SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Krischer J P) "

Sökning: WFRF:(Krischer J P)

  • Resultat 1-50 av 50
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Auchtung, Thomas A, et al. (författare)
  • Temporal changes in gastrointestinal fungi and the risk of autoimmunity during early childhood : the TEDDY study
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Fungal infections are a major health problem that often begin in the gastrointestinal tract. Gut microbe interactions in early childhood are critical for proper immune responses, yet there is little known about the development of the fungal population from infancy into childhood. Here, as part of the TEDDY (The Environmental Determinants of Diabetes in the Young) study, we examine stool samples of 888 children from 3 to 48 months and find considerable differences between fungi and bacteria. The metagenomic relative abundance of fungi was extremely low but increased while weaning from milk and formula. Overall fungal diversity remained constant over time, in contrast with the increase in bacterial diversity. Fungal profiles had high temporal variation, but there was less variation from month-to-month in an individual than among different children of the same age. Fungal composition varied with geography, diet, and the use of probiotics. Multiple Candida spp. were at higher relative abundance in children than adults, while Malassezia and certain food-associated fungi were lower in children. There were only subtle fungal differences associated with the subset of children that developed islet autoimmunity or type 1 diabetes. Having proper fungal exposures may be crucial for children to establish appropriate responses to fungi and limit the risk of infection: the data here suggests those gastrointestinal exposures are limited and variable.
  •  
2.
  • Battaglia, Manuela, et al. (författare)
  • Introducing the Endotype Concept to Address the Challenge of Disease Heterogeneity in Type 1 Diabetes
  • 2020
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 43:1, s. 5-12
  • Tidskriftsartikel (refereegranskat)abstract
    • The clinical diagnosis of new-onset type 1 diabetes has, for many years, been considered relatively straightforward. Recently, however, there is increasing awareness that within this single clinical phenotype exists considerable heterogeneity: disease onset spans the complete age range; genetic susceptibility is complex; rates of progression differ markedly, as does insulin secretory capacity; and complication rates, glycemic control, and therapeutic intervention efficacy vary widely. Mechanistic and immunopathological studies typically show considerable patchiness across subjects, undermining conclusions regarding disease pathways. Without better understanding, type 1 diabetes heterogeneity represents a major barrier both to deciphering pathogenesis and to the translational effort of designing, conducting, and interpreting clinical trials of disease-modifying agents. This realization comes during a period of unprecedented change in clinical medicine, with increasing emphasis on greater individualization and precision. For complex disorders such as type 1 diabetes, the option of maintaining the "single disease" approach appears untenable, as does the notion of individualizing each single patient's care, obliging us to conceptualize type 1 diabetes less in terms of phenotypes (observable characteristics) and more in terms of disease endotypes (underlying biological mechanisms). Here, we provide our view on an approach to dissect heterogeneity in type 1 diabetes. Using lessons from other diseases and the data gathered to date, we aim to delineate a roadmap through which the field can incorporate the endotype concept into laboratory and clinical practice. We predict that such an effort will accelerate the implementation of precision medicine and has the potential for impact on our approach to translational research, trial design, and clinical management.
  •  
3.
  • Ferrat, L.A., et al. (författare)
  • A combined risk score enhances prediction of type 1 diabetes among susceptible children
  • 2020
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1546-170X .- 1078-8956. ; 26:8, s. 1247-1255
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 1 diabetes (T1D)-an autoimmune disease that destroys the pancreatic islets, resulting in insulin deficiency-often begins early in life when islet autoantibody appearance signals high risk1. However, clinical diabetes can follow in weeks or only after decades, and is very difficult to predict. Ketoacidosis at onset remains common2,3 and is most severe in the very young4,5, in whom it can be life threatening and difficult to treat6-9. Autoantibody surveillance programs effectively prevent most ketoacidosis10-12 but require frequent evaluations whose expense limits public health adoption13. Prevention therapies applied before onset, when greater islet mass remains, have rarely been feasible14 because individuals at greatest risk of impending T1D are difficult to identify. To remedy this, we sought accurate, cost-effective estimation of future T1D risk by developing a combined risk score incorporating both fixed and variable factors (genetic, clinical and immunological) in 7,798 high-risk children followed closely from birth for 9.3 years. Compared with autoantibodies alone, the combined model dramatically improves T1D prediction at ≥2 years of age over horizons up to 8 years of age (area under the receiver operating characteristic curve ≥ 0.9), doubles the estimated efficiency of population-based newborn screening to prevent ketoacidosis, and enables individualized risk estimates for better prevention trial selection.
  •  
4.
  • Lundgren, Markus, et al. (författare)
  • Analgesic antipyretic use among young children in the TEDDY study : No association with islet autoimmunity
  • 2017
  • Ingår i: BMC Pediatrics. - : Springer Science and Business Media LLC. - 1471-2431. ; 17:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The use of analgesic antipyretics (ANAP) in children have long been a matter of controversy. Data on their practical use on an individual level has, however, been scarce. There are indications of possible effects on glucose homeostasis and immune function related to the use of ANAP. The aim of this study was to analyze patterns of analgesic antipyretic use across the clinical centers of The Environmental Determinants of Diabetes in the Young (TEDDY) prospective cohort study and test if ANAP use was a risk factor for islet autoimmunity. Methods: Data were collected for 8542 children in the first 2.5 years of life. Incidence was analyzed using logistic regression with country and first child status as independent variables. Holm's procedure was used to adjust for multiplicity of intercountry comparisons. Time to autoantibody seroconversion was analyzed using a Cox proportional hazards model with cumulative analgesic use as primary time dependent covariate of interest. For each categorization, a generalized estimating equation (GEE) approach was used. Results: Higher prevalence of ANAP use was found in the U.S. (95.7%) and Sweden (94.8%) compared to Finland (78.1%) and Germany (80.2%). First-born children were more commonly given acetaminophen (OR 1.26; 95% CI 1.07, 1.49; p = 0.007) but less commonly Non-Steroidal Anti-inflammatory Drugs (NSAID) (OR 0.86; 95% CI 0.78, 0.95; p = 0.002). Acetaminophen and NSAID use in the absence of fever and infection was more prevalent in the U.S. (40.4%; 26.3% of doses) compared to Sweden, Finland and Germany (p < 0.001). Acetaminophen or NSAID use before age 2.5 years did not predict development of islet autoimmunity by age 6 years (HR 1.02, 95% CI 0.99-1.09; p = 0.27). In a sub-analysis, acetaminophen use in children with fever weakly predicted development of islet autoimmunity by age 3 years (HR 1.05; 95% CI 1.01-1.09; p = 0.024). Conclusions: ANAP use in young children is not a risk factor for seroconversion by age 6 years. Use of ANAP is widespread in young children, and significantly higher in the U.S. compared to other study sites, where use is common also in absence of fever and infection.
  •  
5.
  • Stewart, Christopher J., et al. (författare)
  • Temporal development of the gut microbiome in early childhood from the TEDDY study
  • 2018
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 562:7728, s. 583-588
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of the microbiome from infancy to childhood is dependent on a range of factors, with microbial–immune crosstalk during this time thought to be involved in the pathobiology of later life diseases1–9 such as persistent islet autoimmunity and type 1 diabetes10–12. However, to our knowledge, no studies have performed extensive characterization of the microbiome in early life in a large, multi-centre population. Here we analyse longitudinal stool samples from 903 children between 3 and 46 months of age by 16S rRNA gene sequencing (n = 12,005) and metagenomic sequencing (n = 10,867), as part of the The Environmental Determinants of Diabetes in the Young (TEDDY) study. We show that the developing gut microbiome undergoes three distinct phases of microbiome progression: a developmental phase (months 3–14), a transitional phase (months 15–30), and a stable phase (months 31–46). Receipt of breast milk, either exclusive or partial, was the most significant factor associated with the microbiome structure. Breastfeeding was associated with higher levels of Bifidobacterium species (B. breve and B. bifidum), and the cessation of breast milk resulted in faster maturation of the gut microbiome, as marked by the phylum Firmicutes. Birth mode was also significantly associated with the microbiome during the developmental phase, driven by higher levels of Bacteroides species (particularly B. fragilis) in infants delivered vaginally. Bacteroides was also associated with increased gut diversity and faster maturation, regardless of the birth mode. Environmental factors including geographical location and household exposures (such as siblings and furry pets) also represented important covariates. A nested case–control analysis revealed subtle associations between microbial taxonomy and the development of islet autoimmunity or type 1 diabetes. These data determine the structural and functional assembly of the microbiome in early life and provide a foundation for targeted mechanistic investigation into the consequences of microbial–immune crosstalk for long-term health.
  •  
6.
  • Vatanen, Tommi, et al. (författare)
  • The human gut microbiome in early-onset type 1 diabetes from the TEDDY study
  • 2018
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 562:7728, s. 589-594
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 1 diabetes (T1D) is an autoimmune disease that targets pancreatic islet beta cells and incorporates genetic and environmental factors1, including complex genetic elements2, patient exposures3 and the gut microbiome4. Viral infections5 and broader gut dysbioses6 have been identified as potential causes or contributing factors; however, human studies have not yet identified microbial compositional or functional triggers that are predictive of islet autoimmunity or T1D. Here we analyse 10,913 metagenomes in stool samples from 783 mostly white, non-Hispanic children. The samples were collected monthly from three months of age until the clinical end point (islet autoimmunity or T1D) in the The Environmental Determinants of Diabetes in the Young (TEDDY) study, to characterize the natural history of the early gut microbiome in connection to islet autoimmunity, T1D diagnosis, and other common early life events such as antibiotic treatments and probiotics. The microbiomes of control children contained more genes that were related to fermentation and the biosynthesis of short-chain fatty acids, but these were not consistently associated with particular taxa across geographically diverse clinical centres, suggesting that microbial factors associated with T1D are taxonomically diffuse but functionally more coherent. When we investigated the broader establishment and development of the infant microbiome, both taxonomic and functional profiles were dynamic and highly individualized, and dominated in the first year of life by one of three largely exclusive Bifidobacterium species (B. bifidum, B. breve or B. longum) or by the phylum Proteobacteria. In particular, the strain-specific carriage of genes for the utilization of human milk oligosaccharide within a subset of B. longum was present specifically in breast-fed infants. These analyses of TEDDY gut metagenomes provide, to our knowledge, the largest and most detailed longitudinal functional profile of the developing gut microbiome in relation to islet autoimmunity, T1D and other early childhood events. Together with existing evidence from human cohorts7,8 and a T1D mouse model9, these data support the protective effects of short-chain fatty acids in early-onset human T1D.
  •  
7.
  • Kemppainen, Kaisa M, et al. (författare)
  • Association Between Early-Life Antibiotic Use and the Risk of Islet or Celiac Disease Autoimmunity
  • 2017
  • Ingår i: JAMA Pediatrics. - : American Medical Association (AMA). - 2168-6211 .- 2168-6203. ; 171:12, s. 1217-1225
  • Tidskriftsartikel (refereegranskat)abstract
    • Importance: Evidence is lacking regarding the consequences of antibiotic use in early life and the risk of certain autoimmune diseases.Objective: To test the association between early-life antibiotic use and islet or celiac disease (CD) autoimmunity in genetically at-risk children prospectively followed up for type 1 diabetes (T1D) or CD.Design, Setting, and Participants: HLA-genotyped newborns from Finland, Germany, Sweden, and the United States were enrolled in the prospective birth cohort of The Environmental Determinants of Diabetes in the Young (TEDDY) study between November 20, 2004, and July 8, 2010. The dates of analysis were November 20, 2004, to August 31, 2014. Individuals from the general population and those having a first-degree relative with T1D were enrolled if they had 1 of 9 HLA genotypes associated with a risk for T1D.Exposures: Parental reports of the most common antibiotics (cephalosporins, penicillins, and macrolides) used between age 3 months and age 4 years were recorded prospectively.Main Outcomes and Measures: Islet autoimmunity and CD autoimmunity were defined as being positive for islet or tissue transglutaminase autoantibodies at 2 consecutive clinic visits at least 3 months apart. Hazard ratios and 95% CIs calculated from Cox proportional hazards regression models were used to assess the relationship between antibiotic use in early life before seroconversion and the development of autoimmunity.Results: Participants were 8495 children (49.0% female) and 6558 children (48.7% female) enrolled in the TEDDY study who were tested for islet and tissue transglutaminase autoantibodies, respectively. Exposure to and frequency of use of any antibiotic assessed in this study in early life or before seroconversion did not influence the risk of developing islet autoimmunity or CD autoimmunity. Cumulative use of any antibiotic during the first 4 years of life was not associated with the appearance of any autoantibody (hazard ratio [HR], 0.98; 95% CI, 0.95-1.01), multiple islet autoantibodies (HR, 0.99; 95% CI, 0.95-1.03), or the transglutaminase autoantibody (HR, 1.00; 95% CI, 0.98-1.02).Conclusions and Relevance: The use of the most prescribed antibiotics during the first 4 years of life, regardless of geographic region, was not associated with the development of autoimmunity for T1D or CD. These results suggest that a risk of islet or tissue transglutaminase autoimmunity need not influence the recommendations for clinical use of antibiotics in young children at risk for T1D or CD.
  •  
8.
  • Lin, Jake, et al. (författare)
  • Distinct transcriptomic profiles in children prior to the appearance of type 1 diabetes-linked islet autoantibodies and following enterovirus infection
  • 2023
  • Ingår i: Nature Communications. - 2041-1723. ; 14, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Although the genetic basis and pathogenesis of type 1 diabetes have been studied extensively, how host responses to environmental factors might contribute to autoantibody development remains largely unknown. Here, we use longitudinal blood transcriptome sequencing data to characterize host responses in children within 12 months prior to the appearance of type 1 diabetes-linked islet autoantibodies, as well as matched control children. We report that children who present with insulin-specific autoantibodies first have distinct transcriptional profiles from those who develop GADA autoantibodies first. In particular, gene dosage-driven expression of GSTM1 is associated with GADA autoantibody positivity. Moreover, compared with controls, we observe increased monocyte and decreased B cell proportions 9-12 months prior to autoantibody positivity, especially in children who developed antibodies against insulin first. Lastly, we show that control children present transcriptional signatures consistent with robust immune responses to enterovirus infection, whereas children who later developed islet autoimmunity do not. These findings highlight distinct immune-related transcriptomic differences between case and control children prior to case progression to islet autoimmunity and uncover deficient antiviral response in children who later develop islet autoimmunity.
  •  
9.
  • Yang, J, et al. (författare)
  • Prevalence of obesity was related to HLA-DQ in 2-4-year-old children at genetic risk for type 1 diabetes.
  • 2014
  • Ingår i: International Journal of Obesity. - : Springer Science and Business Media LLC. - 1476-5497 .- 0307-0565. ; 38:12, s. 1491-1496
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives:Body size is postulated to modulate type 1 diabetes as either a trigger of islet autoimmunity or an accelerator to clinical onset after seroconversion. As overweight and obesity continue to rise among children, the aim of this study was to determine whether human leukocyte antigen DQ (HLA-DQ) genotypes may be related to body size among children genetically at risk for type 1 diabetes.Methods:Repeated measures of weight and height were collected from 5969 children 2-4 years of age enrolled in The Environmental Determinants of Diabetes in the Young prospective study. Overweight and obesity was determined by the International Obesity Task Force cutoff values that correspond to body mass index (BMI) of 25 and 30 kg m(-)(2) at age 18.Results:The average BMI was comparable across specific HLA genotypes at every age point. The proportion of overweight was not different by HLA, but percent obesity varied by age with a decreasing trend among DQ2/8 carriers (P for trend=0.0315). A multivariable regression model suggested DQ2/2 was associated with higher obesity risk at age 4 (odds ratio, 2.41; 95% confidence interval, 1.21-4.80) after adjusting for the development of islet autoantibody and/or type 1 diabetes.Conclusions:The HLA-DQ2/2 genotype may predispose to obesity among 2-4-year-old children with genetic risk for type 1 diabetes.International Journal of Obesity advance online publication, 29 April 2014; doi:10.1038/ijo.2014.55.
  •  
10.
  • Aronsson, Carin Andrén, et al. (författare)
  • Dietary Intake and Body Mass Index Influence the Risk of Islet Autoimmunity in Genetically At-Risk Children : A Mediation Analysis Using the TEDDY Cohort
  • 2023
  • Ingår i: Pediatric Diabetes. - : Hindawi Limited. - 1399-543X .- 1399-5448. ; 2023
  • Tidskriftsartikel (refereegranskat)abstract
    • Background/Objective: Growth and obesity have been associated with increased risk of islet autoimmunity (IA) and progression to type 1 diabetes. We aimed to estimate the effect of energy-yielding macronutrient intake on the development of IA through BMI. Research Design and Methods: Genetically at-risk children (n = 5,084) in Finland, Germany, Sweden, and the USA, who were autoantibody negative at 2 years of age, were followed to the age of 8 years, with anthropometric measurements and 3-day food records collected biannually. Of these, 495 (9.7%) children developed IA. Mediation analysis for time-varying covariates (BMI z-score) and exposure (energy intake) was conducted. Cox proportional hazard method was used in sensitivity analysis. Results: We found an indirect effect of total energy intake (estimates: indirect effect 0.13 [0.05, 0.21]) and energy from protein (estimates: indirect effect 0.06 [0.02, 0.11]), fat (estimates: indirect effect 0.03 [0.01, 0.05]), and carbohydrates (estimates: indirect effect 0.02 [0.00, 0.04]) (kcal/day) on the development of IA. A direct effect was found for protein, expressed both as kcal/day (estimates: direct effect 1.09 [0.35, 1.56]) and energy percentage (estimates: direct effect 72.8 [3.0, 98.0]) and the development of GAD autoantibodies (GADA). In the sensitivity analysis, energy from protein (kcal/day) was associated with increased risk for GADA, hazard ratio 1.24 (95% CI: 1.09, 1.53), p = 0.042. Conclusions: This study confirms that higher total energy intake is associated with higher BMI, which leads to higher risk of the development of IA. A diet with larger proportion of energy from protein has a direct effect on the development of GADA.
  •  
11.
  • Elding Larsson, Helena, et al. (författare)
  • Pandemrix® vaccination is not associated with increased risk of islet autoimmunity or type 1 diabetes in the TEDDY study children
  • 2018
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 61:1, s. 193-202
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: During the A/H1N1 2009 (A/California/04/2009) pandemic, mass vaccination with a squalene-containing vaccine, Pandemrix®, was performed in Sweden and Finland. The vaccination was found to cause narcolepsy in children and young adults with the HLA-DQ 6.2 haplotype. The aim of this study was to investigate if exposure to Pandemrix® similarly increased the risk of islet autoimmunity or type 1 diabetes. Methods: In The Environmental Determinants of Diabetes in the Young (TEDDY) study, children are followed prospectively for the development of islet autoimmunity and type 1 diabetes. In October 2009, when the mass vaccination began, 3401 children at risk for islet autoimmunity and type 1 diabetes were followed in Sweden and Finland. Vaccinations were recorded and autoantibodies against insulin, GAD65 and insulinoma-associated protein 2 were ascertained quarterly before the age of 4 years and semi-annually thereafter. Results: By 5 August 2010, 2413 of the 3401 (71%) children observed as at risk for an islet autoantibody or type 1 diabetes on 1 October 2009 had been vaccinated with Pandemrix®. By 31 July 2016, 232 children had at least one islet autoantibody before 10 years of age, 148 had multiple islet autoantibodies and 96 had developed type 1 diabetes. The risk of islet autoimmunity was not increased among vaccinated children. The HR (95% CI) for the appearance of at least one islet autoantibody was 0.75 (0.55, 1.03), at least two autoantibodies was 0.85 (0.57, 1.26) and type 1 diabetes was 0.67 (0.42, 1.07). In Finland, but not in Sweden, vaccinated children had a lower risk of islet autoimmunity (0.47 [0.29, 0.75]), multiple autoantibodies (0.50 [0.28, 0.90]) and type 1 diabetes (0.38 [0.20, 0.72]) compared with those who did not receive Pandemrix®. The analyses were adjusted for confounding factors. Conclusions/interpretation: Children with an increased genetic risk for type 1 diabetes who received the Pandemrix® vaccine during the A/H1N1 2009 pandemic had no increased risk of islet autoimmunity, multiple islet autoantibodies or type 1 diabetes. In Finland, the vaccine was associated with a reduced risk of islet autoimmunity and type 1 diabetes.
  •  
12.
  • Insel, Richard A, et al. (författare)
  • Staging Presymptomatic Type 1 Diabetes: A Scientific Statement of JDRF, the Endocrine Society, and the American Diabetes Association.
  • 2015
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 38:10, s. 1964-1974
  • Tidskriftsartikel (refereegranskat)abstract
    • Insights from prospective, longitudinal studies of individuals at risk for developing type 1 diabetes have demonstrated that the disease is a continuum that progresses sequentially at variable but predictable rates through distinct identifiable stages prior to the onset of symptoms. Stage 1 is defined as the presence of β-cell autoimmunity as evidenced by the presence of two or more islet autoantibodies with normoglycemia and is presymptomatic, stage 2 as the presence of β-cell autoimmunity with dysglycemia and is presymptomatic, and stage 3 as onset of symptomatic disease. Adoption of this staging classification provides a standardized taxonomy for type 1 diabetes and will aid the development of therapies and the design of clinical trials to prevent symptomatic disease, promote precision medicine, and provide a framework for an optimized benefit/risk ratio that will impact regulatory approval, reimbursement, and adoption of interventions in the early stages of type 1 diabetes to prevent symptomatic disease.
  •  
13.
  • Lee, H-S, et al. (författare)
  • Next-generation sequencing for viruses in children with rapid-onset type 1 diabetes
  • 2013
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 56:8, s. 1705-1711
  • Tidskriftsartikel (refereegranskat)abstract
    • Viruses are candidate causative agents in the pathogenesis of autoimmune (type 1) diabetes. We hypothesised that children with a rapid onset of type 1 diabetes may have been exposed to such agents shortly before the initiation of islet autoimmunity, possibly at high dose, and thus study of these children could help identify viruses involved in the development of autoimmune diabetes. We used next-generation sequencing to search for viruses in plasma samples and examined the history of infection and fever in children enrolled in The Environmental Determinants of Diabetes in the Young (TEDDY) study who progressed to type 1 diabetes within 6 months from the appearance of islet autoimmunity, and in matched islet-autoantibody-negative controls. Viruses were not detected more frequently in plasma from rapid-onset patients than in controls during the period surrounding seroconversion. In addition, infection histories were found to be similar between children with rapid-onset diabetes and control children, although episodes of fever were reported less frequently in children with rapid-onset diabetes. These findings do not support the presence of viraemia around the time of seroconversion in young children with rapid-onset type 1 diabetes.
  •  
14.
  • Lynch, Kristian F., et al. (författare)
  • Gestational respiratory infections interacting with offspring HLA and CTLA-4 modifies incident β-cell autoantibodies
  • 2018
  • Ingår i: Journal of Autoimmunity. - : Elsevier BV. - 0896-8411. ; 86, s. 93-103
  • Tidskriftsartikel (refereegranskat)abstract
    • β-cell autoantibodies against insulin (IAA), GAD65 (GADA) and IA-2 (IA-2A) precede onset of childhood type 1 diabetes (T1D). Incidence of the first appearing β-cell autoantibodies peaks at a young age and is patterned by T1D-associated genes, suggesting an early environmental influence. Here, we tested if gestational infections and interactions with child's human leukocyte antigen (HLA) and non-HLA genes affected the appearance of the first β-cell autoantibody. Singletons of mothers without diabetes (n = 7472) with T1D-associated HLA-DR-DQ genotypes were prospectively followed quarterly through the first 4 years of life, then semiannually until age 6 years, using standardized autoantibody analyses. Maternal infections during pregnancy were assessed via questionnaire 3-4.5 months post-delivery. Polymorphisms in twelve non-HLA genes associated with the first appearing β-cell autoantibodies were included in a Cox regression analysis. IAA predominated as the first appearing β-cell autoantibody in younger children (n = 226, median age at seroconversion 1.8 years) and GADA (n = 212; 3.2 years) in children aged ≥2 years. Gestational infections were not associated with the first appearing β-cell autoantibodies overall. However, gestational respiratory infections (G-RI) showed a consistent protective influence on IAA (HR 0.64, 95% CI 0.45-0.91) among CTLA4-(AG, GG) children (G-RI*. CTLA4 interaction, p = 0.002). The predominant associations of HLA-DR-DQ 4-8/8-4 with IAA and HLA-DR-DQ 3-2/3-2 with GADA were not observed if a G-RI was reported (G-RI*HLA-DR-DQ interaction, p = 0.03). The role of G-RI may depend on offspring HLA and CTLA-4 alleles and supports a bidirectional trigger for IAA or GADA as a first appearing β-cell autoantibody in early life.
  •  
15.
  • Steck, Andrea K., et al. (författare)
  • Factors Associated With the Decline of C-Peptide in a Cohort of Young Children Diagnosed With Type 1 Diabetes
  • 2021
  • Ingår i: The Journal of clinical endocrinology and metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 106:3, s. 1380-1388
  • Tidskriftsartikel (refereegranskat)abstract
    • CONTEXT: Understanding factors involved in the rate of C-peptide decline is needed to tailor therapies for type 1 diabetes (T1D). OBJECTIVE: Evaluate factors associated with rate of C-peptide decline after a T1D diagnosis in young children. DESIGN: Observational study. SETTING: Academic centers. PARTICIPANTS: A total of 57 participants from the Environmental Determinants of Diabetes in the Young (TEDDY) study who were enrolled at 3 months of age and followed until T1D, and 56 age-matched children diagnosed with T1D in the community. INTERVENTION: A mixed meal tolerance test was used to measure the area under the curve (AUC) C-peptide at 1, 3, 6, 12, and 24 months postdiagnosis. OUTCOME: Factors associated with rate of C-peptide decline during the first 2 years postdiagnosis were evaluated using mixed effects models, adjusting for age at diagnosis and baseline C-peptide. RESULTS: Adjusted slopes of AUC C-peptide decline did not differ between TEDDY subjects and community controls (P = 0.21), although the former had higher C-peptide baseline levels. In univariate analyses combining both groups (n = 113), younger age, higher weight and body mass index z-scores, female sex, an increased number increased number of islet autoantibodies, and IA-2A or ZnT8A positivity at baseline were associated with a higher rate of C-peptide loss. Younger age, female sex, and higher weight z-score remained significant in multivariate analysis (all P < 0.02). At 3 months after diagnosis, higher HbA1c became an additional independent factor associated with a higher rate of C-peptide decline (P < 0.01). CONCLUSION: Younger age at diagnosis, female sex, higher weight z-score, and HbA1c were associated with a higher rate of C-peptide decline after T1D diagnosis in young children.
  •  
16.
  • Steck, Andrea K, et al. (författare)
  • Residual beta-cell function in diabetes children followed and diagnosed in the TEDDY study compared to community controls
  • 2017
  • Ingår i: Pediatric Diabetes. - : Hindawi Limited. - 1399-543X. ; 18:8, s. 794-802
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: To explore whether children diagnosed with type 1 diabetes during islet autoantibody surveillance through The Environmental Determinants of Diabetes in the Young (TEDDY) study retain greater islet function than children diagnosed through the community. Methods: TEDDY children identified at birth with high-risk human leukocyte antigen and followed every 3months until diabetes diagnosis were compared to age-matched children diagnosed with diabetes in the community. Both participated in long-term follow up after diagnosis. Hemoglobin A1c (HbA1c) and mixed meal tolerance test were performed within 1month of diabetes onset, then at 3, 6, and 12months, and biannually thereafter. Results: Comparison of 43 TEDDY and 43 paired control children showed that TEDDY children often had no symptoms (58%) at diagnosis and none had diabetic ketoacidosis (DKA) compared with 98% with diabetes symptoms and 14% DKA in the controls (P<0.001 and P=0.03, respectively). At diagnosis, mean HbA1c was lower in TEDDY (6.8%, 51mmol/mol) than control (10.5%, 91mmol/mol) children (P<0.0001). TEDDY children had significantly higher area under the curve and peak C-peptide values than the community controls throughout the first year postdiagnosis. Total insulin dose and insulin dose-adjusted A1c were lower throughout the first year postdiagnosis for TEDDY compared with control children. Conclusions: Higher C-peptide levels in TEDDY vs community-diagnosed children persist for at least 12months following diabetes onset and appear to represent a shift in the disease process of about 6months. Symptom-free diagnosis, reduction of DKA, and the potential for immune intervention with increased baseline C-peptide may portend additional long-term benefits of early diagnosis.
  •  
17.
  • Sterner, Y, et al. (författare)
  • Country-specific birth weight and length in type 1 diabetes high-risk HLA genotypes in combination with prenatal characteristics.
  • 2011
  • Ingår i: Journal of Perinatology. - : Springer Science and Business Media LLC. - 0743-8346 .- 1476-5543. ; 31, s. 764-769
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective:To examine the relationship between high-risk human leukocyte antigen (HLA) genotypes for type 1 diabetes and birth size in combination with prenatal characteristics in different countries.Study Design:Four high-risk HLA genotypes were enrolled in the Environmental determinants of Diabetes in the Young study newborn babies from the general population in Finland, Germany, Sweden and the United States. Stepwise regression analyses were used to adjust for country, parental physical characteristics and environmental factors during pregnancy.Result:Regression analyses did not reveal differences in birth size between the four type 1 diabetes high-risk HLA genotypes. Compared with DQ 4/8 in each country, (1) DQ 2/2 children were heavier in the United States (P=0.028) mostly explained however, by parental weight; (2) DQ 2/8 (P=0.023) and DQ 8/8 (P=0.046) children were longer in Sweden independent of parents height and as well as (3) in the United States for DQ 2/8 (P=0.023), but again dependent on parental height.Conclusion:Children born with type 1 diabetes high-risk HLA genotypes have comparable birth size. Longitudinal follow-up of these children should reveal whether birth size differences between countries contribute to the risk for islet autoimmunity and type 1 diabetes.Journal of Perinatology advance online publication, 28 April 2011; doi:10.1038/jp.2011.26.
  •  
18.
  • Warncke, Katharina, et al. (författare)
  • The Influence of Pubertal Development on Autoantibody Appearance and Progression to Type 1 Diabetes in the TEDDY Study
  • 2024
  • Ingår i: Journal of the Endocrine Society. - 2472-1972. ; 8:7
  • Tidskriftsartikel (refereegranskat)abstract
    • CONTEXT: The 2 peaks of type 1 diabetes incidence occur during early childhood and puberty.OBJECTIVE: We sought to better understand the relationship between puberty, islet autoimmunity, and type 1 diabetes.METHODS: The relationships between puberty, islet autoimmunity, and progression to type 1 diabetes were investigated prospectively in children followed in The Environmental Determinants of Diabetes in the Young (TEDDY) study. Onset of puberty was determined by subject self-assessment of Tanner stages. Associations between speed of pubertal progression, pubertal growth, weight gain, homeostasis model assessment of insulin resistance (HOMA-IR), islet autoimmunity, and progression to type 1 diabetes were assessed. The influence of individual factors was analyzed using Cox proportional hazard ratios.RESULTS: Out of 5677 children who were still in the study at age 8 years, 95% reported at least 1 Tanner Stage score and were included in the study. Children at puberty (Tanner Stage ≥2) had a lower risk (HR 0.65, 95% CI 0.45-0.93; P = .019) for incident autoimmunity than prepubertal children (Tanner Stage 1). An increase of body mass index Z-score was associated with a higher risk (HR 2.88, 95% CI 1.61-5.15; P < .001) of incident insulin autoantibodies. In children with multiple autoantibodies, neither HOMA-IR nor rate of progression to Tanner Stage 4 were associated with progression to type 1 diabetes. CONCLUSION: Rapid weight gain during puberty is associated with development of islet autoimmunity. Puberty itself had no significant influence on the appearance of autoantibodies or type 1 diabetes. Further studies are needed to better understand the underlying mechanisms.
  •  
19.
  • Andrén Aronsson, Carin, et al. (författare)
  • 25(OH)D Levels in Infancy Is Associated With Celiac Disease Autoimmunity in At-Risk Children : A Case–Control Study
  • 2021
  • Ingår i: Frontiers in Nutrition. - : Frontiers Media SA. - 2296-861X. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: An observed variation in the risk of celiac disease, according to the season of birth, suggests that vitamin D may affect the development of the disease. The aim of this study was to investigate if vitamin D concentration is associated with the risk of celiac disease autoimmunity (CDA) in genetically at-risk children. Study Design: Children prospectively followed in the multinational The Environmental Determinants of Diabetes in the Young study, conducted at six centers in Europe and the US, were selected for a 1-to-3 nested case–control study. In total, 281 case–control sets were identified. CDA was defined as positivity for tissue transglutaminase autoantibodies (tTGA) on two or more consecutive visits. Vitamin D was measured as 25-hydroxyvitamin D [25(OH)D] concentrations in all plasma samples prior to, and including, the first tTGA positive visit. Conditional logistic regression was used to examine the association between 25(OH)D and risk of CDA. Results: No significant association was seen between 25(OH)D concentrations (per 5 nmol/L increase) and risk for CDA development during early infancy (odds ratio [OR] 0.99, 95% confidence interval [CI] 0.95–1.04) or childhood (OR 1.02, 95% CI 0.97–1.07). When categorizing 25(OH)D concentrations, there was an increased risk of CDA with 25(OH)D concentrations <30 nmol/L (OR 2.23, 95% CI 1.29, 3.84) and >75 nmol/L (OR 2.10, 95% CI 1.28–3.44) in early infancy, as compared with 50–75 nmol/L. Conclusion: This study indicates that 25(OH)D concentrations <30 nmol/L and >75 nmol/L during early infancy were associated with an increased risk of developing CDA in genetically at-risk children. The non-linear relationship raises the need for more studies on the possible role of 25(OH)D in the relation to celiac disease onset.
  •  
20.
  • Andrén Aronsson, Carin, et al. (författare)
  • Association of gluten intake during the first 5 years of life with incidence of celiac disease autoimmunity and celiac disease among children at increased risk
  • 2019
  • Ingår i: JAMA - Journal of the American Medical Association. - : American Medical Association (AMA). - 0098-7484. ; 322:6, s. 514-523
  • Tidskriftsartikel (refereegranskat)abstract
    • Importance: High gluten intake during childhood may confer risk of celiac disease. Objectives: To investigate if the amount of gluten intake is associated with celiac disease autoimmunity and celiac disease in genetically at-risk children. Design, Setting, and Participants: The participants in The Environmental Determinants of Diabetes in the Young (TEDDY), a prospective observational birth cohort study designed to identify environmental triggers of type 1 diabetes and celiac disease, were followed up at 6 clinical centers in Finland, Germany, Sweden, and the United States. Between 2004 and 2010, 8676 newborns carrying HLA antigen genotypes associated with type 1 diabetes and celiac disease were enrolled. Screening for celiac disease with tissue transglutaminase autoantibodies was performed annually in 6757 children from the age of 2 years. Data on gluten intake were available in 6605 children (98%) by September 30, 2017. Exposures: Gluten intake was estimated from 3-day food records collected at ages 6, 9, and 12 months and biannually thereafter until the age of 5 years. Main Outcomes and Measures: The primary outcome was celiac disease autoimmunity, defined as positive tissue transglutaminase autoantibodies found in 2 consecutive serum samples. The secondary outcome was celiac disease confirmed by intestinal biopsy or persistently high tissue transglutaminase autoantibody levels. Results: Of the 6605 children (49% females; median follow-up: 9.0 years [interquartile range, 8.0-10.0 years]), 1216 (18%) developed celiac disease autoimmunity and 447 (7%) developed celiac disease. The incidence for both outcomes peaked at the age of 2 to 3 years. Daily gluten intake was associated with higher risk of celiac disease autoimmunity for every 1-g/d increase in gluten consumption (hazard ratio [HR], 1.30 [95% CI, 1.22-1.38]; absolute risk by the age of 3 years if the reference amount of gluten was consumed, 28.1%; absolute risk if gluten intake was 1-g/d higher than the reference amount, 34.2%; absolute risk difference, 6.1% [95% CI, 4.5%-7.7%]). Daily gluten intake was associated with higher risk of celiac disease for every 1-g/d increase in gluten consumption (HR, 1.50 [95% CI, 1.35-1.66]; absolute risk by age of 3 years if the reference amount of gluten was consumed, 20.7%; absolute risk if gluten intake was 1-g/d higher than the reference amount, 27.9%; absolute risk difference, 7.2% [95% CI, 6.1%-8.3%]). Conclusions and Relevance: Higher gluten intake during the first 5 years of life was associated with increased risk of celiac disease autoimmunity and celiac disease among genetically predisposed children.
  •  
21.
  •  
22.
  • Beyerlein, Andreas, et al. (författare)
  • Progression from islet autoimmunity to clinical type 1 diabetes is influenced by genetic factors : Results from the prospective TEDDY study
  • 2019
  • Ingår i: Journal of Medical Genetics. - : BMJ. - 0022-2593 .- 1468-6244. ; 56:9, s. 602-605
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Progression time from islet autoimmunity to clinical type 1 diabetes is highly variable and the extent that genetic factors contribute is unknown. Methods: In 341 islet autoantibody-positive children with the human leucocyte antigen (HLA) DR3/DR4-DQ8 or the HLA DR4-DQ8/DR4-DQ8 genotype from the prospective TEDDY (The Environmental Determinants of Diabetes in the Young) study, we investigated whether a genetic risk score that had previously been shown to predict islet autoimmunity is also associated with disease progression. Results: Islet autoantibody-positive children with a genetic risk score in the lowest quartile had a slower progression from single to multiple autoantibodies (p=0.018), from single autoantibodies to diabetes (p=0.004), and by trend from multiple islet autoantibodies to diabetes (p=0.06). In a Cox proportional hazards analysis, faster progression was associated with an increased genetic risk score independently of HLA genotype (HR for progression from multiple autoantibodies to type 1 diabetes, 1.27, 95% CI 1.02 to 1.58 per unit increase), an earlier age of islet autoantibody development (HR, 0.68, 95% CI 0.58 to 0.81 per year increase in age) and female sex (HR, 1.94, 95% CI 1.28 to 2.93). Conclusions: Genetic risk scores may be used to identify islet autoantibody-positive children with high-risk HLA genotypes who have a slow rate of progression to subsequent stages of autoimmunity and type 1 diabetes.
  •  
23.
  • Bonifacio, Ezio, et al. (författare)
  • An Age-Related Exponential Decline in the Risk of Multiple Islet Autoantibody Seroconversion During Childhood
  • 2021
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 44:10, s. 2260-2268
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Islet autoimmunity develops before clinical type 1 diabetes and includes multiple and single autoantibody phenotypes. The objective was to determine age-related risks of islet autoantibodies that reflect etiology and improve screening for presymptomatic type 1 diabetes.RESEARCH DESIGN AND METHODS: The Environmental Determinants of Diabetes in the Young study prospectively monitored 8,556 genetically at-risk children at 3- to 6-month intervals from birth for the development of islet autoantibodies and type 1 diabetes. The age-related change in the risk of developing islet autoantibodies was determined using landmark and regression models.RESULTS: The 5-year risk of developing multiple islet autoantibodies was 4.3% (95% CI 3.8-4.7) at 7.5 months of age and declined to 1.1% (95% CI 0.8-1.3) at a landmark age of 6.25 years (P < 0.0001). Risk decline was slight or absent in single insulin and GAD autoantibody phenotypes. The influence of sex, HLA, and other susceptibility genes on risk subsided with increasing age and was abrogated by age 6 years. Highest sensitivity and positive predictive value of multiple islet autoantibody phenotypes for type 1 diabetes was achieved by autoantibody screening at 2 years and again at 5-7 years of age.CONCLUSIONS: The risk of developing islet autoimmunity declines exponentially with age, and the influence of major genetic factors on this risk is limited to the first few years of life.
  •  
24.
  • Bonifacio, Ezio, et al. (författare)
  • Genetic scores to stratify risk of developing multiple islet autoantibodies and type 1 diabetes : A prospective study in children
  • 2018
  • Ingår i: PLoS Medicine. - : Public Library of Science (PLoS). - 1549-1676. ; 15:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Around 0.3% of newborns will develop autoimmunity to pancreatic beta cells in childhood and subsequently develop type 1 diabetes before adulthood. Primary prevention of type 1 diabetes will require early intervention in genetically at-risk infants. The objective of this study was to determine to what extent genetic scores (two previous genetic scores and a merged genetic score) can improve the prediction of type 1 diabetes. Methods and findings: The Environmental Determinants of Diabetes in the Young (TEDDY) study followed genetically at-risk children at 3- to 6-monthly intervals from birth for the development of islet autoantibodies and type 1 diabetes. Infants were enrolled between 1 September 2004 and 28 February 2010 and monitored until 31 May 2016. The risk (positive predictive value) for developing multiple islet autoantibodies (pre-symptomatic type 1 diabetes) and type 1 diabetes was determined in 4,543 children who had no first-degree relatives with type 1 diabetes and either a heterozygous HLA DR3 and DR4-DQ8 risk genotype or a homozygous DR4-DQ8 genotype, and in 3,498 of these children in whom genetic scores were calculated from 41 single nucleotide polymorphisms. In the children with the HLA risk genotypes, risk for developing multiple islet autoantibodies was 5.8% (95% CI 5.0%–6.6%) by age 6 years, and risk for diabetes by age 10 years was 3.7% (95% CI 3.0%–4.4%). Risk for developing multiple islet autoantibodies was 11.0% (95% CI 8.7%–13.3%) in children with a merged genetic score of >14.4 (upper quartile; n = 907) compared to 4.1% (95% CI 3.3%–4.9%, P < 0.001) in children with a genetic score of ≤14.4 (n = 2,591). Risk for developing diabetes by age 10 years was 7.6% (95% CI 5.3%–9.9%) in children with a merged score of >14.4 compared with 2.7% (95% CI 1.9%–3.6%) in children with a score of ≤14.4 (P < 0.001). Of 173 children with multiple islet autoantibodies by age 6 years and 107 children with diabetes by age 10 years, 82 (sensitivity, 47.4%; 95% CI 40.1%–54.8%) and 52 (sensitivity, 48.6%, 95% CI 39.3%–60.0%), respectively, had a score >14.4. Scores were higher in European versus US children (P = 0.003). In children with a merged score of >14.4, risk for multiple islet autoantibodies was similar and consistently >10% in Europe and in the US; risk was greater in males than in females (P = 0.01). Limitations of the study include that the genetic scores were originally developed from case–control studies of clinical diabetes in individuals of mainly European decent. It is, therefore, possible that it may not be suitable to all populations. Conclusions: A type 1 diabetes genetic score identified infants without family history of type 1 diabetes who had a greater than 10% risk for pre-symptomatic type 1 diabetes, and a nearly 2-fold higher risk than children identified by high-risk HLA genotypes alone. This finding extends the possibilities for enrolling children into type 1 diabetes primary prevention trials.
  •  
25.
  • Endesfelder, David, et al. (författare)
  • Time-resolved autoantibody profiling facilitates stratification of preclinical type 1 diabetes in children
  • 2019
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 68:1, s. 119-130
  • Tidskriftsartikel (refereegranskat)abstract
    • Progression to clinical type 1 diabetes varies among children who develop b-cell autoantibodies. Differences in autoantibody patterns could relate to disease progression and etiology. Here we modeled complex longitudinal autoantibody profiles by using a novel wavelet-based algorithm. We identified clusters of similar profiles associated with various types of progression among 600 children from The Environmental Determinants of Diabetes in the Young (TEDDY) birth cohort study; these children developed persistent insulin autoantibodies (IAA), GAD autoantibodies (GADA), insulinoma-associated antigen 2 autoantibodies (IA-2A), or a combination of these, and they were followed up prospectively at 3- to 6-month intervals (median follow-up 6.5 years). Children who developed multiple autoantibody types (n = 370) were clustered, and progression from seroconversion to clinical diabetes within 5 years ranged between clusters from 6% (95% CI 0, 17.4) to 84% (59.2, 93.6). Children who seroconverted early in life (median age <2 years) and developed IAA and IA-2A that were stable-positive on follow-up had the highest risk of diabetes, and this risk was unaffected by GADA status. Clusters of children who lacked stable-positive GADA responses contained more boys and lower frequencies of the HLA-DR3 allele. Our novel algorithm allows refined grouping of b-cell autoantibody–positive children who distinctly progressed to clinical type 1 diabetes, and it provides new opportunities in searching for etiological factors and elucidating complex disease mechanisms.
  •  
26.
  • Hagopian, William A., et al. (författare)
  • TEDDY- The environmental determinants of diabetes in the young - An observational clinical trial
  • 2006
  • Ingår i: Annals of the New York Academy of Sciences. - : Wiley. - 0077-8923. ; 1079, s. 320-326
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of the TEDDY study is to identify infectious agents, dietary factors, or other environmental agents, including psychosocial factors, which may either trigger islet autoimmunity, type 1 diabetes mellitus (T1DM), or both. The study has two end points: (a) appearance of islet autoantibodies and (b) clinical diagnosis of T1DM. Six clinical centers screen newborns for high-risk HLA genotypes. As of December 2005 a total of 54,470 newborns have been screened. High-risk HLA genotypes among 53,560 general population (GP) infants were 2576 (4.8%) and among 910 newborns with a first-degree relative (FDR) were 194 (21%). A total of 1061 children have been enrolled. The initial enrollment results demonstrate the feasibility of this complex and demanding a prospective study.
  •  
27.
  • Hakola, Leena, et al. (författare)
  • Intake of B vitamins and the risk of developing islet autoimmunity and type 1 diabetes in the TEDDY study
  • Ingår i: European Journal of Nutrition. - 1436-6215.
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: The aim was to study the association between dietary intake of B vitamins in childhood and the risk of islet autoimmunity (IA) and progression to type 1 diabetes (T1D) by the age of 10 years.METHODS: We followed 8500 T1D-susceptible children born in the U.S., Finland, Sweden, and Germany in 2004 -2010 from the Environmental Determinants of Diabetes in the Young (TEDDY) study, which is a prospective observational birth cohort. Dietary intake of seven B vitamins was calculated from foods and dietary supplements based on 24-h recall at 3 months and 3-day food records collected regularly from 6 months to 10 years of age. Cox proportional hazard models were adjusted for energy, HLA-genotype, first-degree relative with T1D, sex, and country.RESULTS: A total of 778 (9.2) children developed at least one autoantibody (any IA), and 335 (3.9%) developed multiple autoantibodies. 280 (3.3%) children had IAA and 319 (3.8%) GADA as the first autoantibody. 344 (44%) children with IA progressed to T1D. We observed that higher intake of niacin was associated with a decreased risk of developing multiple autoantibodies (HR 0.95; 95% CI 0.92, 0.98) per 1 mg/1000 kcal in niacin intake. Higher intake of pyridoxine (HR 0.66; 95% CI 0.46, 0.96) and vitamin B12 (HR 0.87; 95% CI 0.77, 0.97) was associated with a decreased risk of IAA-first autoimmunity. Higher intake of riboflavin (HR 1.38; 95% CI 1.05, 1.80) was associated with an increased risk of GADA-first autoimmunity. There were no associations between any of the B vitamins and the outcomes "any IA" and progression from IA to T1D. CONCLUSION: In this multinational, prospective birth cohort of children with genetic susceptibility to T1D, we observed some direct and inverse associations between different B vitamins and risk of IA.
  •  
28.
  • Hippich, Markus, et al. (författare)
  • Genetic contribution to the divergence in type 1 diabetes risk between children from the general population and children from affected families
  • 2019
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 68:4, s. 847-857
  • Tidskriftsartikel (refereegranskat)abstract
    • The risk for autoimmunity and subsequently type 1 diabetes is 10-fold higher in children with a first-degree family history of type 1 diabetes (FDR children) than in children in the general population (GP children). We analyzed children with high-risk HLA genotypes (n = 4,573) in the longitudinal TEDDY birth cohort to determine how much of the divergent risk is attributable to genetic enrichment in affected families. Enrichment for susceptible genotypes of multiple type 1 diabetes–associated genes and a novel risk gene, BTNL2, was identified in FDR children compared with GP children. After correction for genetic enrichment, the risks in the FDR and GP children converged but were not identical for multiple islet autoantibodies (hazard ratio [HR] 2.26 [95% CI 1.6–3.02]) and for diabetes (HR 2.92 [95% CI 2.05–4.16]). Convergence varied depending upon the degree of genetic susceptibility. Risks were similar in the highest genetic susceptibility group for multiple islet autoantibodies (14.3% vs .12.7%) and diabetes (4.8% vs. 4.1%) and were up to 5.8-fold divergent for children in the lowest genetic susceptibility group, decreasing incrementally in GP children but not in FDR children. These findings suggest that additional factors enriched within affected families preferentially increase the risk of autoimmunity and type 1 diabetes in lower genetic susceptibility strata.
  •  
29.
  • Hummel, Sandra, et al. (författare)
  • Associations of breastfeeding with childhood autoimmunity, allergies, and overweight : The Environmental Determinants of Diabetes in the Young (TEDDY) study
  • 2021
  • Ingår i: The American journal of clinical nutrition. - : Elsevier BV. - 1938-3207 .- 0002-9165. ; 114:1, s. 134-142
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Breastfeeding has beneficial effects on numerous health outcomes.OBJECTIVES: We investigated whether breastfeeding duration is associated with the development of early childhood autoimmunity, allergies, or obesity in a multinational prospective birth cohort.METHODS: Infants with genetic susceptibility for type 1 diabetes (n = 8676) were followed for the development of autoantibodies to islet autoantigens or transglutaminase, allergies, and for anthropometric measurements to a median age of 8.3 y (IQR: 2.8-10.2 y). Information on breastfeeding was collected at 3 mo of age and prospectively thereafter. A propensity score for longer breastfeeding was calculated from the variables that were likely to influence any or exclusive breastfeeding. The risks of developing autoimmunity or allergy were assessed using Cox proportional hazards models, and the risk of obesity at 5.5 y of age was assessed using logistic regression with adjustment by the propensity score.RESULTS: Breastfeeding duration was not associated with a lower risk of either islet or transglutaminase autoimmunity (any breastfeeding >6 mo, adjusted HR: 1.07; 95% CI: 0.96, 1.19; exclusive breastfeeding >3 mo, adjusted HR: 1.03; 95% CI: 0.92, 1.15). Exclusive breastfeeding >3 mo was associated with a decreased risk of seasonal allergic rhinitis (adjusted HR: 0.70; 95% CI: 0.53, 0.92; P < 0.01). Any breastfeeding >6 mo and exclusive breastfeeding >3 mo were associated with decreased risk of obesity (adjusted OR: 0.62; 95% CI: 0.47, 0.81; P < 0.001; and adjusted OR: 0.68; 95% CI: 0.47, 0.95; P < 0.05, respectively).CONCLUSIONS: Longer breastfeeding was not associated with a lower risk of childhood (islet or transglutaminase) autoimmunity in genetically at-risk children but was associated with decreased risk of seasonal allergic rhinitis and obesity at 5.5 y of age.
  •  
30.
  • Hummel, Sandra, et al. (författare)
  • First infant formula type and risk of islet autoimmunity in the environmental determinants of diabetes in the young (TEDDY) study
  • 2017
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 0149-5992 .- 1935-5548. ; 40:3, s. 398-404
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE Studies on the introduction of infant formulas and its effect on the risk of islet autoimmunity and type 1 diabetes (T1D) have yielded inconsistent results. We investigated whether the introduction of formula based on hydrolyzed cow'smilk as the first formula is associated with reduced islet autoimmunity risk in a large prospective cohort. RESEARCH DESIGN AND METHODS The Environmental Determinants of Diabetes in the Young (TEDDY) study prospectively monitors 8,676 children at increased genetic risk for T1D. Autoantibodies to insulin, GAD65, and IA2 were measured regularly to define islet autoimmunity. Information on formula feeding was collected by questionnaires at 3 months of age. RESULTS In survival analyses, after adjustment for family history with T1D, HLA genotype, sex, country, delivery mode, breast-feeding 3 months, and seasonality of birth, we observed no significant association with islet autoimmunity in infants who received extensively hydrolyzed compared with nonhydrolyzed cow'smilk-based formula as the first formula during the first 3 months (adjusted hazard ratio 1.38 [95% CI 0.95; 2.01]), and a significantly increased risk for extensively hydrolyzed formula introduced during the first 7 days (adjusted hazard ratio 1.57 [1.04; 2.38]). Using a partially hydrolyzed or other formula as the first formula, or no formula, was not associated with islet autoimmunity risk. CONCLUSIONS These results add to the existing evidence that islet autoimmunity risk is not reduced, and may be increased, by using hydrolyzed compared with nonhydrolyzed cow's milk-based infant formula as the first formula in infants at increased genetic risk for T1D .
  •  
31.
  • Jacobsen, Laura M., et al. (författare)
  • Heterogeneity of DKA Incidence and Age-Specific Clinical Characteristics in Children Diagnosed With Type 1 Diabetes in the TEDDY Study
  • 2022
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 0149-5992. ; 45:3, s. 624-633
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE The Environmental Determinants of Diabetes in the Young (TEDDY) study is uniquely capable of investigating age-specific differences associated with type 1 diabetes. Because age is a primary driver of heterogeneity in type 1 diabetes, we sought to characterize by age metabolic derangements prior to diagnosis and clinical features associated with diabetic ketoacidosis (DKA). RESEARCH DESIGN AND METHODS The 379 TEDDY children who developed type 1 diabetes were grouped by age at onset (0–4, 5–9, and 10–14 years; n = 142, 151, and 86, respectively) with com-parisons of autoantibody profiles, HLAs, family history of diabetes, presence of DKA, symptomatology at onset, and adherence to TEDDY protocol. Time-varying analysis compared those with oral glucose tolerance test data with TEDDY children who did not progress to diabetes. RESULTS Increasing fasting glucose (hazard ratio [HR] 1.09 [95% CI 1.04–1.14]; P = 0.0003), stimulated glucose (HR 1.50 [1.42–1.59]; P < 0.0001), fasting insulin (HR 0.89 [0.83–0.95]; P = 0.0009), and glucose-to-insulin ratio (HR 1.29 [1.16–1.43]; P < 0.0001) were associated with risk of progression to type 1 diabetes. Younger children had fewer autoantibodies with more symptoms at diagnosis. Twenty-three children (6.1%) had DKA at onset, only 1 (0.97%) of 103 with and 22 (8.0%) of 276 children without a first-degree relative (FDR) with type 1 diabetes (P = 0.008). Children with DKA were more likely to be nonadherent to study protocol (P = 0.047), with longer duration between their last TEDDY evaluation and diagnosis (median 10.2 vs. 2.0 months without DKA; P < 0.001). CONCLUSIONS DKA at onset in TEDDY is uncommon, especially for FDRs. For those without familial risk, metabolic monitoring continues to provide a primary benefit of reduced DKA but requires regular follow-up. Clinical and laboratory features vary by age at onset, adding to the heterogeneity of type 1 diabetes.
  •  
32.
  • Jacobsen, Laura M., et al. (författare)
  • Predicting progression to type 1 diabetes from ages 3 to 6 in islet autoantibody positive TEDDY children
  • 2019
  • Ingår i: Pediatric Diabetes. - : Hindawi Limited. - 1399-543X .- 1399-5448. ; 20:3, s. 263-270
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: The capacity to precisely predict progression to type 1 diabetes (T1D) in young children over a short time span is an unmet need. We sought to develop a risk algorithm to predict progression in children with high-risk human leukocyte antigen (HLA) genes followed in The Environmental Determinants of Diabetes in the Young (TEDDY) study. Methods: Logistic regression and 4-fold cross-validation examined 38 candidate predictors of risk from clinical, immunologic, metabolic, and genetic data. TEDDY subjects with at least one persistent, confirmed autoantibody at age 3 were analyzed with progression to T1D by age 6 serving as the primary endpoint. The logistic regression prediction model was compared to two non-statistical predictors, multiple autoantibody status, and presence of insulinoma-associated-2 autoantibodies (IA-2A). Results: A total of 363 subjects had at least one autoantibody at age 3. Twenty-one percent of subjects developed T1D by age 6. Logistic regression modeling identified 5 significant predictors - IA-2A status, hemoglobin A1c, body mass index Z-score, single-nucleotide polymorphism rs12708716_G, and a combination marker of autoantibody number plus fasting insulin level. The logistic model yielded a receiver operating characteristic area under the curve (AUC) of 0.80, higher than the two other predictors; however, the differences in AUC, sensitivity, and specificity were small across models. Conclusions: This study highlights the application of precision medicine techniques to predict progression to diabetes over a 3-year window in TEDDY subjects. This multifaceted model provides preliminary improvement in prediction over simpler prediction tools. Additional tools are needed to maximize the predictive value of these approaches.
  •  
33.
  •  
34.
  • Krischer, Jeffrey P., et al. (författare)
  • Characteristics of children diagnosed with type 1 diabetes before vs after 6 years of age in the TEDDY cohort study
  • 2021
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 64:10, s. 2247-2257
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: Prognostic factors and characteristics of children diagnosed with type 1 diabetes before 6 years of age were compared with those diagnosed at 6-13 years of age in the TEDDY study.METHODS: Genetically high-risk children (n = 8502) were followed from birth for a median of 9.9 years; 328 (3.9%) were diagnosed with type 1 diabetes. Cox proportional hazard model was used to assess the association of prognostic factors with the risk of type 1 diabetes in the two age groups.RESULTS: Children in the younger group tended to develop autoantibodies earlier than those in the older group did (mean age 1.5 vs 3.5 years), especially insulin autoantibodies (IAA), which developed earlier than GAD autoantibodies (GADA). Children in the younger group also progressed to diabetes more rapidly than the children in the older group did (mean duration 1.9 vs 5.4 years). Children with autoantibodies first appearing against insulinoma antigen-2 (IA-2A) were found only in the older group. The significant diabetes risk associated with the country of origin in the younger group was no longer significant in the older group. Conversely, the diabetes risk associated with HLA genotypes was statistically significant also in the older group. Initial seroconversion after and before 2 years of age was associated with decreased risk for diabetes diagnosis in children positive for multiple autoantibodies, but the diabetes risk did not decrease further with increasing age if initial seroconversion occurred after age 2. Diabetes risk associated with the minor alleles of rs1004446 (INS) was decreased in both the younger and older groups compared with other genotypes (HR 0.67). Diabetes risk was significantly increased with the minor alleles of rs2476601 (PTPN22) (HR 2.04 and 1.72), rs428595 (PPIL2) (HR 2.13 and 2.10), rs113306148 (PLEKHA1) (HR 2.34 and 2.21) and rs73043122 (RNASET2) (HR 2.31 and 2.54) (HR values represent the younger and older groups, respectively).CONCLUSIONS/INTERPRETATIONS: Diabetes at an early age is likely to be preceded by IAA autoantibodies and is a more aggressive form of the disease. Among older children, once multiple autoantibodies have been observed there does not seem to be any association between progression to diabetes and the age of the child or family history.TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT00279318.
  •  
35.
  • Krischer, Jeffrey P., et al. (författare)
  • Genetic and environmental interactions modify the risk of diabetes-related autoimmunity by 6 years of age : The teddy study
  • 2017
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 0149-5992 .- 1935-5548. ; 40:9, s. 1194-1202
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE We tested the associations between genetic background and selected environmental exposures with respect to islet autoantibodies and type 1 diabetes. RESEARCH DESIGN AND METHODS Infants with HLA-DR high-risk genotypes were prospectively followed for diabetesrelated autoantibodies. Single nucleotide polymorphisms (SNPs) came from the Illumina ImmunoChip and environmental exposure data were by parental report. Children were followed to age 6 years. RESULTS Insulin autoantibodies occurred earlier than GAD antibody (GADA) and then declined, while GADA incidence rose and remained constant (significant in HLA-DR4 but not in the DR3/3 children). The presence of SNPs rs2476601 (PTPN22) and rs2292239 (ERBB3) demonstrated increased risk of both autoantibodies to insulin (IAA) only and GADA only. SNP rs689 (INS) was protective of IAA only, but not of GADA only. The rs3757247 (BACH2) SNP demonstrated increased risk of GADA only. Male sex, father or sibling as the diabetic proband, introduction of probiotics under 28 days of age, and weight at age 12 monthswere associated with IAA only, but only father as the diabetic proband and weight at age 12 months were associated with GADA only. Mother as the diabetic proband was not a significant risk factor. CONCLUSIONS These results show clear differences in the initiation of autoimmunity according to genetic factors and environmental exposures that give rise to IAAorGADA as the first appearing indication of autoimmunity.
  •  
36.
  • Krischer, Jeffrey P, et al. (författare)
  • Predicting Islet Cell Autoimmunity and Type 1 Diabetes : An 8-Year TEDDY Study Progress Report
  • 2019
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 42:6, s. 1051-1060
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Assessment of the predictive power of The Environmental Determinants of Diabetes in the Young (TEDDY)-identified risk factors for islet autoimmunity (IA), the type of autoantibody appearing first, and type 1 diabetes (T1D).RESEARCH DESIGN AND METHODS: A total of 7,777 children were followed from birth to a median of 9.1 years of age for the development of islet autoantibodies and progression to T1D. Time-dependent sensitivity, specificity, and receiver operating characteristic (ROC) curves were calculated to provide estimates of their individual and collective ability to predict IA and T1D.RESULTS: HLA genotype (DR3/4 vs. others) was the best predictor for IA (Youden's index J = 0.117) and single nucleotide polymorphism rs2476601, in PTPN22, was the best predictor for insulin autoantibodies (IAA) appearing first (IAA-first) (J = 0.123). For GAD autoantibodies (GADA)-first, weight at 1 year was the best predictor (J = 0.114). In a multivariate model, the area under the ROC curve (AUC) was 0.678 (95% CI 0.655, 0.701), 0.707 (95% CI 0.676, 0.739), and 0.686 (95% CI 0.651, 0.722) for IA, IAA-first, and GADA-first, respectively, at 6 years. The AUC of the prediction model for T1D at 3 years after the appearance of multiple autoantibodies reached 0.706 (95% CI 0.649, 0.762).CONCLUSIONS: Prediction modeling statistics are valuable tools, when applied in a time-until-event setting, to evaluate the ability of risk factors to discriminate between those who will and those who will not get disease. Although significantly associated with IA and T1D, the TEDDY risk factors individually contribute little to prediction. However, in combination, these factors increased IA and T1D prediction substantially.
  •  
37.
  • Krischer, Jeffrey P, et al. (författare)
  • Predictors of the Initiation of Islet Autoimmunity and Progression to Multiple Autoantibodies and Clinical Diabetes : The TEDDY Study
  • 2022
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 45:10, s. 2271-2281
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: To distinguish among predictors of seroconversion, progression to multiple autoantibodies and from multiple autoantibodies to type 1 diabetes in young children.RESEARCH DESIGN AND METHODS: Genetically high-risk newborns (n = 8,502) were followed for a median of 11.2 years (interquartile range 9.3-12.6); 835 (9.8%) developed islet autoantibodies and 283 (3.3%) were diagnosed with type 1 diabetes. Predictors were examined using Cox proportional hazards models.RESULTS: Predictors of seroconversion and progression differed, depending on the type of first appearing autoantibody. Male sex, Finnish residence, having a sibling with type 1 diabetes, the HLA DR4 allele, probiotic use before age 28 days, and single nucleotide polymorphism (SNP) rs689_A (INS) predicted seroconversion to IAA-first (having islet autoantibody to insulin as the first appearing autoantibody). Increased weight at 12 months and SNPs rs12708716_G (CLEC16A) and rs2292239_T (ERBB3) predicted GADA-first (autoantibody to GAD as the first appearing). For those having a father with type 1 diabetes, the SNPs rs2476601_A (PTPN22) and rs3184504_T (SH2B3) predicted both. Younger age at seroconversion predicted progression from single to multiple autoantibodies as well as progression to diabetes, except for those presenting with GADA-first. Family history of type 1 diabetes and the HLA DR4 allele predicted progression to multiple autoantibodies but not diabetes. Sex did not predict progression to multiple autoantibodies, but males progressed more slowly than females from multiple autoantibodies to diabetes. SKAP2 and MIR3681HG SNPs are newly reported to be significantly associated with progression from multiple autoantibodies to type 1 diabetes.CONCLUSIONS: Predictors of IAA-first versus GADA-first autoimmunity differ from each other and from the predictors of progression to diabetes.
  •  
38.
  •  
39.
  • Krischer, Jeffrey P., et al. (författare)
  • The 6 year incidence of diabetes-associated autoantibodies in genetically at-risk children: the TEDDY study
  • 2015
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 58:5, s. 980-987
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis Islet autoantibodies, in addition to elevated blood glucose, define type 1 diabetes. These autoantibodies are detectable for a variable period of time before diabetes onset. Thus, the occurrence of islet autoantibodies is associated with the beginning of the disease process. The age at, and order in, which autoantibodies appear may be associated with different genetic backgrounds or environmental exposures, or both. Methods Infants with HLA-DR high-risk genotypes (DR3/4, DR4/4, DR4/8 and DR3/3) were enrolled and prospectively followed with standardised autoantibody assessments quarterly throughout the first 4 years of life and then semi-annually thereafter. Results Autoantibodies appeared in 549/8,503 (6.5%) children during 34,091 person-years of follow-up. Autoantibodies at 3 (0.1%) and 6 (0.2%) months of age were rare. Of the 549, 43.7% had islet autoantibodies to insulin (IAA) only, 37.7% had glutamic acid decarboxylase autoantibodies (GADA) only, 13.8% had both GADA and IAA only, 1.6% had insulinoma antigen-2 only and 3.1% had other combinations. The incidence of IAA only peaked within the first year of life and declined over the following 5 years, but GADA only increased until the second year and remained relatively constant. GADA only were more common than IAA only in HLA-DR3/3 children but less common in HLA-DR4/8 children. Conclusions/interpretation Islet autoantibodies can occur very early in life and the order of appearance was related to HLA-DR-DQ genotype.
  •  
40.
  • Krischer, Jeffrey P., et al. (författare)
  • The Influence of Type 1 Diabetes Genetic Susceptibility Regions, Age, Sex, and Family History to the Progression from Multiple Autoantibodies to Type 1 Diabetes:A TEDDY Study Report : A TEDDY Study Report
  • 2017
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 66:12, s. 3122-3129
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper seeks to determine whether factors related to autoimmunity risk remain significant after the initiation of two or more diabetes-related autoantibodies and continue to contribute to T1D risk among autoantibody positive children in The Environmental Determinants of Diabetes in the Young (TEDDY) study. Characteristics included are age at multiple autoantibody positivity, sex, selected high-risk HLA-DR-DQ genotypes, relationship to a family member with T1D, autoantibody at seroconversion, INS gene (rs1004446_A), and non-HLA gene polymorphisms identified by the Type 1 Diabetes Genetics Consortium. The risk of progression to T1D was not different among those with or without a family history of T1D (p=0.39) nor HLA-DR-DQ genotypes (p=0.74). Age at developing multiple autoantibodies (HR=0.96 per 1 month increase in age, 95% CI=0.95, 0.97, p<0.001) and the type of first autoantibody (when more than a single autoantibody was the first appearing indication of seroconversion [p=0.006]) were statistically significant. Female sex was also a significant risk factor (p=0.03). Three SNPs were associated with increased diabetes risk (rs10517086_A, [p=0.03], rs1534422_G, [p=0.006], and rs2327832_G in TNFAIP3 [p=0.03]), and one with decreased risk (rs1004446_A in INS, [p=0.006]). The TEDDY data suggest that non-HLA gene polymorphisms may play a different role in the initiation of autoimmunity than they do in progression to T1D once autoimmunity has appeared. The strength of these associations may be related to the age of the population and the high-risk HLA-DR-DQ subtypes studied.
  •  
41.
  • Lehtonen, Eveliina, et al. (författare)
  • Use of vitamin D supplements during infancy in an international feeding trial.
  • 2014
  • Ingår i: Public Health Nutrition. - 1368-9800 .- 1475-2727. ; 17:4, s. 810-22
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: To examine the use of vitamin D supplements during infancy among the participants in an international infant feeding trial.DESIGN: Longitudinal study.SETTING: Information about vitamin D supplementation was collected through a validated FFQ at the age of 2 weeks and monthly between the ages of 1 month and 6 months.SUBJECTS: Infants (n 2159) with a biological family member affected by type 1 diabetes and with increased human leucocyte antigen-conferred susceptibility to type 1 diabetes from twelve European countries, the USA, Canada and Australia.RESULTS: Daily use of vitamin D supplements was common during the first 6 months of life in Northern and Central Europe (>80% of the infants), with somewhat lower rates observed in Southern Europe (> 60%). In Canada, vitamin D supplementation was more common among exclusively breast-fed than other infants (e.g., 71% v. 44% at 6 months of age). Less than 2% of infants in the U.S.A. and Australia received any vitamin D supplementation. Higher gestational age, older maternal age and longer maternal education were study-wide associated with greater use of vitamin D supplements.CONCLUSIONS: Most of the infants received vitamin D supplements during the first 6 months of life in the European countries, whereas in Canada only half and in the U.S.A. and Australia very few were given supplementation.
  •  
42.
  • Liu, Xiang, et al. (författare)
  • Physical Activity and the Development of Islet Autoimmunity and Type 1 Diabetes in 5-15-Year-Old Children Followed in the TEDDY Study
  • 2023
  • Ingår i: Diabetes Care. - 1935-5548. ; 46:7, s. 1409-1416
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: This study investigated physical activity and its association with the development of islet autoimmunity and type 1 diabetes in genetically at-risk children aged 5-15 years.RESEARCH DESIGN AND METHODS: As part of the longitudinal Environmental Determinants of Diabetes in the Young (TEDDY) study, annual assessment of activity using accelerometry was conducted from age 5 years. Time-to-event analyses using Cox proportional hazard models were used to assess the association between time spent in moderate to vigorous physical activity per day and the appearance of one or several autoantibodies and progression to type 1 diabetes in three risk groups: 1) 3,869 islet autoantibody (IA)-negative children, of whom 157 became single IA positive; 2) 302 single IA-positive children, of whom 73 became multiple-IA positive; and 3) 294 multiple IA-positive children, of whom 148 developed type 1 diabetes.RESULTS: No significant association was found in risk group 1 or risk group 2. A significant association was seen in risk group 3 (hazard ratio 0.920 [95% CI 0.856, 0.988] per 10-min increase; P = 0.021), particularly when glutamate decarboxylase autoantibody was the first autoantibody (hazard ratio 0.883 [95% CI 0.783, 0.996] per 10-min increase; P = 0.043).CONCLUSIONS: More daily minutes spent in moderate to vigorous physical activity was associated with a reduced risk of progression to type 1 diabetes in children aged 5-15 years who had developed multiple IAs.
  •  
43.
  • Ludvigsson, Johnny, et al. (författare)
  • Increasing plasma glucose before the development of type 1 diabetes-the TRIGR study
  • 2021
  • Ingår i: Pediatric Diabetes. - : Wiley-Blackwell. - 1399-543X .- 1399-5448. ; 22:7, s. 974-981
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: The beta-cell stress hypothesis suggests that increased insulin demand contributes to the development of type 1 diabetes. In the TRIGR trial we set out to assess the profile of plasma glucose and HbA1c before the diagnosis of clinical diabetes compared to nondiabetic children. Research Design and Methods: A cohort of children (N = 2159) with an affected first-degree relative and increased HLA risk were recruited 2002-2007 and followed until 2017. To study the relationship between plasma glucose/HbA1c and the development of autoantibodies or clinical disease Kaplan-Meir curves were developed. Mixed models were constructed for plasma glucose and HbA1c separately. Results: A family history of type 2 diabetes was related to an increase in plasma glucose (p < 0.001). An increase in glucose from the previous sample predicted clinical diabetes (p < 0.001) but not autoantibodies. An increase of HbA1c of 20% or 30% from the previous sample predicted the development of any autoantibody (p < 0.003 resp < 0.001) and the development of diabetes (p < 0.002 resp < 0.001. Participants without autoantibodies had lower HbA1c (mean 5.18%, STD 0.24; mean 33.08 mmol/mol, STD 2.85) than those who progressed to clinical disease (5.31%, 0.42; 34.46 mmol/mol, 4.68; p < 0.001) but higher than those who developed any autoantibody (5.10%, 0.30; 32.21 mmol/mol, 3.49; p < 0.001), or multiple autoantibodies (5.11%, 0.35; 32.26 mmol/mol, 3.92; p < 0.003). Conclusions: A pronounced increase in plasma glucose and HbA1c precedes development of clinical diabetes, while the association between plasma glucose or HbA1c and development of autoantibodies is complex. Increased insulin demand may contribute to development of type 1 diabetes.
  •  
44.
  • Lönnrot, Maria, et al. (författare)
  • Respiratory infections are temporally associated with initiation of type 1 diabetes autoimmunity : the TEDDY study
  • 2017
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 60:10, s. 1931-1940
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: Respiratory infections and onset of islet autoimmunity are reported to correlate positively in two small prospective studies. The Environmental Determinants of Diabetes in the Young (TEDDY) study is the largest prospective international cohort study on the environmental determinants of type 1 diabetes that regularly monitors both clinical infections and islet autoantibodies. The aim was to confirm the influence of reported respiratory infections and to further characterise the temporal relationship with autoantibody seroconversion. Methods: During the years 2004–2009, 8676 newborn babies with HLA genotypes conferring an increased risk of type 1 diabetes were enrolled at 3 months of age to participate in a 15 year follow-up. In the present study, the association between parent-reported respiratory infections and islet autoantibodies at 3 month intervals up to 4 years of age was evaluated in 7869 children. Time-dependent proportional hazard models were used to assess how the timing of respiratory infections related to persistent confirmed islet autoimmunity, defined as autoantibody positivity against insulin, GAD and/or insulinoma antigen-2, concordant at two reference laboratories on two or more consecutive visits. Results: In total, 87,327 parent-reported respiratory infectious episodes were recorded while the children were under study surveillance for islet autoimmunity, and 454 children seroconverted. The number of respiratory infections occurring in a 9 month period was associated with the subsequent risk of autoimmunity (p < 0.001). For each 1/year rate increase in infections, the hazard of islet autoimmunity increased by 5.6% (95% CI 2.5%, 8.8%). The risk association was linked primarily to infections occurring in the winter (HR 1.42 [95% CI 1.16, 1.74]; p < 0.001). The types of respiratory infection independently associated with autoimmunity were common cold, influenza-like illness, sinusitis, and laryngitis/tracheitis, with HRs (95% CI) of 1.38 (1.11, 1.71), 2.37 (1.35, 4.15), 2.63 (1.22, 5.67) and 1.76 (1.04, 2.98), respectively. Conclusions/interpretation: Recent respiratory infections in young children correlate with an increased risk of islet autoimmunity in the TEDDY study. Further studies to identify the potential causative viruses with pathogen-specific assays should focus especially on the 9 month time window leading to autoantibody seroconversion.
  •  
45.
  • Mehta, Pooja, et al. (författare)
  • Gluten-free diet adherence in children with screening-detected celiac disease using a prospective birth cohort study
  • 2023
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 18:2 February
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Celiac disease has an increasing incidence worldwide and is treated with lifelong adherence to a gluten-free diet. We aimed to describe gluten-free diet adherence rates in children with screening-identified celiac disease, determine adherence-related factors, and compare adherence to food records in a multinational prospective birth cohort study. Methods Children in The Environmental Determinants of Diabetes in the Young study with celiac disease were included. Subjects had at least annual measurement of adherence (parent-report) and completed 3-day food records. Descriptive statistics, t-tests, Kruskal-Wallis tests and multivariable logistic and linear regression were employed. Results Two hundred ninety (73%) and 199 (67%) of subjects were always adherent to a gluten-free diet at 2 and 5 years post celiac disease diagnosis respectively. The percentage of children with variable adherence increased from 1% at 2 years to 15% at 5 years. Children with a first-degree relative with celiac disease were more likely to be adherent to the gluten-free diet. Gluten intake on food records could not differentiate adherent from nonadherent subjects. Adherent children from the United States had more gluten intake based on food records than European children (P < .001 and P = .007 at 2 and 5 years respectively). Conclusion Approximately three-quarters of children with screening-identified celiac disease remain strictly adherent to a gluten-free diet over time. There are no identifiable features associated with adherence aside from having a first-degree relative with celiac disease. Despite good parent-reported adherence, children from the United States have more gluten intake when assessed by food records. Studies on markers of gluten-free diet adherence, sources of gluten exposure (particularly in the United States), and effects of adherence on mucosal healing are needed.
  •  
46.
  • Nucci, Anita M., et al. (författare)
  • Growth and development of islet autoimmunity and type 1 diabetes in children genetically at risk
  • 2021
  • Ingår i: Diabetologia. - : SPRINGER. - 0012-186X .- 1432-0428. ; 64:4, s. 826-835
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis We aimed to evaluate the relationship between childhood growth measures and risk of developing islet autoimmunity (IA) and type 1 diabetes in children with an affected first-degree relative and increased HLA-conferred risk. We hypothesised that being overweight or obese during childhood is associated with a greater risk of IA and type 1 diabetes. Methods Participants in a randomised infant feeding trial (N = 2149) were measured at 12 month intervals for weight and length/height and followed for IA (at least one positive out of insulin autoantibodies, islet antigen-2 autoantibody, GAD autoantibody and zinc transporter 8 autoantibody) and development of type 1 diabetes from birth to 10-14 years. In this secondary analysis, Cox proportional hazard regression models were adjusted for birthweight and length z score, sex, HLA risk, maternal type 1 diabetes, mode of delivery and breastfeeding duration, and stratified by residence region (Australia, Canada, Northern Europe, Southern Europe, Central Europe and the USA). Longitudinal exposures were studied both by time-varying Cox proportional hazard regression and by joint modelling. Multiple testing was considered using family-wise error rate at 0.05. Results In the Trial to Reduce IDDM in the Genetically at Risk (TRIGR) population, 305 (14.2%) developed IA and 172 (8%) developed type 1 diabetes. The proportions of children overweight (including obese) and obese only were 28% and 9% at 10 years, respectively. Annual growth measures were not associated with IA, but being overweight at 2-10 years of life was associated with a twofold increase in the development of type 1 diabetes (HR 2.39; 95% CI 1.46, 3.92; p < 0.001 in time-varying Cox regression), and similarly with joint modelling. Conclusions/interpretation In children at genetic risk of type 1 diabetes, being overweight at 2-10 years of age is associated with increased risk of progression from multiple IA to type 1 diabetes and with development of type 1 diabetes, but not with development of IA. Future studies should assess the impact of weight management strategies on these outcomes. Graphical abstract
  •  
47.
  • Sorkio, Susa, et al. (författare)
  • Breastfeeding patterns of mothers with type 1 diabetes: results from an infant feeding trial
  • 2010
  • Ingår i: DIABETES-METABOLISM RESEARCH AND REVIEWS. - : John Wiley and Sons, Ltd. - 1520-7552 .- 1520-7560. ; 26:3, s. 206-211
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Both the initiation and maintenance of breastfeeding have been reported to be negatively affected by maternal type 1 diabetes (T1D). The aim of this study was to prospectively examine the breastfeeding patterns among mothers with and without T1D participating in a large international randomized infant feeding trial (TRIGR). Methods Families with a member affected by T1D and with a newborn infant were invited into the study. Those who had HLA-conferred genetic susceptibility for T1D tested at birth with gestation andgt;35 weeks and were healthy were eligible to continue in the trial. Among the 2160 participating children, 1096 were born to women with T1D and 1064 to unaffected women. Information on infant feeding was acquired from the family by frequent prospective dietary interviews. Results Most (andgt;90%) of the infants of mothers with and without T1D were initially breastfed. Breastfeeding rates declined more steeply among mothers with than without T1D being 50 and 72% at 6 months, respectively. Mothers with T1D were younger, less educated and delivered earlier and more often by caesarean section than other mothers (p andlt; 0.01). After adjusting for all these factors associated with the termination of breastfeeding, there was no difference in the duration of breastfeeding among mothers with and without T1D. Conclusions Maternal diabetes status per se was not associated with shorter breastfeeding. The lower duration of breastfeeding in mothers with T1D is largely explained by their more frequent caesarean sections, earlier delivery and lower age and education.
  •  
48.
  • Uusitalo, Ulla, et al. (författare)
  • Early probiotic supplementation and the risk of celiac disease in children at genetic risk
  • 2019
  • Ingår i: Nutrients. - : MDPI AG. - 2072-6643. ; 11:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Probiotics are linked to positive regulatory effects on the immune system. The aim of the study was to examine the association between the exposure of probiotics via dietary supplements or via infant formula by the age of 1 year and the development of celiac disease autoimmunity (CDA) and celiac disease among a cohort of 6520 genetically susceptible children. Use of probiotics during the first year of life was reported by 1460 children. Time-to-event analysis was used to examine the associations. Overall exposure of probiotics during the first year of life was not associated with either CDA (n = 1212) (HR 1.15; 95%CI 0.99, 1.35; p = 0.07) or celiac disease (n = 455) (HR 1.11; 95%CI 0.86, 1.43; p = 0.43) when adjusting for known risk factors. Intake of probiotic dietary supplements, however, was associated with a slightly increased risk of CDA (HR 1.18; 95%CI 1.00, 1.40; p = 0.043) compared to children who did not get probiotics. It was concluded that the overall exposure of probiotics during the first year of life was not associated with CDA or celiac disease in children at genetic risk.
  •  
49.
  • Vehik, Kendra, et al. (författare)
  • Prospective virome analyses in young children at increased genetic risk for type 1 diabetes
  • 2019
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1546-170X .- 1078-8956. ; 25:12, s. 1865-1872
  • Tidskriftsartikel (refereegranskat)abstract
    • Viruses are implicated in autoimmune destruction of pancreatic islet β cells, which results in insulin deficiency and type 1 diabetes (T1D)1-4. Certain enteroviruses can infect β cells in vitro5, have been detected in the pancreatic islets of patients with T1D6 and have shown an association with T1D in meta-analyses4. However, establishing consistency in findings across studies has proven difficult. Obstacles to convincingly linking RNA viruses to islet autoimmunity may be attributed to rapid viral mutation rates, the cyclical periodicity of viruses7 and the selection of variants with altered pathogenicity and ability to spread in populations. β cells strongly express cell-surface coxsackie and adenovirus receptor (CXADR) genes, which can facilitate enterovirus infection8. Studies of human pancreata and cultured islets have shown significant variation in enteroviral virulence to β cells between serotypes and within the same serotype9,10. In this large-scale study of known eukaryotic DNA and RNA viruses in stools from children, we evaluated fecally shed viruses in relation to islet autoimmunity and T1D. This study showed that prolonged enterovirus B rather than independent, short-duration enterovirus B infections may be involved in the development of islet autoimmunity, but not T1D, in some young children. Furthermore, we found that fewer early-life human mastadenovirus C infections, as well as CXADR rs6517774, independently correlated with islet autoimmunity.
  •  
50.
  • Xhonneux, Louis-Pascal, et al. (författare)
  • Transcriptional networks in at-risk individuals identify signatures of type 1 diabetes progression
  • 2021
  • Ingår i: Science Translational Medicine. - : American Association for the Advancement of Science (AAAS). - 1946-6242 .- 1946-6234. ; 13:587
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 1 diabetes (T1D) is a disease of insulin deficiency that results from autoimmune destruction of pancreatic islet β cells. The exact cause of T1D remains unknown, although asymptomatic islet autoimmunity lasting from weeks to years before diagnosis raises the possibility of intervention before the onset of clinical disease. The number, type, and titer of islet autoantibodies are associated with long-term disease risk but do not cause disease, and robust early predictors of individual progression to T1D onset remain elusive. The Environmental Determinants of Diabetes in the Young (TEDDY) consortium is a prospective cohort study aiming to determine genetic and environmental interactions causing T1D. Here, we analyzed longitudinal blood transcriptomes of 2013 samples from 400 individuals in the TEDDY study before both T1D and islet autoimmunity. We identified and interpreted age-associated gene expression changes in healthy infancy and age-independent changes tracking with progression to both T1D and islet autoimmunity, beginning before other evidence of islet autoimmunity was present. We combined multivariate longitudinal data in a Bayesian joint model to predict individual risk of T1D onset and validated the association of a natural killer cell signature with progression and the model's predictive performance on an additional 356 samples from 56 individuals in the independent Type 1 Diabetes Prediction and Prevention study. Together, our results indicate that T1D is characterized by early and longitudinal changes in gene expression, informing the immunopathology of disease progression and facilitating prediction of its course.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 50

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy