SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Launhardt R.) "

Sökning: WFRF:(Launhardt R.)

  • Resultat 1-14 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Morales, J. C., et al. (författare)
  • A giant exoplanet orbiting a very-low-mass star challenges planet formation models
  • 2019
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 365:6460, s. 1441-1445
  • Tidskriftsartikel (refereegranskat)abstract
    • Surveys have shown that super-Earth and Neptune-mass exoplanets are more frequent than gas giants around low-mass stars, as predicted by the core accretion theory of planet formation. We report the discovery of a giant planet around the very-low-mass star GJ 3512, as determined by optical and near-infrared radial-velocity observations. The planet has a minimum mass of 0.46 Jupiter masses, very high for such a small host star, and an eccentric 204-day orbit. Dynamical models show that the high eccentricity is most likely due to planet-planet interactions. We use simulations to demonstrate that the GJ 3512 planetary system challenges generally accepted formation theories, and that it puts constraints on the planet accretion and migration rates. Disk instabilities may be more efficient in forming planets than previously thought.
  •  
2.
  • Keppler, M., et al. (författare)
  • Discovery of a planetary-mass companion within the gap of the transition disk around PDS 70
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 617
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Young circumstellar disks are the birthplaces of planets. Their study is of prime interest to understand the physical and chemical conditions under which planet formation takes place. Only very few detections of planet candidates within these disks exist, and most of them are currently suspected to be disk features.Aims. In this context, the transition disk around the young star PDS 70 is of particular interest, due to its large gap identified in previous observations, indicative of ongoing planet formation. We aim to search for the presence of an embedded young planet and search for disk structures that may be the result of disk-planet interactions and other evolutionary processes.Methods. We analyse new and archival near-infrared images of the transition disk PDS 70 obtained with the VLT/SPHERE, VLT/NaCo, and Gemini/NICI instruments in polarimetric differential imaging and angular differential imaging modes.Results. We detect a point source within the gap of the disk at about 195 mas (similar to 22 au) projected separation. The detection is confirmed at five different epochs, in three filter bands and using different instruments. The astrometry results in an object of bound nature, with high significance. The comparison of the measured magnitudes and colours to evolutionary tracks suggests that the detection is a companion of planetary mass. The luminosity of the detected object is consistent with that of an L-type dwarf, but its IR colours are redder, possibly indicating the presence of warm surrounding material. Further, we confirm the detection of a large gap of similar to 54 au in size within the disk in our scattered light images, and detect a signal from an inner disk component. We find that its spatial extent is very likely smaller than similar to 17 au in radius, and its position angle is consistent with that of the outer disk. The images of the outer disk show evidence of a complex azimuthal brightness distribution which is different at different wavelengths and may in part be explained by Rayleigh scattering from very small grains.Conclusions. The detection of a young protoplanet within the gap of the transition disk around PDS 70 opens the door to a so far observationally unexplored parameter space of planetary formation and evolution. Future observations of this system at different wavelengths and continuing astrometry will allow us to test theoretical predictions regarding planet-disk interactions, planetary atmospheres, and evolutionary models.
  •  
3.
  • Eiroa, C., et al. (författare)
  • Cold DUst around NEarby Stars (DUNES). First results A resolved exo-Kuiper belt around the solar-like star zeta(2) Ret
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L131-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first far-IR observations of the solar-type stars delta Pav, HR 8501, 51 Peg and zeta(2) Ret, taken within the context of the DUNES Herschel open time key programme (OTKP). This project uses the PACS and SPIRE instruments with the objective of studying infrared excesses due to exo-Kuiper belts around nearby solar-type stars. The observed 100 mu m fluxes from delta Pav, HR 8501, and 51 Peg agree with the predicted photospheric fluxes, excluding debris disks brighter than L-dust/L-star similar to 5 x 10(-7) (1 sigma level) around those stars. A flattened, disk-like structure with a semi-major axis of similar to 100 AU in size is detected around zeta(2) Ret. The resolved structure suggests the presence of an eccentric dust ring, which we interpret as an exo-Kuiper belt with L-dust/L-star approximate to 10(-5).
  •  
4.
  • Eiroa, C., et al. (författare)
  • DUst around NEarby Stars. The survey observational results
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 555, s. A11-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Debris discs are a consequence of the planet formation process and constitute the fingerprints of planetesimal systems. Their solar system counterparts are the asteroid and Edgeworth-Kuiper belts. Aims. The DUNES survey aims at detecting extra-solar analogues to the Edgeworth-Kuiper belt around solar-type stars, putting in this way the solar system into context. The survey allows us to address some questions related to the prevalence and properties of planetesimal systems. Methods. We used Herschel/PACS to observe a sample of nearby FGK stars. Data at 100 and 160 mu m were obtained, complemented in some cases with observations at 70 mu m, and at 250, 350 and 500 mu m using SPIRE. The observing strategy was to integrate as deep as possible at 100 mu m to detect the stellar photosphere. Results. Debris discs have been detected at a fractional luminosity level down to several times that of the Edgeworth-Kuiper belt. The incidence rate of discs around the DUNES stars is increased from a rate of similar to 12.1% +/- 5% before Herschel to similar to 20.2% +/- 2%. A significant fraction (similar to 52%) of the discs are resolved, which represents an enormous step ahead from the previously known resolved discs. Some stars are associated with faint far-IR excesses attributed to a new class of cold discs. Although it cannot be excluded that these excesses are produced by coincidental alignment of background galaxies, statistical arguments suggest that at least some of them are true debris discs. Some discs display peculiar SEDs with spectral indexes in the 70-160 mu m range steeper than the Rayleigh-Jeans one. An analysis of the debris disc parameters suggests that a decrease might exist of the mean black body radius from the F-type to the K-type stars. In addition, a weak trend is suggested for a correlation of disc sizes and an anticorrelation of disc temperatures with the stellar age.
  •  
5.
  • Ginski, C., et al. (författare)
  • An extended scattered light disk around AT Pyx. Possible planet formation in a cometary globule
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 662
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. To understand how the multitude of planetary systems that have been discovered come to be, we need to study systems at different evolutionary stages, with different central stars but also in different environments. The most challenging environment for planet formation may be the harsh UV radiation field of nearby massive stars which quickly erodes disks by external photo-evaporation. We observed the AT Pyx system, located in the head of a cometary globule in the Gum Nebula, to search for signs of ongoing planet formation.Methods. We used the extreme adaptive optics imager VLT/SPHERE in Dual Beam Polarization Imaging Mode in H-band as well as in IRDIFS Extended mode (K12-band imaging and Y-H integral field spectroscopy) to observe AT Pyx in polarized light and total intensity. Additionally, we employed VLT/NACO to observe the system in the L-band.Results. We resolve the disk around AT Pyx for the first time in scattered light across multiple wavelengths in polarized light and total intensity. We find an extended (≥126 au) disk, with an intermediate inclination of between 35° and 42°. The disk shows a complex substructure and we identify two or possibly three spiral-like features. Depending on the precise geometry of the disk (which we cannot unambiguously infer from our data), the disk may be eccentric with an eccentricity of ~0.16 or partially self-shadowed. The spiral features and possible eccentricity are both consistent with signatures of an embedded gas giant planet with a mass of ~1 MJup. Our own observations can rule out brown dwarf companions embedded in the resolved disk, but are nevertheless not sensitive enough to confirm or rule out the presence of a gas giant.Conclusions. AT Pyx is the first disk to be spatially resolved in a cometary globule in the Gum Nebula. By comparison with disks in the Orion Nebula Cluster we note that the extension of the disk may be exceptional for this environment if the external UV radiation field is indeed comparable to other cometary globules in the region. The signposts of ongoing planet formation are intriguing and need to be followed up with either higher sensitivity or at different wavelengths.
  •  
6.
  • Liseau, René, 1949, et al. (författare)
  • Resolving the cold debris disc around a planet-hosting star. PACS photometric imaging observations of q1 Eridani (HD 10647, HR 506)
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:Article Number: L132
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. About two dozen exo-solar debris systems have been spatially resolved. These debris discs commonly display a variety of structural features such as clumps, rings, belts, excentric distributions and spiral patterns. In most cases, these features are believed to be formed, shaped and maintained by the dynamical influence of planets orbiting the host stars. In very few cases has the presence of the dynamically important planet(s) been inferred from direct observation. Aims. The solar-type star q(1) Eri is known to be surrounded by debris, extended on scales of less than or similar to 30 ''. The star is also known to host at least one planet, albeit on an orbit far too small to make it responsible for structures at distances of tens to hundreds of AU. The aim of the present investigation is twofold: to determine the optical and material properties of the debris and to infer the spatial distribution of the dust, which may hint at the presence of additional planets. Methods. The Photodetector Array Camera and Spectrometer (PACS) aboard the Herschel Space Observatory allows imaging observations in the far infrared at unprecedented resolution, i.e. at better than 6 '' to 12 '' over the wavelength range of 60 mu m to 210 mu m. Together with the results from ground-based observations, these spatially resolved data can be modelled to determine the nature of the debris and its evolution more reliably than what would be possible from unresolved data alone. Results. For the first time has the q(1) Eri disc been resolved at far infrared wavelengths. The PACS observations at 70 mu m, 100 mu m and 160 mu m reveal an oval image showing a disc-like structure in all bands, the size of which increases with wavelength. Assuming a circular shape yields the inclination of its equatorial plane with respect to that of the sky, i > 53 degrees. The results of image de-convolution indicate that i likely is larger than 63 degrees, where 90 degrees corresponds to an edge-on disc. Conclusions. The observed emission is thermal and optically thin. The resolved data are consistent with debris at temperatures below 30 K at radii larger than 120 AU. From image de-convolution, we find that q(1) Eri is surrounded by an about 40 AU wide ring at the radial distance of similar to 85 AU. This is the first real Edgeworth-Kuiper Belt analogue ever observed.
  •  
7.
  • Cheetham, A. C., et al. (författare)
  • Spectral and orbital characterisation of the directly imaged giant planet HIP 65426 b
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 622
  • Tidskriftsartikel (refereegranskat)abstract
    • HIP 65426 b is a recently discovered exoplanet imaged during the course of the SPHERE-SHINE survey. Here we present new L' and M' observations of the planet from the NACO instrument at the VLT from the NACO-ISPY survey, as well as a new Y-H spectrum and K-band photometry from SPHERE-SHINE. Using these data, we confirm the nature of the companion as a warm, dusty planet with a mid-L spectral type. From comparison of its SED with the BT-Settl atmospheric models, we derive a best-fit effective temperature of T-eff = 1618 +/- 7 K, surface gravity log g = 3 : 78(-0.03)(+0.04) and radius R = 1.17 +/- 0.04 R-J (statistical uncertainties only). Using the DUSTY and COND isochrones we estimate a mass of 8 +/- 1 MJ. Combining the astrometric measurements from our new datasets and from the literature, we show the first indications of orbital motion of the companion (2.6 sigma significance) and derive preliminary orbital constraints. We find a highly inclined orbit (i = 107(+13)(-10) deg) with an orbital period of 800(+1200)(-400) yr. We also report SPHERE sparse aperture masking observations that investigate the possibility that HIP 65426 b was scattered onto its current orbit by an additional companion at a smaller orbital separation. From this data we rule out the presence of brown dwarf companions with masses greater than 16 M-J at separations larger than 3AU, significantly narrowing the parameter space for such a companion.
  •  
8.
  • Cockell, C.S., et al. (författare)
  • Darwin - an experimental astronomy mission to search for extrasolar planets
  • 2009
  • Ingår i: Experimental Astronomy. - 0922-6435 .- 1572-9508. ; 23:1, s. 435-461
  • Tidskriftsartikel (refereegranskat)abstract
    • As a response to ESA call for mission concepts for its Cosmic Vision 2015–2025 plan, we propose a mission called Darwin. Its primary goal is the study of terrestrial extrasolar planets and the search for life on them. In this paper, we describe different characteristics of the instrument.
  •  
9.
  • Launhardt, R., et al. (författare)
  • ISPY-NACO Imaging Survey for Planets around Young stars : Survey description and results from the first 2.5 years of observations
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 635
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The occurrence rate of long-period (a greater than or similar to 50 au) giant planets around young stars is highly uncertain since it is not only governed by the protoplanetary disc structure and planet formation process, but also reflects both dynamical re-structuring processes after planet formation as well as possible capture of planets not formed in situ. Direct imaging is currently the only feasible method to detect such wide-orbit planets and constrain their occurrence rate.Aims. We aim to detect and characterise wide-orbit giant planets during and shortly after their formation phase within protoplanetary and debris discs around nearby young stars.Methods. We carry out a large L-band high-contrast direct imaging survey for giant planets around 200 young stars with protoplanetary or debris discs using the NACO instrument at the ESO Very Large Telescope on Cerro Paranal in Chile. We use very deep angular differential imaging observations with typically >60 degrees field rotation, and employ a vector vortex coronagraph where feasible to achieve the best possible point source sensitivity down to an inner working angle of about 100 mas. This paper introduces the NACO Imaging Survey for Planets around Young stars (NACO-ISPY), its goals and strategy, the target list, and data reduction scheme, and presents preliminary results from the first 2.5 survey years.Results. We achieve a mean 5 sigma contrast of Delta L ' = 6.4 +/- 0.1 mag at 150 mas and a background limit of L ' (bg) = 16.5 +/- 0.2 textual-form L bg ' =16.5 +/- 0.2 mag at 1.' ' 5. Our detection probability is 50% for companions with greater than or similar to 8 M-Jup at semi-major axes of 80-200 au and >13 M-Jup at 30-250 au. It thus compares well to the detection space of other state-of-the-art high-contrast imaging surveys. We have already contributed to the characterisation of two new planets originally discovered by VLT/SPHERE, but we have not yet independently discovered new planets around any of our target stars. We have discovered two new close-in low-mass stellar companions around R CrA and HD 193571 and report in this paper the discovery of close co-moving low-mass stellar companions around HD 72660 and HD 92536. Furthermore, we report L ' -band scattered light images of the discs around eleven stars, six of which have never been imaged at L ' -band before.Conclusions. The first 2.5 yr of the NACO-ISPY survey have already demonstrated that VLT/NACO combined with our survey strategy can achieve the anticipated sensitivity to detect giant planets and reveal new close stellar companions around our target stars.
  •  
10.
  • Mesa, D., et al. (författare)
  • Limits on the presence of planets in systems with debris discs : HD92945 and HD107146
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 503:1, s. 1276-1289
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent observations of resolved cold debris discs at tens of au have revealed that gaps could be a common feature in these Kuiper-belt analogues. Such gaps could be evidence for the presence of planets within the gaps or closer in near the edges of the disc. We present SPHERE observations of HD 92945 and HD 107146, two systems with detected gaps. We constrained the mass of possible companions responsible for the gap to 1–2 MJup for planets located inside the gap and to less than 5 MJup for separations down to 20 au from the host star. These limits allow us to exclude some of the possible configurations of the planetary systems proposed to explain the shape of the discs around these two stars. In order to put tighter limits on the mass at very short separations from the star, where direct-imaging data are less effective, we also combined our data with astrometric measurements from Hipparcos and Gaia and radial-velocity measurements. We were able to limit the separation and the mass of the companion potentially responsible for the proper-motion anomaly of HD 107146 to values of 2–7 au and 2–5 MJup, respectively.
  •  
11.
  • Eiroa, C., et al. (författare)
  • Exocomet signatures around the A-shell star φ Leonis?
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 594
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an intensive monitoring of high-resolution spectra of the Ca ii K line in the A7IV shell star φ Leo at very short (minutes, hours), short (night to night), and medium (weeks, months) timescales. The spectra show remarkable variable absorptions on timescales of hours, days, and months. The characteristics of these sporadic events are very similar to most that are observed toward the debris disk host star β Pic, which are commonly interpreted as signs of the evaporation of solid, comet-like bodies grazing or falling onto the star. Therefore, our results suggest the presence of solid bodies around φ Leo. To our knowledge, with the exception of β Pic, our monitoring has the best time resolution at the mentioned timescales for a star with events attributed to exocomets. Assuming the cometary scenario and considering the timescales of our monitoring, our results indicate that φ Leo presents the richest environment with comet-like events known to date, second only to β Pic.
  •  
12.
  • Godoy, N., et al. (författare)
  • ISPY - NaCo Imaging Survey for Planets around Young stars : CenteR: The impact of centering and frame selection
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 663
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Direct imaging has made significant progress over the past decade, in part thanks to a new generation of instruments and excellent adaptive optic systems, but also thanks to advanced post-processing techniques. The combination of these two factors allowed the detection of several giant planets with separations as close as 0.2 arcsec with contrasts typically reaching 9-10 magnitudes at nearinfrared wavelengths. Observing strategies and data rates vary depending on the instrument and the wavelength, with L- and M-band observations yielding tens of thousands of images to be combined.Aims. We present a new approach, tailored for VLT/NaCo observations performed with the Annular Groove Phase Mask (AGPM) coronagraph, but that can be applied to other instruments using similar coronagraphs. Our pipeline aims to improve the post-processing of the observations on two fronts: identifying the location of the star behind the AGPM to better align the science frames and performing frame selection.Methods. Our method relies on finding the position of the AGPM in the sky frame observations, and correlating it with the circular aperture of the coronagraphic mask. This relationship allows us to retrieve the location of the AGPM in the science frames. We are then able to model the torus shape visible in the sky-subtracted science frames, as a combination of negative and positive 2D Gaussian functions. The model provides additional information that is useful to design our frame selection criteria. Results. We tested our pipeline on three targets (β Pictoris, R CrA, and HD 34282), two of which have companions at intermediate and close separations, and the third hosts a bright circumstellar disk. We find that the centering of the science frames has a significant impact on the signal-to-noise ratio (S/N) of the companions. Our results suggest that the best reduction is achieved when performing the principal component analysis centered on the location of the AGPM and derotating the frames centered at the location of the star before collapsing the final datacube. We improved the S/N of companions around β Pictoris and R CrA by 24 +/- 3% and 117 +/- 11% respectively, compared to other state-of-the-art reductions. We find that the companion position for all the centering strategies are consistent within 3 σ. Finally, we find that even for NaCo observations with tens of thousands of frames, frame selection yields just marginal improvement for point sources, but may improve the final images for objects with extended emission such as disks.Conclusions. We propose a novel approach to identify the location of the star behind a coronagraph even when it cannot easily be determined by other methods. We led a thorough study on the importance of frame selection, concluding that the improvements are marginal in most cases, but may yield better contrast in some specific cases. Our approach can be applied to the wealth of archival NaCo data and, assuming that the field of view includes the edges of the coronagraphic mask, its implementation can be adapted to other instruments with coronagraphs similar to the AGPM used on NaCo (e.g., Keck/NIRC2, LBT/LMIRCam).
  •  
13.
  • Rebollido, I., et al. (författare)
  • Exocomets: A spectroscopic survey
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 639
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. While exoplanets are now routinely detected, the detection of small bodies in extrasolar systems remains challenging. Since the discovery of sporadic events, which are interpreted to be exocomets (falling evaporating bodies) around β Pic in the early 1980s, only ∼20 stars have been reported to host exocomet-like events. Aims. We aim to expand the sample of known exocomet-host stars, as well as to monitor the hot-gas environment around stars with previously known exocometary activity. Methods. We have obtained high-resolution optical spectra of a heterogeneous sample of 117 main-sequence stars in the spectral type range from B8 to G8. The data were collected in 14 observing campaigns over the course of two years from both hemispheres. We analysed the Ca » II K&H and Na » I D lines in order to search for non-photospheric absorptions that originated in the circumstellar environment and for variable events that could be caused by the outgassing of exocomet-like bodies. Results. We detected non-photospheric absorptions towards 50% of the sample, thus attributing a circumstellar origin to half of the detections (i.e. 26% of the sample). Hot circumstellar gas was detected in the metallic lines inspected via narrow stable absorptions and/or variable blue- and red-shifted absorption events. Such variable events were found in 18 stars in the Ca » II and/or Na » I lines; six of them are reported in the context of this work for the first time. In some cases, the variations we report in the Ca » II K line are similar to those observed in β Pic. While we do not find a significant trend in the age or location of the stars, we do find that the probability of finding CS gas in stars with larger v sin i is higher. We also find a weak trend with the presence of near-infrared excess and with anomalous (λ Boo-like) abundances, but this would require confirmation by expanding the sample.
  •  
14.
  • Rebollido, I., et al. (författare)
  • The co-existence of hot and cold gas in debris discs
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 614
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Debris discs have often been described as gas-poor discs as the gas-to-dust ratio is expected to be considerably lower than in primordial, protoplanetary discs. However, recent observations have confirmed the presence of a non-negligible amount of cold gas in the circumstellar (CS) debris discs around young main-sequence stars. This cold gas has been suggested to be related to the outgassing of planetesimals and cometary-like objects. Aims. The goal of this paper is to investigate the presence of hot gas in the immediate surroundings of the cold-gas-bearing debris-disc central stars. Methods. High-resolution optical spectra of all currently known cold-gas-bearing debris-disc systems, with the exception of β Pic and Fomalhaut, have been obtained from La Palma (Spain), La Silla (Chile), and La Luz (Mexico) observatories. To verify the presence of hot gas around the sample of stars, we have analysed the Ca II H&K and the Na I D lines searching for non-photospheric absorptions of CS origin, usually attributed to cometary-like activity. Results. Narrow, stable Ca II and/or Na I absorption features have been detected superimposed to the photospheric lines in 10 out of the 15 observed cold-gas-bearing debris-disc stars. Features are found at the radial velocity of the stars, or slightly blue- or red-shifted, and/or at the velocity of the local interstellar medium (ISM). Some stars also present transient variable events or absorptions extended towards red wavelengths (red wings). These are the first detections of such Ca II features in 7 out of the 15 observed stars. Although an ISM origin cannot categorically be excluded, the results suggest that the stable and variable absorptions arise from relatively hot gas located in the CS close-in environment of the stars. This hot gas is detected in at least ~80%, of edge-on cold-gas-bearing debris discs, while in only ~10% of the discs seen close to face-on. We interpret this result as a geometrical effect, and suggest that the non-detection of hot gas absorptions in some face-on systems is due to the disc inclination and likely not to the absence of the hot-gas component. This gas is likely released in physical processes related in some way to the evaporation of exocomets, evaporation of dust grains, or grain-grain collisions close to the central star.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-14 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy