitions and methods to estimate regional land carbon fluxes for the second phase of the REgional Carbon Cycle Assessment and Processes Project (RECCAP-2)
  • 2022
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 15:3, s. 1289-1316
  • Tidskriftsartikel (refereegranskat)abstract
    • Regional land carbon budgets provide insights into the spatial distribution of the land uptake of atmospheric carbon dioxide and can be used to evaluate carbon cycle models and to define baselines for land-based additional mitigation efforts. The scientific community has been involved in providing observation-based estimates of regional carbon budgets either by downscaling atmospheric CO2 observations into surface fluxes with atmospheric inversions, by using inventories of carbon stock changes in terrestrial ecosystems, by upscaling local field observations such as flux towers with gridded climate and remote sensing fields, or by integrating data-driven or process-oriented terrestrial carbon cycle models. The first coordinated attempt to collect regional carbon budgets for nine regions covering the entire globe in the RECCAP-1 project has delivered estimates for the decade 2000–2009, but these budgets were not comparable between regions due to different definitions and component fluxes being reported or omitted. The recent recognition of lateral fluxes of carbon by human activities and rivers that connect CO2 uptake in one area with its release in another also requires better definitions and protocols to reach harmonized regional budgets that can be summed up to a globe scale and compared with the atmospheric CO2 growth rate and inversion results. In this study, using the international initiative RECCAP-2 coordinated by the Global Carbon Project, which aims to be an update to regional carbon budgets over the last 2 decades based on observations for 10 regions covering the globe with a better harmonization than the precursor project, we provide recommendations for using atmospheric inversion results to match bottom-up carbon accounting and models, and we define the different component fluxes of the net land atmosphere carbon exchange that should be reported by each research group in charge of each region. Special attention is given to lateral fluxes, inland water fluxes, and land use fluxes.
  •  
3.
  • Hirao, Yuki, et al. (författare)
  • OGLE-2017-BLG-0406 : Spitzer Microlens Parallax Reveals Saturn-mass Planet Orbiting M-dwarf Host in the Inner Galactic Disk
  • 2020
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 160:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery and analysis of the planetary microlensing event OGLE-2017-BLG-0406, which was observed both from the ground and by the Spitzer satellite in a solar orbit. At high magnification, the anomaly in the light curve was densely observed by ground-based-survey and follow-up groups, and it was found to be explained by a planetary lens with a planet/host mass ratio of q = 7.0 x 10(-4) from the light-curve modeling. The ground-only and Spitzer-only data each provide very strong one-dimensional (1D) constraints on the 2D microlens parallax vector pi(E). When combined, these yield a precise measurement of pi(E) and of the masses of the host M-host = 0.56 +/- 0.07 M-circle dot and planet M-planet = 0.41 +/- 0.05 M-Jup. The system lies at a distance D-L = 5.2 +/- 0.5 kpc from the Sun toward the Galactic bulge, and the host is more likely to be a disk population star according to the kinematics of the lens. The projected separation of the planet from the host is a(perpendicular to) = 3.5 +/- 0.3 au (i.e., just over twice the snow line). The Galactic-disk kinematics are established in part from a precise measurement of the source proper motion based on OGLE-IV data. By contrast, the Gaia proper-motion measurement of the source suffers from a catastrophic 10 sigma error.
  •  
4.
  • Ichii, Kazuhito, et al. (författare)
  • New data-driven estimation of terrestrial CO2 fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression
  • 2017
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - 2169-8953. ; 122:4, s. 767-795
  • Tidskriftsartikel (refereegranskat)abstract
    • The lack of a standardized database of eddy covariance observations has been an obstacle for data-driven estimation of terrestrial CO2 fluxes in Asia. In this study, we developed such a standardized database using 54 sites from various databases by applying consistent postprocessing for data-driven estimation of gross primary productivity (GPP) and net ecosystem CO2 exchange (NEE). Data-driven estimation was conducted by using a machine learning algorithm: support vector regression (SVR), with remote sensing data for 2000 to 2015 period. Site-level evaluation of the estimated CO2 fluxes shows that although performance varies in different vegetation and climate classifications, GPP and NEE at 8days are reproduced (e.g., r2=0.73 and 0.42 for 8day GPP and NEE). Evaluation of spatially estimated GPP with Global Ozone Monitoring Experiment 2 sensor-based Sun-induced chlorophyll fluorescence shows that monthly GPP variations at subcontinental scale were reproduced by SVR (r2=1.00, 0.94, 0.91, and 0.89 for Siberia, East Asia, South Asia, and Southeast Asia, respectively). Evaluation of spatially estimated NEE with net atmosphere-land CO2 fluxes of Greenhouse Gases Observing Satellite (GOSAT) Level 4A product shows that monthly variations of these data were consistent in Siberia and East Asia; meanwhile, inconsistency was found in South Asia and Southeast Asia. Furthermore, differences in the land CO2 fluxes from SVR-NEE and GOSAT Level 4A were partially explained by accounting for the differences in the definition of land CO2 fluxes. These data-driven estimates can provide a new opportunity to assess CO2 fluxes in Asia and evaluate and constrain terrestrial ecosystem models.
  •  
5.
  • Kondo, Masayuki, et al. (författare)
  • Are Land-Use Change Emissions in Southeast Asia Decreasing or Increasing?
  • 2022
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236. ; 36:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Southeast Asia is a region known for active land-use changes (LUC) over the past 60 years; yet, how trends in net CO2 uptake and release resulting from LUC activities (net LUC flux) have changed through past decades remains uncertain. The level of uncertainty in net LUC flux from process-based models is so high that it cannot be concluded that newer estimates are necessarily more reliable than older ones. Here, we examined net LUC flux estimates of Southeast Asia for the 1980s−2010s from older and newer sets of Dynamic Global Vegetation Model simulations (TRENDY v2 and v7, respectively), and forcing data used for running those simulations, along with two book-keeping estimates (H&N and BLUE). These estimates yielded two contrasting historical LUC transitions, such that TRENDY v2 and H&N showed a transition from increased emissions from the 1980s to 1990s to declining emissions in the 2000s, while TRENDY v7 and BLUE showed the opposite transition. We found that these contrasting transitions originated in the update of LUC forcing data, which reduced the loss of forest area during the 1990s. Further evaluation of remote sensing studies, atmospheric inversions, and the history of forestry and environmental policies in Southeast Asia supported the occurrence of peak emissions in the 1990s and declining thereafter. However, whether LUC emissions continue to decline in Southeast Asia remains uncertain as key processes in recent years, such as conversion of peat forest to oil-palm plantation, are yet to be represented in the forcing data, suggesting a need for further revision.
  •  
6.
  • Kondo, Masayuki, et al. (författare)
  • State of science in carbon budget assessments for temperate forests and grasslands
  • 2022
  • Ingår i: Balancing Greenhouse Gas Budgets : Accounting for Natural and Anthropogenic Flows of CO2 and other Trace Gases - Accounting for Natural and Anthropogenic Flows of CO2 and other Trace Gases. - 9780128149522 - 9780128149539 ; , s. 237-270
  • Bokkapitel (refereegranskat)abstract
    • With the abundance of observations and advancement in modeling, temperate regions allow for a comprehensive comparison of the data-driven and process-based methods of carbon budget estimation. This chapter presents a review of the latest methodologies for carbon budget and component flux estimation, and the key components in the temperate carbon budget, such as forest regrowth, and summarizes uncertainties in the current carbon budget of temperate ecosystems that the research community needs to resolve. Lastly, we describe the key progress made in the carbon budget assessment in past decades, and how it should be further advanced to be useful for policy decision-making.
  •  
7.
  • Sato, Yousuke, et al. (författare)
  • Model Intercomparison of Atmospheric Cs-137 From the Fukushima Daiichi Nuclear Power Plant Accident : Simulations Based on Identical Input Data
  • 2018
  • Ingår i: Journal of Geophysical Research - Atmospheres. - 2169-897X .- 2169-8996. ; 123:20, s. 11748-11765
  • Tidskriftsartikel (refereegranskat)abstract
    • A model intercomparison of the atmospheric dispersion of cesium-137 (Cs-137) emitted after the Fukushima Daiichi Nuclear Power Plant accident in Japan was conducted to understand the behavior of atmospheric Cs-137 in greater detail. The same meteorological data with a fine spatiotemporal resolution and an emission inventory were applied to all models to exclude the differences among the models originating from differences in meteorological and emission data. The meteorological data were used for initial, boundary, and nudging data or offline meteorological field. Furthermore, a horizontal grid with the same resolution as that of the meteorological data was adopted for all models. This setup enabled us to focus on model variability originating from the processes included in each model, for example, physical processes. The multimodel ensemble captured 40% of the atmospheric Cs-137 events observed by measurements, and the figure of merit in space for the total deposition of Cs-137 exceeded 80. The lower score of the atmospheric Cs-137 than that of the deposition originated from the difference in timing between observed and simulated atmospheric Cs-137. Our analyses indicated that meteorological data were most critical for reproducing the atmospheric Cs-137 events. The results further revealed that differences in Cs-137 concentrations among the models originated from deposition and diffusion processes when the meteorological field was simulated reasonably well. The models with small deposition fluxes produced higher scores for atmospheric Cs-137, and those with strong diffusion succeeded in capturing the high Cs-137 concentrations observed; however, they also tended to overestimate the concentrations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy