SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Laquai Frédéric) "

Sökning: WFRF:(Laquai Frédéric)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Firdaus, Yuliar, et al. (författare)
  • Novel wide-bandgap non-fullerene acceptors for efficient tandem organic solar cells
  • 2020
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 8:3, s. 1164-1175
  • Tidskriftsartikel (refereegranskat)abstract
    • The power conversion efficiency (PCE) of tandem organic photovoltaics (OPVs) is currently limited by the lack of suitable wide-bandgap materials for the front-cell. Here, two new acceptor molecules, namely IDTA and IDTTA, with optical bandgaps (Eoptg) of 1.90 and 1.75 eV, respectively, are synthesized and studied for application in OPVs. When PBDB-T is used as the donor polymer, single-junction cells with PCE of 7.4%, for IDTA, and 10.8%, for IDTTA, are demonstrated. The latter value is the highest PCE reported to date for wide-bandgap (Eoptg ≥ 1.7 eV) bulk-heterojunction OPV cells. The higher carrier mobility in IDTTA-based cells leads to improved charge extraction and higher fill-factor than IDTA-based devices. Moreover, IDTTA-based OPVs show significantly improved shelf-lifetime and thermal stability, both critical for any practical applications. With the aid of optical-electrical device modelling, we combined PBDB-T:IDTTA, as the front-cell, with PTB7-Th:IEICO-4F, as the back-cell, to realize tandem OPVs with open circuit voltage of 1.66 V, short circuit current of 13.6 mA cm-2 and a PCE of 15%; in excellent agreement with our theoretical predictions. The work highlights IDTTA as a promising wide-bandgap acceptor for high-performance tandem OPVs. © 2019 The Royal Society of Chemistry.
  •  
2.
  • Gorenflot, Julien, et al. (författare)
  • Increasing the Ionization Energy Offset to Increase the Quantum Efficiency in Non-Fullerene Acceptor-Based Organic Solar Cells: How Far Can We Go?
  • 2023
  • Ingår i: Advanced Materials Interfaces. - : Wiley. - 2196-7350. ; In Press
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular engineering of organic semiconductors provides a virtually unlimited number of possible structures, yet only a handful of combinations lead to state-of-the-art efficiencies in photovoltaic applications. Thus, design rules that guide material development are needed. One such design principle is that in a bulk heterojunction consisting of an electron donor and lower bandgap acceptor an offset (Delta IE) of at least 0.45 eV is required between both materials ionization energies to overcome energy level bending at the donor-acceptor interface, in turn maximizing the charge separation yield and the cell's internal quantum efficiency. The present work studies energy losses associated with Delta IE and, based on 24 blends, finds that losses are minimal up to a Delta IE of 0.6 eV. Electroluminescence spectroscopy shows that low energy losses are achieved when the charge transfer state energy (E-CT) is similar to the acceptor's optical bandgap (E-g(A)). Further Delta IE increase lowers E-CT with respect to E-g(A), thus decreasing V-OC. Within that 0.45-0.6 eV Delta IE sweet range, the fill factor FF, hence the power conversion efficiency, increases only marginally as the FF is often already close to maximal for Delta IE = 0.45 eV. The results are extended to 76 binary and ternary blends.
  •  
3.
  • Howard, Ian A., et al. (författare)
  • Nonequilibrium Charge Dynamics in Organic Solar Cells
  • 2014
  • Ingår i: Advanced Energy Materials. - : Wiley-VCH Verlagsgesellschaft. - 1614-6832 .- 1614-6840. ; 4:9
  • Tidskriftsartikel (refereegranskat)abstract
    • The dynamics of charge carriers after their creation at, or near, an interface play a critical role in determining the efficiency of organic solar cells as they dictate, via mechanisms that are not yet fully understood, the pathways for charge separation and recombination. Here, a combination of ultrafast transient spectroscopy and kinetic Monte Carlo simulations based on a minimalistic model are used to examine various aspects of these charge dynamics in a typical donor-acceptor copolymer:methanofullerene blend. The observed rates of charge carrier energetic relaxation and recombination for a sequence of charge densities can be all consistently described in terms of the extended Gaussian disorder model. The physical picture that arises is a) that initial charge motion is highly diffusive and boosted by energetic relaxation in the disordered density of states and b) that mobile charge carriers dissociate from and re-associate into Coulombically associated pairs faster than they recombine, especially at early times. A simple analytical calculation confirms this picture and can be used to identify sub-Langevin recombination as the cause for quantitative deviations between the Monte Carlo calculations and the measured concentration dependence of the charge recombination.
  •  
4.
  • Karuthedath, Safakath, et al. (författare)
  • Buildup of Triplet-State Population in Operating TQ1:PC71BM Devices Does Not Limit Their Performance
  • 2020
  • Ingår i: The Journal of Physical Chemistry Letters. - : AMER CHEMICAL SOC. - 1948-7185. ; 11:8, s. 2838-2845
  • Tidskriftsartikel (refereegranskat)abstract
    • Triplet generation in organic solar cells has been considered a major loss channel. Determining the density of the triplet-state population in an operating device is challenging. Here, we employ transient absorption (TA) spectroscopy on the quinoxaline-thiophene copolymer TQ1 blended with PC71BM, quantify the transient charge and tripletstate densities, and parametrize their generation and recombination dynamics. The charge recombination parameters reproduce the experimentally measured current-voltage characteristics in charge carrier drift-diffusion simulations, and they yield the steady-state charge densities. We demonstrate that triplets are formed by both geminate and nongeminate recombination of charge carriers and decay primarily by triplet-triplet annihilation. Using the charge densities in the rate equations describing triplet-state dynamics, we find that triplet-state densities in devices are in the range of charge carrier densities. Despite this substantial triplet-state buildup, TQ1:PC71BM devices exhibit only moderate geminate recombination and significantly reduced nongeminate charge recombination, with reduction factors between 10(-4) and 10(-3) compared to Langevin recombination.
  •  
5.
  • Karuthedath, Safakath, et al. (författare)
  • Thermal annealing reduces geminate recombination in TQ1:N2200 all-polymer solar cells
  • 2018
  • Ingår i: Journal of Materials Chemistry A. - : ROYAL SOC CHEMISTRY. - 2050-7488 .- 2050-7496. ; 6:17, s. 7428-7438
  • Tidskriftsartikel (refereegranskat)abstract
    • combination of steady-state and time-resolved spectroscopic measurements is used to investigate the photophysics of the all-polymer bulk heterojunction system TQ1:N2200. Upon thermal annealing a doubling of the external quantum efficiency and an improved fill factor (FF) is observed, resulting in an increase in the power conversion efficiency. Carrier extraction is similar for both blends, as demonstrated by time-resolved electric-field-induced second harmonic generation experiments in conjunction with transient photocurrent studies, spanning the ps-mu s time range. Complementary transient absorption spectroscopy measurements reveal that the different quantum efficiencies originate from differences in charge carrier separation and recombination at the polymer-polymer interface: in as-spun samples similar to 35% of the charges are bound in interfacial charge-transfer states and recombine geminately, while this pool is reduced to similar to 7% in thermally-annealed samples, resulting in higher short-circuit currents. Time-delayed collection field experiments demonstrate a field-dependent charge generation process in as-spun samples, which reduces the FF. In contrast, field-dependence of charge generation is weak in annealed films. While both devices exhibit significant non-geminate recombination competing with charge extraction, causing low FFs, our results demonstrate that the donor/acceptor interface in all-polymer solar cells can be favourably altered to enhance charge separation, without compromising charge transport and extraction.
  •  
6.
  • Melianas, Armantas, et al. (författare)
  • Photo-generated carriers lose energy during extraction from polymer-fullerene solar cells
  • 2015
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 6:8778
  • Tidskriftsartikel (refereegranskat)abstract
    • In photovoltaic devices, the photo-generated charge carriers are typically assumed to be in thermal equilibrium with the lattice. In conventional materials, this assumption is experimentally justified as carrier thermalization completes before any significant carrier transport has occurred. Here, we demonstrate by unifying time-resolved optical and electrical experiments and Monte Carlo simulations over an exceptionally wide dynamic range that in the case of organic photovoltaic devices, this assumption is invalid. As the photo-generated carriers are transported to the electrodes, a substantial amount of their energy is lost by continuous thermalization in the disorder broadened density of states. Since thermalization occurs downward in energy, carrier motion is boosted by this process, leading to a time-dependent carrier mobility as confirmed by direct experiments. We identify the time and distance scales relevant for carrier extraction and show that the photo-generated carriers are extracted from the operating device before reaching thermal equilibrium.
  •  
7.
  • Paleti, Sri Harish Kumar, et al. (författare)
  • Hexanary blends : a strategy towards thermally stable organic photovoltaics
  • 2023
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-fullerene based organic solar cells display a high initial power conversion efficiency but continue to suffer from poor thermal stability, especially in case of devices with thick active layers. Mixing of five structurally similar acceptors with similar electron affinities, and blending with a donor polymer is explored, yielding devices with a power conversion efficiency of up to 17.6%. The hexanary device performance is unaffected by thermal annealing of the bulk-heterojunction active layer for at least 23 days at 130 °C in the dark and an inert atmosphere. Moreover, hexanary blends offer a high degree of thermal stability for an active layer thickness of up to 390 nm, which is advantageous for high-throughput processing of organic solar cells. Here, a generic strategy based on multi-component acceptor mixtures is presented that permits to considerably improve the thermal stability of non-fullerene based devices and thus paves the way for large-area organic solar cells. 
  •  
8.
  • Wu, Jingnan, 1994, et al. (författare)
  • On the Conformation of Dimeric Acceptors and Their Polymer Solar Cells with Efficiency over 18 %
  • 2023
  • Ingår i: Angewandte Chemie International Edition. - : John Wiley & Sons. - 1433-7851 .- 1521-3773. ; 62:45
  • Tidskriftsartikel (refereegranskat)abstract
    • The determination of molecular conformations of oligomeric acceptors (OAs) and their impact on molecular packing are crucial for understanding the photovoltaic performance of their resulting polymer solar cells (PSCs) but have not been well studied yet. Herein, we synthesized two dimeric acceptor materials, DIBP3F-Se and DIBP3F-S, which bridged two segments of Y6-derivatives by selenophene and thiophene, respectively. Theoretical simulation and experimental 1D and 2D NMR spectroscopic studies prove that both dimers exhibit O-shaped conformations other than S- or U-shaped counter-ones. Notably, this O-shaped conformation is likely governed by a distinctive "conformational lock" mechanism, arising from the intensified intramolecular & pi;-& pi; interactions among their two terminal groups within the dimers. PSCs based on DIBP3F-Se deliver a maximum efficiency of 18.09 %, outperforming DIBP3F-S-based cells (16.11 %) and ranking among the highest efficiencies for OA-based PSCs. This work demonstrates a facile method to obtain OA conformations and highlights the potential of dimeric acceptors for high-performance PSCs.
  •  
9.
  • Xu, Han, et al. (författare)
  • Dissecting the structure-stability relationship of Y-series electron acceptors for real-world solar cell applications
  • 2023
  • Ingår i: Joule. - 2542-4351. ; 7:9, s. 2135-2151
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite striking progress toward improving the photovoltaic (PV) performance of organic solar cells (OSCs) with recent Y-series non-fullerene acceptors (Y-NFAs), knowledge about their outdoor performance under real-world conditions and photodegradation mechanisms remains elusive, which is urgently needed to close the lab-to-fab gap of OSCs. Herein, for the first time, we study the structure-outdoor-stability relationship of Y-NFAs. We show that Y-NFAs with long internal side-chains exhibit high energy barriers for photoisomerization, and fluorinated end-groups can enhance the structural confinement to inhibit the photodegradation pathway and thereby improve device stability. Furthermore, the performance loss of Y-NFA-based OSCs under illumination is mainly driven by increased trap-assisted recombination over time. The structure-stability correlation and demonstration of outdoor performance of these state-of-the-art Y-NFA cells provided in this study highlight molecular engineering of device stability control to minimize power output losses in real-world climates.
  •  
10.
  • Yang, Fan, et al. (författare)
  • Performance limitations in thieno[3,4-c] pyrrole4,6-dione-based polymer: ITIC solar cells
  • 2017
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : ROYAL SOC CHEMISTRY. - 1463-9076 .- 1463-9084. ; 19:35, s. 23990-23998
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a systematic study of the efficiency limitations of non-fullerene organic solar cells that exhibit a small energy loss (E-loss) between the polymer donor and the non-fullerene acceptor. To clarify the impact of Eloss on the performance of the solar cells, three thieno[3,4-c] pyrrole-4,6-dione-based conjugated polymers (PTPD3T, PTPD2T, and PTPDBDT) are employed as the electron donor, which all have complementary absorption spectra compared with the ITIC acceptor. The corresponding photovoltaic devices show that low Eloss (0.54 eV) in PTPDBDT: ITIC leads to a high open-circuit voltage (Voc) of 1.05 V, but also to a small quantum efficiency, and in turn photocurrent. The high Voc or small energy loss in the PTPDBDT-based solar cells is a consequence of less non-radiative recombination, whereas the low quantum efficiency is attributed to the unfavorable micro-phase separation, as confirmed by the steady-state and time-resolved photoluminescence experiments, grazing-incidence wide-angle X-ray scattering, and resonant soft X-ray scattering (R-SoXS) measurements. We conclude that to achieve high performance non-fullerene solar cells, it is essential to realize a large Voc with small Eloss while simultaneously maintaining a high quantum efficiency by manipulating the molecular interaction in the bulk-heterojunction.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy