SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lendahl Urban) "

Sökning: WFRF:(Lendahl Urban)

  • Resultat 1-34 av 34
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ando, Koji, et al. (författare)
  • Peri-arterial specification of vascular mural cells from naive mesenchyme requires Notch signaling
  • 2019
  • Ingår i: Development. - : COMPANY BIOLOGISTS LTD. - 0950-1991 .- 1477-9129. ; 146:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Mural cells (MCs) are essential for blood vessel stability and function; however, the mechanisms that regulate MC development remain incompletely understood, in particular those involved in MC specification. Here, we investigated the first steps of MC formation in zebrafish using transgenic reporters. Using pdgfrb and abcc9 reporters, we show that the onset of expression of abcc9, a pericyte marker in adult mice and zebrafish, occurs almost coincidentally with an increment in pdgfrb expression in peri-arterial mesenchymal cells, suggesting that these transcriptional changes mark the specification of MC lineage cells from naive pdgfrb(low) mesenchymal cells. The emergence of peri-arterial pdgfrb(high) MCs required Notch signaling. We found that pdgfrb-positive cells express notch2 in addition to notch3, and although depletion of notch2 or notch3 failed to block MC emergence, embryos depleted of both notch2 and notch3 lost mesoderm- as well as neural crest-derived pdgfrb(high) MCs. Using reporters that read out Notch signaling and Notch2 receptor cleavage, we show that Notch activation in the mesenchyme precedes specification into pdgfrb(high) MCs. Taken together, these results show that Notch signaling is necessary for peri-arterial MC specification.
  •  
2.
  • Andrae, Johanna, et al. (författare)
  • A 1.8kb GFAP-promoter fragment is active in specific regions of theembryonic CNS
  • 2001
  • Ingår i: Mechanisms of Development. - 0925-4773 .- 1872-6356. ; 107:1-2, s. 181-5
  • Tidskriftsartikel (refereegranskat)abstract
    • The intermediate filament glial fibrillary acidic protein (GFAP) constitutes the major cytoskeletal protein in astrocytes (J. Neuroimmunol. 8 (1985) 203) and is traditionally referred to as a specific marker for astrocytes. To identify early glial precursors, we created GFAPpromoter-lacZ transgenic mice, using a 1.8kb 5' fragment of human GFAP. The expression of the transgene was first detected in the neuroepithelium at embryonic day 9.5. It was further found in the ventricular zone of the developing telencephalon, in the cerebellar primordium, trigeminal ganglia, and radial glia. Later, scattered beta-gal+ cells were seen in pons, brain stem and glia limitans. The results indicate that GFAP activity is regulated in a region-specific manner during central nervous system (CNS) development and that the gene is turned on in different cell types independently.
  •  
3.
  • Bjornholm, Katrine Dahl, et al. (författare)
  • A robust and efficient microvascular isolation method for multimodal characterization of the mouse brain vasculature
  • 2023
  • Ingår i: CELL REPORTS METHODS. - : Elsevier. - 2667-2375. ; 3:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Studying disease-related changes in the brain vasculature is warranted due to its crucial role in supplying oxygen and nutrients and removing waste and due to the anticipated vascular dysfunction in brain dis-eases. To this end, we have developed a protocol for fast and simple isolation of brain vascular fragments without the use of transgenic reporters. We used it to isolate and analyze 22,515 cells by single-cell RNA sequencing. The cells distributed into 23 distinct clusters corresponding to all known vascular and perivas-cular cell types in the brain. Western blot analysis also suggested that the protocol is suitable for proteomic analysis. We further adapted it for the establishment of primary cell cultures. The protocol generated highly reproducible results. In conclusion, we have developed a simple and robust brain vascular isolation proto-col suitable for different experimental modalities, such as single-cell analyses, western blotting, and pri-mary cell culture.
  •  
4.
  • Borgegard, Tomas, et al. (författare)
  • Alzheimers Disease: Presenilin 2-Sparing gamma-Secretase Inhibition Is a Tolerable A beta Peptide-Lowering Strategy
  • 2012
  • Ingår i: Journal of Neuroscience. - : Society for Neuroscience. - 0270-6474 .- 1529-2401. ; 32:48, s. 17297-17305
  • Tidskriftsartikel (refereegranskat)abstract
    • gamma-Secretase inhibition represents a major therapeutic strategy for lowering amyloid beta (A beta) peptide production in Alzheimers disease (AD). Progress toward clinical use of gamma-secretase inhibitors has, however, been hampered due to mechanism-based adverse events, primarily related to impairment of Notch signaling. The gamma-secretase inhibitor MRK-560 represents an exception as it is largely tolerable in vivo despite displaying only a small selectivity between A beta production and Notch signaling in vitro. In exploring the molecular basis for the observed tolerability, we show that MRK-560 displays a strong preference for the presenilin 1(PS1) over PS2 subclass of gamma-secretases and is tolerable in wild-type mice but causes dose-dependent Notch-related side effect in PS2-deficient mice at drug exposure levels resulting in a substantial decrease in brain A beta levels. This demonstrates that PS2 plays an important role in mediating essential Notch signaling in several peripheral organs during pharmacological inhibition of PS1 and provide preclinical in vivo proof of concept for PS2-sparing inhibition as a novel, tolerable and efficacious gamma-secretase targeting strategy for AD.
  •  
5.
  • Borgegård, Tomas, et al. (författare)
  • Alzheimer's Disease : Presenilin 2-Sparing γ-Secretase Inhibition Is a Tolerable Aβ Peptide-Lowering Strategy
  • 2012
  • Ingår i: Journal of Neuroscience. - 0270-6474 .- 1529-2401. ; 32:48, s. 17297-17305
  • Tidskriftsartikel (refereegranskat)abstract
    • γ-Secretase inhibition represents a major therapeutic strategy for lowering amyloid β (Aβ) peptide production in Alzheimer's disease (AD). Progress toward clinical use of γ-secretase inhibitors has, however, been hampered due to mechanism-based adverse events, primarily related to impairment of Notch signaling. The γ-secretase inhibitor MRK-560 represents an exception as it is largely tolerable in vivo despite displaying only a small selectivity between Aβ production and Notch signaling in vitro. In exploring the molecular basis for the observed tolerability, we show that MRK-560 displays a strong preference for the presenilin 1 (PS1) over PS2 subclass of γ-secretases and is tolerable in wild-type mice but causes dose-dependent Notch-related side effect in PS2-deficient mice at drug exposure levels resulting in a substantial decrease in brain Aβ levels. This demonstrates that PS2 plays an important role in mediating essential Notch signaling in several peripheral organs during pharmacological inhibition of PS1 and provide preclinical in vivo proof of concept for PS2-sparing inhibition as a novel, tolerable and efficacious γ-secretase targeting strategy for AD.
  •  
6.
  • Chivukula, Indira V, et al. (författare)
  • Decoding breast cancer tissue-stroma interactions using species-specific sequencing.
  • 2015
  • Ingår i: Breast Cancer Research. - : Springer Science and Business Media LLC. - 1465-5411 .- 1465-542X. ; 17
  • Tidskriftsartikel (refereegranskat)abstract
    • Decoding transcriptional effects of experimental tissue-tissue or cell-cell interactions is important; for example, to better understand tumor-stroma interactions after transplantation of human cells into mouse (xenografting). Transcriptome analysis of intermixed human and mouse cells has, however, frequently relied on the need to separate the two cell populations prior to transcriptome analysis, which introduces confounding effects on gene expression.
  •  
7.
  • Del Gaudio, Francesca, et al. (författare)
  • Left ventricular hypertrophy and metabolic resetting in the Notch3-deficient adult mouse heart
  • 2023
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The heart depends on a functional vasculature for oxygenation and transport of nutrients, and it is of interest to learn how primary impairment of the vasculature can indirectly affect cardiac function and heart morphology. Notch3-deficiency causes vascular smooth muscle cell (VSMC) loss in the vasculature but the consequences for the heart remain largely elusive. Here, we demonstrate that Notch3(-/-) mice have enlarged hearts with left ventricular hypertrophy and mild fibrosis. Cardiomyocytes were hypertrophic but not hyperproliferative, and the expression of several cardiomyocyte markers, including Tnt2, Myh6, Myh7 and Actn2, was altered. Furthermore, expression of genes regulating the metabolic status of the heart was affected: both Pdk4 and Cd36 were downregulated, indicating a metabolic switch from fatty acid oxidation to glucose consumption. Notch3(-/-) mice furthermore showed lower liver lipid content. Notch3 was expressed in heart VSMC and pericytes but not in cardiomyocytes, suggesting that a perturbation of Notch signalling in VSMC and pericytes indirectly impairs the cardiomyocytes. In keeping with this, Pdgfb(ret/ret) mice, characterized by reduced numbers of VSMC and pericytes, showed left ventricular and cardiomyocyte hypertrophy. In conclusion, we demonstrate that reduced Notch3 or PDGFB signalling in vascular mural cells leads to cardiomyocyte dysfunction.
  •  
8.
  • Enlund, Fredrik, 1968, et al. (författare)
  • Altered Notch signaling resulting from expression of a WAMTP1-MAML2 gene fusion in mucoepidermoid carcinomas and benign Warthin's tumors.
  • 2004
  • Ingår i: Experimental cell research. - : Elsevier BV. - 0014-4827 .- 1090-2422. ; 292:1, s. 21-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Chromosome translocations in neoplasia commonly result in fusion genes that may encode either novel fusion proteins or normal, but ectopically expressed proteins. Here we report the cloning of a novel fusion gene in a common type of salivary and bronchial gland tumor, mucoepidermoid carcinomas (MEC), as well as in benign Warthin's tumors (WATs). The fusion, which results from a t(11;19)(q21-22;p13) translocation, creates a chimeric gene in which exon 1 of a novel gene of unknown function, designated WAMTP1, is linked to exons 2-5 of the recently identified Mastermind-like Notch coactivator MAML2. In the fusion protein, the N-terminal basic domain of MAML2, which is required for binding to intracellular Notch (Notch ICD), is replaced by an unrelated N-terminal sequence from WAMTP1. Mutation analysis of the N-terminus of WAMTP1-MAML2 identified two regions of importance for nuclear localization (amino acids 11-20) and for colocalization with MAML2 and Notch1 ICD in nuclear granules (amino acids 21-42). Analyses of the Notch target genes HES5 and MASH1 in MEC tumors with and without the WAMTP1-MAML2 fusion revealed upregulation of HES5 and downregulation of MASH1 in fusion positive MECs compared to normal salivary gland tissue and MECs lacking the fusion. These findings suggest that altered Notch signaling plays an important role in the genesis of benign and malignant neoplasms of salivary and bronchial gland origin.
  •  
9.
  • Foo, Kylie S, et al. (författare)
  • Human ISL1+ ventricular progenitors self-assemble into an in vivo functional heart patch and preserve cardiac function post infarction
  • 2018
  • Ingår i: Molecular Therapy. - Stockholm : Karolinska Institutet, Dept of Cell and Molecular Biology. - 1525-0016. ; 26:7, s. 1644-1659
  • Tidskriftsartikel (refereegranskat)abstract
    • The generation of human pluripotent stem cell (hPSC)-derived ventricular progenitors and their assembly into a 3-dimensional in vivo functional ventricular heart patch has remained an elusive goal. Herein, we report the generation of an enriched pool of hPSC-derived ventricular progenitors (HVPs), which can expand, differentiate, self-assemble, and mature into a functional ventricular patch in vivo without the aid of any gel or matrix. We documented a specific temporal window, in which the HVPs will engraft in vivo. On day 6 of differentiation, HVPs were enriched by depleting cells positive for pluripotency marker TRA-1-60 with magnetic-activated cell sorting (MACS), and 3 million sorted cells were sub-capsularly transplanted onto kidneys of NSG mice where, after 2 months, they formed a 7 mm x 3 mm x 4 mm myocardial patch resembling the ventricular wall. The graft acquired several features of maturation: expression of ventricular marker (MLC2v), desmosomes, appearance of T-tubule-like structures, and electrophysiological action potential signature consistent with maturation, all this in a non-cardiac environment. We further demonstrated that HVPs transplanted into un-injured hearts of NSG mice remain viable for up to 8 months. Moreover, transplantation of 2 million HVPs largely preserved myocardial contractile function following myocardial infarction. Taken together, our study reaffirms the promising idea of using progenitor cells for regenerative therapy. Correction in Mol Ther. 2021 Jan 6;29(1):409, DOI: 10.1016/j.ymthe.2020.11.015
  •  
10.
  • Gudey, Shyam Kumar, 1982- (författare)
  • TRAF6 stimulates TGFβ-induced oncogenic signal transduction in cancer cells
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Prostate cancer is one of the leading causes of cancer-related deaths in men worldwide, with 10,000 new cases/year diagnosed in Sweden. In this context, there is an urgent need to identify new biomarkers to detect prostate cancer at an initial stage for earlier treatment intervention. Although how prostate cancer develops has not been fully established, the male sex hormone testosterone is a known prerequisite for prostate cancer development. High levels of transforming growth factor-β (TGFβ) are prognostically unfavorable in prostate cancer patients.TGFβ is a multifunctional cytokine that regulates a broad range of cellular responses. TGFβ signals through either the canonical Smad or the non-Smad signaling cascade. Cancerous cells develop different strategies to evade defense mechanisms and metastasize to different parts of the body. This thesis unveils one such novel mechanism related to TGFβ signaling.The first two articles provide evidence that TGFβ receptor type I (TβRI) is ubiquitinated by tumor necrosis factor receptor-associated factor 6 (TRAF6) and is cleaved at the ectodomain region by tumor necrosis factor alpha converting enzyme (TACE) in a protein kinase C zeta type-dependent manner. After TβRI is shed from the ectodomain, it undergoes a second cleavage by presenilin 1 (PS1), a γ-secretase catalytic subunit, which liberates the TβRI intracellular domain (TβRI-ICD) from the cell membrane. TRAF6 promotes TGFβ-dependent Lys63-linked polyubiquitination and recruitment of PS1 to the TβRI complex, and facilitates the cleavage of TβRI by PS1 to generate a TβRI-ICD. The TβRI-ICD then translocates to the nucleus, where it binds with the transcriptional co-activator p300 and regulates the transcription of pro-invasive target genes such as Snail1. Moreover, the nuclear translocated TβRI-ICD cooperates with the Notch intracellular domain (NICD), a core component in the Notch signaling pathway, to drive the expression of invasive genes. Interestingly, treatment with g-secretase inhibitors was able to inhibit cleavage of TβRI and inhibit the TGFβ-induced oncogenic pathway in an in vivo prostate cancer xenograft model.In the third article, we identified that Lysine 178 is the acceptor lysine in TβRI that is ubiquitinated by TRAF6. The TβRI K178R mutant was neither ubiquitinated nor translocated to the nucleus, and prevented transcriptional regulation of invasive genes in a dominant negative manner.In the fourth article, we show that TGFβ utilizes the E3-ligase TRAF6 and the p38 mitogen-activated protein kinase to phosphorylate c-Jun. In turn, the phosphorylated c-Jun activates p21 and Snail1 in a non-canonical Smad-independent pathway, and thereby promotes invasion in cancerous cells.In summary, we elucidate a new mechanism of TGFβ-induced oncogenic signal transduction in cancer cells in which TRAF6 plays a fundamental role. This opens a new avenue in the field of TGFβ signaling.
  •  
11.
  • He, Liqun, et al. (författare)
  • Single-cell RNA sequencing of mouse brain and lung vascular and vessel-associated cell types
  • 2018
  • Ingår i: Scientific Data. - : NATURE PUBLISHING GROUP. - 2052-4463. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Vascular diseases are major causes of death, yet our understanding of the cellular constituents of blood vessels, including how differences in their gene expression profiles create diversity in vascular structure and function, is limited. In this paper, we describe a single-cell RNA sequencing (scRNA-seq) dataset that defines vascular and vessel-associated cell types and subtypes in mouse brain and lung. The dataset contains 3,436 single cell transcriptomes from mouse brain, which formed 15 distinct clusters corresponding to cell (sub) types, and another 1,504 single cell transcriptomes from mouse lung, which formed 17 cell clusters. In order to allow user-friendly access to our data, we constructed a searchable database (http://betsholtzlab.org/VascularSingleCells/database.html). Our dataset constitutes a comprehensive molecular atlas of vascular and vessel-associated cell types in the mouse brain and lung, and as such provides a strong foundation for future studies of vascular development and diseases.
  •  
12.
  • Henshall, Tanya L, et al. (författare)
  • Notch3 Is Necessary for Blood Vessel Integrity in the Central Nervous System
  • 2015
  • Ingår i: Arteriosclerosis, Thrombosis and Vascular Biology. - 1079-5642 .- 1524-4636. ; 35:2, s. 409-420
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Vascular smooth muscle cells (VSMC) are important for contraction, blood flow distribution, and regulation of blood vessel diameter, but to what extent they contribute to the integrity of blood vessels and blood-brain barrier function is less well understood. In this report, we explored the impact of the loss of VSMC in the Notch3(-/-) mouse on blood vessel integrity in the central nervous system.APPROACH AND RESULTS: Notch3(-/-) mice showed focal disruptions of the blood-brain barrier demonstrated by extravasation of tracers and accompanied by fibrin deposition in the retinal vasculature. This blood-brain barrier leakage was accompanied by a regionalized and patchy loss of VSMC, with VSMC gaps predominantly in arterial resistance vessels of larger caliber. The loss of VSMC appeared to be caused by progressive degeneration of VSMC resulting in a gradual loss of VSMC marker expression and a progressive acquisition of an aberrant VSMC phenotype closer to the gaps, followed by enhanced apoptosis and cellular disintegration in the gaps. Arterial VSMC were the only mural cell type that was morphologically affected, despite Notch3 being expressed also in pericytes. Transcriptome analysis of isolated brain microvessels revealed gene expression changes in Notch3(-/-) mice consistent with loss of arterial VSMC and presumably secondary transcriptional changes were observed in endothelial genes, which may explain the compromised vascular integrity.CONCLUSIONS: We demonstrate that Notch3 is important for survival of VSMC, and reveal a critical role for Notch3 and VSMC in blood vessel integrity and blood-brain barrier function in the mammalian vasculature.
  •  
13.
  • Jin, Shaobo, et al. (författare)
  • Notch signaling regulates platelet-derived growth factor receptor-beta expression in vascular smooth muscle cells
  • 2008
  • Ingår i: Circulation Research. - 0009-7330 .- 1524-4571. ; 102:12, s. 1483-1491
  • Tidskriftsartikel (refereegranskat)abstract
    • Notch signaling is critically important for proper architecture of the vascular system, and mutations in NOTCH3 are associated with CADASIL, a stroke and dementia syndrome with vascular smooth muscle cell (VSMC) dysfunction. In this report, we link Notch signaling to platelet-derived growth factor (PDGF) signaling, a key determinant of VSMC biology, and show that PDGF receptor (PDGFR)-beta is a novel immediate Notch target gene. PDGFR-beta expression was upregulated by Notch ligand induction or by activated forms of the Notch receptor. Moreover, upregulation of PDGFR-beta expression in response to Notch activation critically required the Notch signal integrator CSL. In primary VSMCs, PDGFR-beta expression was robustly upregulated by Notch signaling, leading to an augmented intracellular response to PDGF stimulation. In newborn Notch3-deficient mice, PDGFR-beta expression was strongly reduced in the VSMCs that later develop an aberrant morphology. In keeping with this, PDGFR-beta upregulation in response to Notch activation was reduced also in Notch3-deficient embryonic stem cells. Finally, in VSMCs from a CADASIL patient carrying a NOTCH3 missense mutation, upregulation of PDGFR-beta mRNA and protein in response to ligand-induced Notch activation was significantly reduced. In sum, these data reveal a hierarchy for 2 important signaling systems, Notch and PDGF, in the vasculature and provide insights into how dysregulated Notch signaling perturbs VSMC differentiation and function.
  •  
14.
  • Kokaia, Merab, et al. (författare)
  • Suppressed kindling epileptogenesis in mice with ectopic overexpression of galanin
  • 2001
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 98:24, s. 14006-14011
  • Tidskriftsartikel (refereegranskat)abstract
    • The neuropeptide galanin has been shown to suppress epileptic seizures. In cortical and hippocampal areas, galanin is normally mainly expressed in noradrenergic afferents. We have generated a mouse overexpressing galanin in neurons under the platelet-derived growth factor B promoter. RIA and HPLC analysis revealed up to 8-fold higher levels of galanin in transgenic as compared with wild-type mice. Ectopic galanin overexpression was detected especially in dentate granule cells and hippocampal and cortical pyramidal neurons. Galanin-overexpressing mice showed retardation of seizure generalization during hippocampal kindling, a model for human complex partial epilepsy. The high levels of galanin in mossy fibers found in the transgenic mice were further increased after seizures. Frequency facilitation of field excitatory postsynaptic potentials, a form of short-term synaptic plasticity assessed in hippocampal slices, was reduced in mossy fiber-CA3 cell synapses of galanin-overexpressing mice, indicating suppressed glutamate release. This effect was reversed by application of the putative galanin receptor antagonist M35. These data provide evidence that ectopically overexpressed galanin can be released and dampen the development of epilepsy by means of receptor-mediated action, at least partly by reducing glutamate release from mossy fibers.
  •  
15.
  • Kriz, Vitezslav, 1974- (författare)
  • The Role of the SHB Adapter Protein in Cell Differentiation and Development
  • 2006
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The present study was conducted in order to assess a role of the SH2 domain-containing adapter protein SHB in development and cell differentiation.Embryonic stem (ES) cells overexpressing SHB and SHB with an inactive SH2 domain (R522K-SHB) were obtained. Microarray analysis in the SHB clone revealed altered expression of genes connected with neural cell function. The R522K-SHB clone exhibited altered expression of several transcription factors related to development. ES cells were differentiated by forming aggregates named embryoid bodies (EBs). The morphology of EBs was altered in the R522K-SHB clones, which showed fewer cavities. Expression of endodermal markers was decreased in the R522K-SHB EBs. To further investigate the role of SHB in differentiation, murine ES cell lines deficient for one (SHB+/-) or both SHB alleles (SHB-/-) were generated. SHB deficient clones increased the expression of mesendodermal and endodermal markers and decreased expression of two receptors, VEGFR2 and FGFR1, connected with blood vessel differentiation. Similarly, blood vessels showed an altered morphology in SHB+/- and SHB-/- EBs after VEGF stimulation. SHB-/- ES cells also formed fewer blood colonies than control ES cells.Finally, the role of the SHB adapter protein in vivo was analyzed by generating a SHB deficient mouse (SHB-/-). SHB-/- animals are viable, fertile, but suffer from leukopenia and anemia. SHB-/- animals demonstrate an abnormal morphology of blood vessels in the liver and kidney. Breeding of SHB+/- animals revealed an abnormal segregation of the mutant allele with an increased number of SHB+/- animals and a decreased number of SHB-/- and SHB+/+animals. Backcross analysis of SHB+/- females with SHB+/+ males displayed an increased number of SHB+/- offspring already at the blastocyst level. Simultaneously, embryos from SHB+/- mothers show an increased malformation rate in comparison to embryos from SHB+/+ mothers.In summary, the study suggests a role of SHB in reproduction and development and in mesodermal and endodermal specification.
  •  
16.
  • Kuang, Wen, 1964- (författare)
  • Genetic and Functional Analysis of Cell Adhesion in Muscle
  • 1998
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Skeletal muscle is one of the most abundant tissues in the body, and its main function is to generate the force for movement. The mature muscle cell is a giant, elongated, multinucleated cell surrounded by a specialized, extracellular matrix (ECM), the basement membrane (BM). The BM in muscle, as in other tissues, is composed of laminin, type IV collagen, entactin/nidogen and heparan sulphate proteoglycan. One major component of the BM in muscle is laminin-2, which is composed of a heavy chain laminina2 and two light chains,b1 and lamining1. Laminin-2 is predominantly expressed in skeletal muscle and peripheral nerve but is also found in other tissues.Cell adhesion to the basement membrane is mediated by cell surface receptors, which thereby link the BM to the cytoskeleton. This linkage is thought to be important for generating the force required for movement. Mutations in adhesion molecules in muscle cause muscular dystrophy, proving the importance of cell adhesion in muscle.In order to analyze the molecular mechanisms of cell adhesion in muscle, we have analyzed laminin-2 and two other muscle adhesion proteins, laminina-sarcoglycan and tetranectin, in muscle development and regeneration. Most importantly, we have developed in vitro and in vivo models for laminin-2 deficient muscular dystrophy.We generated several lines of mutant embryonic stem (ES) cell with disruption of the laminin- laminina2 chain gene. We found that homozygous null mutant ES cells differentiate normally in vitro, giving rise to cardiomyocytes, myotubes, and smooth muscle cells in addition to many other cell types. However, the myotubes that are formed are unstable. They detach, collapse, and degenerate, a process which is initiated at the appearance of the mature, contractile phenotype of the cells. We propose that the detachment and death of contracting myotubes in vitro has its counterpart in vivo, and that contraction-induced myofiber damage, along with the lack of survival cues provided by laminin-2/merosin, is a significant contribution to muscle degeneration in merosin-deficient muscular dystrophy.We used laminin laminina2 mutant mice to study the expression of laminin-2 in development and regeneration using the lacZ gene as a reporter for the lama2 gene. We found that the lacZ/lama2 gene is highly expressed in the early stages of myogenesis and is down regulated when myogenesis is completed. Most importantly, the gene is up-regulated early in muscle regeneration, suggesting that laminin-2 plays an important role in this process. Despite the prominent expression of lama2 in normal development, laminina2 null mutant mice have no obvious developmental defect. Instead, they develop muscular dystrophy two weeks after birth. We found extensive apoptosis in null mutant mice, and this cell death is dramatically reduced in mice in which laminin-2 expression is restored in skeletal muscle by expression of a wild type LAMA2 transgene. Most of the apoptotic cells in null mutant mice are newly formed myofibers, suggesting that laminin-2 is needed for maturation and survival of regenerated myotubes. The apparent abortive muscle regeneration in laminin-2 deficiency suggests that the severe disease of MCMD is caused by insufficient regeneration after muscle damage.We have expressed a human LAMA2 transgene under the regulation of a muscle-specific creatine kinase promoter in mice with complete or partial deficiency of merosin. The transgene restored the synthesis and localization of laminin-2 in skeletal muscle, and greatly improved muscle morphology and integrity and the health and longevity of the mice. However, the transgenic mice share with the non-transgenic dystrophic mice a progressive lameness of hind legs, suggesting a nerve defect. These results indicate that the absence of merosin in tissues other than the muscle, such as nervous tissue, is a critical component of MCMD.We have cloned and characterized, a-sarcoglycan/adhalin, a member of the dystrophin associated sarcoglycan complex in muscle. We showed that a-sarcoglycan is expressed very late in myogenic differentiation both in vitro and in vivo. In fact, the expression is associated with the capacity of muscle cells to contract. The sarcoglycans may therefore have a role in muscle contraction. We also analyzed an ECM-associated molecule, tetranectin. We showed that expression of tetranectin is closely associated with skeletal muscle development and regeneration, and with muscle cell differentiation in vitro.In summary, our studies show the importance of laminin-2 in skeletal muscle. We have provided new information on three markers for different stages of myogenic differentiation, laminin laminina2, laminina-sarcoglycan, and tetranectin. In addition, our studies contribute to a better understanding of the mechanism of human disease caused by laminin-2 deficiency.
  •  
17.
  • Lanner, Fredrik, et al. (författare)
  • Hypoxia-Induced Arterial Differentiation Requires Adrenomedullin and Notch Signaling
  • 2013
  • Ingår i: Stem Cells and Development. - : Mary Ann Liebert Inc. - 1547-3287 .- 1557-8534. ; 22:9, s. 1360-1369
  • Tidskriftsartikel (refereegranskat)abstract
    • Hypoxia (low oxygen) and Notch signaling are 2 important regulators of vascular development, but how they interact in controlling the choice between arterial and venous fates for endothelial cells during vasculogenesis is less well understood. In this report, we show that hypoxia and Notch signaling intersect in promotion of arterial differentiation. Hypoxia upregulated expression of the Notch ligand Dll4 and increased Notch signaling in a process requiring the vasoactive hormone adrenomedullin. Notch signaling also upregulated Dll4 expression, leading to a positive feedback loop sustaining Dll4 expression and Notch signaling. In addition, hypoxia-mediated upregulation of the arterial marker genes Depp, connexin40 (Gja5), Cxcr4, and Hey1 required Notch signaling. In conclusion, the data reveal an intricate interaction between hypoxia and Notch signaling in the control of endothelial cell differentiation, including a hypoxia/adrenomedullin/Dll4 axis that initiates Notch signaling and a requirement for Notch signaling to effectuate hypoxia-mediated induction of the arterial differentiation program.
  •  
18.
  • Larsson, Jan-Åke, et al. (författare)
  • Modelling cell lineage using a meta-Boolean tree model with a relation to gene regulatory networks
  • 2011
  • Ingår i: Journal of Theoretical Biology. - Amsterdam : Elsevier. - 0022-5193 .- 1095-8541. ; 268:1, s. 62-76
  • Tidskriftsartikel (refereegranskat)abstract
    • A cell lineage is the ancestral relationship between a group of cells that originate from a single founder cell. For example, in the embryo of the nematode Caenorhabditis elegans an invariant cell lineage has been traced, and with this information at hand it is possible to theoretically model the emergence of different cell types in the lineage, starting from the single fertilized egg. In this report we outline a modelling technique for cell lineage trees, which can be used for the C. elegans embryonic cell lineage but also extended to other lineages. The model takes into account both cell-intrinsic (transcription factor-based) and -extrinsic (extracellular) factors as well as synergies within and between these two types of factors. The model can faithfully recapitulate the entire C. elegans cell lineage, but is also general, i.e., it can be applied to describe any cell lineage. We show that synergy between factors, as well as the use of extrinsic factors, drastically reduce the number of regulatory factors needed for recapitulating the lineage. The model gives indications regarding co-variation of factors, number of involved genes and where in the cell lineage tree that asymmetry might be controlled by external influence. Furthermore, the model is able to emulate other (Boolean, discrete and differential-equation-based) models. As an example, we show that the model can be translated to the language of a previous linear sigmoid-limited concentration-based model (Geard and Wiles, 2005). This means that this latter model also can exhibit synergy effects, and also that the cumbersome iterative technique for parameter estimation previously used is no longer needed. In conclusion, the proposed model is general and simple to use, can be mapped onto other models to extend and simplify their use, and can also be used to indicate where synergy and external influence would reduce the complexity of the regulatory process.
  •  
19.
  •  
20.
  • Lendahl, Urban, et al. (författare)
  • Emerging links between cerebrovascular and neurodegenerative diseases-a special role for pericytes
  • 2019
  • Ingår i: EMBO Reports. - : EMBO. - 1469-221X .- 1469-3178. ; 20:11
  • Forskningsöversikt (refereegranskat)abstract
    • Neurodegenerative and cerebrovascular diseases cause considerable human suffering, and therapy options for these two disease categories are limited or non-existing. It is an emerging notion that neurodegenerative and cerebrovascular diseases are linked in several ways, and in this review, we discuss the current status regarding vascular dysregulation in neurodegenerative disease, and conversely, how cerebrovascular diseases are associated with central nervous system (CNS) degeneration and dysfunction. The emerging links between neurodegenerative and cerebrovascular diseases are reviewed with a particular focus on pericytes-important cells that ensheath the endothelium in the microvasculature and which are pivotal for blood-brain barrier function and cerebral blood flow. Finally, we address how novel molecular and cellular insights into pericytes and other vascular cell types may open new avenues for diagnosis and therapy development for these important diseases.
  •  
21.
  • Lendahl, Urban, et al. (författare)
  • Identification, discrimination and heterogeneity of fibroblasts
  • 2022
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 13:1
  • Forskningsöversikt (refereegranskat)abstract
    • Fibroblasts, the principal cell type of connective tissue, secrete extracellular matrix components during tissue development, homeostasis, repair and disease. Despite this crucial role, the identification and distinction of fibroblasts from other cell types are challenging and laden with caveats. Rapid progress in single-cell transcriptomics now yields detailed molecular portraits of fibroblasts and other cell types in our bodies, which complement and enrich classical histological and immunological descriptions, improve cell class definitions and guide further studies on the functional heterogeneity of cell subtypes and states, origins and fates in physiological and pathological processes. In this review, we summarize and discuss recent advances in the understanding of fibroblast identification and heterogeneity and how they discriminate from other cell types. In this review, the authors look at how recent progress in single-cell transcriptomics complement and enrich the classical, largely morphological, portraits of fibroblasts. The detailed molecular information now available provides new insights into fibroblast identity, heterogeneity and function.
  •  
22.
  •  
23.
  • Masuda, Takahiro, et al. (författare)
  • Specification of CNS macrophage subsets occurs postnatally in defined niches
  • 2022
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 604:7907, s. 740-
  • Tidskriftsartikel (refereegranskat)abstract
    • All tissue-resident macrophages of the central nervous system (CNS)-including parenchymal microglia, as well as CNS-associated macrophages (CAMs(1)) such as meningeal and perivascular macrophages(2-)(7)-are part of the CNS endogenous innate immune system that acts as the first line of defence during infections or trauma(2,8-10). It has been suggested that microglia and all subsets of CAMs are derived from prenatal cellular sources in the yolk sac that were defined as early erythromyeloid progenitors(11-15). However, the precise ontogenetic relationships, the underlying transcriptional programs and the molecular signals that drive the development of distinct CAM subsets in situ are poorly understood. Here we show, using fate-mapping systems, single-cell profiling and cell-specific mutants, that only meningeal macrophages and microglia share a common prenatal progenitor. By contrast, perivascular macrophages originate from perinatal meningeal macrophages only after birth in an integrin-dependent manner. The establishment of perivascular macrophages critically requires the presence of arterial vascular smooth muscle cells. Together, our data reveal a precisely timed process in distinct anatomical niches for the establishment of macrophage subsets in the CNS.
  •  
24.
  •  
25.
  • Muhl, Lars, et al. (författare)
  • A single-cell transcriptomic inventory of murine smooth muscle cells
  • 2022
  • Ingår i: Developmental Cell. - : Elsevier. - 1534-5807 .- 1878-1551. ; 57:20, s. 2426-
  • Tidskriftsartikel (refereegranskat)abstract
    • Smooth muscle cells (SMCs) execute important physiological functions in numerous vital organ systems, including the vascular, gastrointestinal, respiratory, and urogenital tracts. SMC differ morphologically and functionally at these different anatomical locations, but the molecular underpinnings of the differences remain poorly understood. Here, using deep single-cell RNA sequencing combined with in situ gene and pro-tein expression analysis in four murine organs-heart, aorta, lung, and colon-we identify a molecular basis for high-level differences among vascular, visceral, and airway SMC, as well as more subtle differences between, for example, SMC in elastic and muscular arteries and zonation of elastic artery SMC along the direction of blood flow. Arterial SMC exhibit extensive organotypic heterogeneity, whereas venous SMC are similar across organs. We further identify a specific SMC subtype within the pulmonary vasculature. This comparative SMC cross-organ resource offers insight into SMC subtypes and their specific functions.
  •  
26.
  • Muhl, Lars, et al. (författare)
  • Single-cell analysis uncovers fibroblast heterogeneity and criteria for fibroblast and mural cell identification and discrimination
  • 2020
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Many important cell types in adult vertebrates have a mesenchymal origin, including fibroblasts and vascular mural cells. Although their biological importance is undisputed, the level of mesenchymal cell heterogeneity within and between organs, while appreciated, has not been analyzed in detail. Here, we compare single-cell transcriptional profiles of fibroblasts and vascular mural cells across four murine muscular organs: heart, skeletal muscle, intestine and bladder. We reveal gene expression signatures that demarcate fibroblasts from mural cells and provide molecular signatures for cell subtype identification. We observe striking inter- and intra-organ heterogeneity amongst the fibroblasts, primarily reflecting differences in the expression of extracellular matrix components. Fibroblast subtypes localize to discrete anatomical positions offering novel predictions about physiological function(s) and regulatory signaling circuits. Our data shed new light on the diversity of poorly defined classes of cells and provide a foundation for improved understanding of their roles in physiological and pathological processes. To define and distinguish fibroblasts from vascular mural cells have remained challenging. Here, using single-cell RNA sequencing and tissue imaging, the authors provide a molecular basis for cell type classification and reveal inter- and intra-organ diversity of these cell types.
  •  
27.
  • Muhl, Lars, et al. (författare)
  • The SARS-CoV-2 receptor ACE2 is expressed in mouse pericytes but not endothelial cells : Implications for COVID-19 vascular research
  • 2022
  • Ingår i: Stem Cell Reports. - : Elsevier. - 2213-6711. ; 17:5, s. 1089-1104
  • Tidskriftsartikel (refereegranskat)abstract
    • Humanized mouse models and mouse-adapted SARS-CoV-2 virus are increasingly used to study COVID-19 pathogenesis, so it is impor-tant to learn where the SARS-CoV-2 receptor ACE2 is expressed. Here we mapped ACE2 expression during mouse postnatal development and in adulthood. Pericytes in the CNS, heart, and pancreas express ACE2 strongly, as do perineurial and adrenal fibroblasts, whereas endothelial cells do not at any location analyzed. In a number of other organs, pericytes do not express ACE2, including in the lung where ACE2 instead is expressed in bronchial epithelium and alveolar type II cells. The onset of ACE2 expression is organ specific: in bronchial epithelium already at birth, in brain pericytes before, andin heart pericytes after postnatal day 10.5. Establishing the vascular localization of ACE2 expression is central to correctly interpret data from modeling COVID-19 in the mouse and may shed light on the cause of vascular COVID-19 complications.
  •  
28.
  • Oliveira, Daniel V, et al. (författare)
  • Active immunotherapy reduces NOTCH3 deposition in brain capillaries in a CADASIL mouse model.
  • 2022
  • Ingår i: EMBO molecular medicine. - : EMBO. - 1757-4684 .- 1757-4676. ; 15:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common monogenic form of familial small vessel disease; no preventive or curative therapy is available. CADASIL is caused by mutations in the NOTCH3 gene, resulting in a mutated NOTCH3 receptor, with aggregation of the NOTCH3 extracellular domain (ECD) around vascular smooth muscle cells. In this study, we have developed a novel active immunization therapy specifically targeting CADASIL-like aggregated NOTCH3 ECD. Immunizing CADASIL TgN3R182C150 mice with aggregates composed of CADASIL-R133C mutated and wild-type EGF1-5 repeats for a total of 4months resulted in a marked reduction (38-48%) in NOTCH3 deposition around brain capillaries, increased microglia activation and lowered serum levels of NOTCH3 ECD. Active immunization did not impact body weight, general behavior, the number and integrity of vascular smooth muscle cells in the retina, neuronal survival, or inflammation or the renal system, suggesting that the therapy is tolerable. This is the first therapeutic study reporting a successful reduction of NOTCH3 accumulation in a CADASIL mouse model supporting further development towards clinical application for the benefit of CADASIL patients.
  •  
29.
  • Papadakos, Konstantinos S., et al. (författare)
  • Cartilage Oligomeric Matrix Protein initiates cancer stem cells through activation of Jagged1-Notch3 signaling
  • 2019
  • Ingår i: Matrix Biology. - : Elsevier BV. - 0945-053X. ; 81, s. 107-121
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer stem cell populations are important for the initiation, progression and metastasis of tumors. The mechanisms governing cancer stem cell control are only partially understood, but activation of the Notch3 pathway plays a crucial role in the maintenance of breast cancer stem cells. Expression of Cartilage Oligomeric Matrix Protein (COMP) in breast cancer cells is correlated with poor survival and higher recurrence rates in patients. In this study, we provide in vivo and in vitro evidence that COMP expression increases the proportion of cancer stem cells in breast cancer. Thus, MDA-MB-231 and BT-20 cells expressing COMP formed larger tumorspheres in vivo and in vitro and displayed higher ALDH-activity than cells lacking COMP. Additionally, BT-20 COMP-expressing cells displayed higher expression of CD133 compared with the control cells. Furthermore, among the different Notch receptors, Notch3 is specifically activated in COMP-expressing cells. Mechanistically, activation of Notch3 is mediated by secreted, polymeric COMP, which interacts with both Notch3 and its ligand Jagged1, bridging the receptor and ligand together, enhancing Notch3-specific signaling. COMP-dependent Notch3 activation also leads to cross-talk with β-Catenin and AKT pathways. Using the model of MMTV-PyMT mouse breast tumorigenesis, we observed a decrease in the size of tumors and the amount of cancer stem cells as well as reduced Notch3 activation, in COMP knockout mice in comparison to wild type mice. In conclusion, we reveal a novel molecular mechanism whereby COMP regulates the cancer stem cell population through increasing the interaction between Notch3 and Jagged1, leading to increased activation of Notch3 signaling.
  •  
30.
  • Pietilä, Riikka, et al. (författare)
  • Molecular anatomy of adult mouse leptomeninges
  • 2023
  • Ingår i: Neuron. - : Elsevier. - 0896-6273 .- 1097-4199. ; 111:23
  • Tidskriftsartikel (refereegranskat)abstract
    • Leptomeninges, consisting of the pia mater and arachnoid, form a connective tissue investment and barrier enclosure of the brain. The exact nature of leptomeningeal cells has long been debated. In this study, we iden-tify five molecularly distinct fibroblast-like transcriptomes in cerebral leptomeninges; link them to anatomically distinct cell types of the pia, inner arachnoid, outer arachnoid barrier, and dural border layer; and contrast them to a sixth fibroblast-like transcriptome present in the choroid plexus and median eminence. Newly identified transcriptional markers enabled molecular characterization of cell types responsible for adherence of arach-noid layers to one another and for the arachnoid barrier. These markers also proved useful in identifying the molecular features of leptomeningeal development, injury, and repair that were preserved or changed after traumatic brain injury. Together, the findings highlight the value of identifying fibroblast transcriptional subsets and their cellular locations toward advancing the understanding of leptomeningeal physiology and pathology.
  •  
31.
  • Strell, Carina, et al. (författare)
  • Impact of Epithelial-Stromal Interactions on Peritumoral Fibroblasts in Ductal Carcinoma in Situ
  • 2019
  • Ingår i: Journal of the National Cancer Institute. - : Oxford University Press (OUP). - 0027-8874 .- 1460-2105. ; 111:9, s. 983-995
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: A better definition of biomarkers and biological processes related to local recurrence and disease progression is highly warranted for ductal breast carcinoma in situ (DCIS). Stromal-epithelial interactions are likely of major importance for the biological, clinical, and pathological distinctions between high- and low-risk DCIS cases. Methods: Stromal platelet derived growth factor receptor (PDGFR) was immunohistochemically assessed in two DCIS patient cohorts (n = 458 and n = 80). Cox proportional hazards models were used to calculate the hazard ratios of recurrence. The molecular mechanisms regulating stromal PDGFR expression were investigated in experimental in vitro co-culture systems of DCIS cells and fibroblasts and analyzed using immunoblot and quantitative real-time PCR. Knock-out of JAG1 in DCIS cells and NOTCH2 in fibroblasts was obtained through CRISPR/Cas9. Experimental data were validated by mammary fat pad injection of DCIS and DCIS-JAG1 knock-out cells (10 mice per group). All statistical tests were two-sided. Results: PDGFR alpha((low))/PDGFR beta((high)) fibroblasts were associated with increased risk for recurrence in DCIS (univariate hazard ratio = 1.59, 95% confidence interval [CI] = 1.02 to 2.46; P = .04 Wald test; multivariable hazard ratio = 1.78, 95% CI = 1.07 to 2.97; P = .03). Tissue culture and mouse model studies indicated that this fibroblast phenotype is induced by DCIS cells in a cell contact-dependent manner. Epithelial Jagged1 and fibroblast Notch2 were identified through loss-of-function studies as key juxtacrine signaling components driving the formation of the poor prognosis-associated fibroblast phenotype. Conclusions: A PDGFR alpha((low))/PDGFR beta((high)) fibroblast subset was identified as a marker for high-risk DCIS. The Jagged-1/Notch2/PDGFR stroma-epithelial pathway was described as a novel signaling mechanism regulating this poor prognosis-associated fibroblast subset. In general terms, the study highlights epithelial-stromal crosstalk in DCIS and contributes to ongoing efforts to define clinically relevant fibroblast subsets and their etiology.
  •  
32.
  • Vanlandewijck, Michael, et al. (författare)
  • A molecular atlas of cell types and zonation in the brain vasculature
  • 2018
  • Ingår i: Nature. - : NATURE PUBLISHING GROUP. - 0028-0836 .- 1476-4687. ; 554:7693, s. 475-480
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebrovascular disease is the third most common cause of death in developed countries, but our understanding of the cells that compose the cerebral vasculature is limited. Here, using vascular single-cell transcriptomics, we provide molecular definitions for the principal types of blood vascular and vessel-associated cells in the adult mouse brain. We uncover the transcriptional basis of the gradual phenotypic change (zonation) along the arteriovenous axis and reveal unexpected cell type differences: a seamless continuum for endothelial cells versus a punctuated continuum for mural cells. We also provide insight into pericyte organotypicity and define a population of perivascular fibroblast-like cells that are present on all vessel types except capillaries. Our work illustrates the power of single-cell transcriptomics to decode the higher organizational principles of a tissue and may provide the initial chapter in a molecular encyclopaedia of the mammalian vasculature.
  •  
33.
  • Vedin, Viktoria (författare)
  • Molecular and functional anatomy of the mouse olfactory epithelium
  • 2006
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The olfactory system is important for social behaviors, feeding and avoiding predators. Detection of odorous molecules is made by odorant receptors on specialized sensory neurons in the olfactory epithelial sheet. The olfactory sensory neurons are organized into a few regions or “zones” based on the spatially limited expression of odorant receptors. In this thesis the zonal division and functional specificity of olfactory sensory neurons have been studied in the mouse. We find that zones 2-4 show overlapping expression of odorant receptors while the border between the regions that express a zone 1 and a zone 2 odorant receptor, respectively, is sharp. This result indicates that zone 1 and zones 2-4 are inherently different from each other. In cDNA screens, aimed at finding genes whose expression correlate to the zonal expression pattern of odorant receptors, we have identified a number of signaling proteins implicated in neural-tissue organogenesis in other systems. The differential expression pattern of identified genes suggests that regional organization is maintained during the continuous neurogenesis in the olfactory epithelium as a result of counter gradients of positional information. We show that the gene c-fos is induced in olfactory sensory neurons as a result of cell activation by odorant exposure. A zonal and scattered distribution of c-Fos-positive neurons resembled the pattern of odorant receptor expression and a change of odorant results in a switch in which zone that is activated. Whereas earlier studies suggest that the odorant receptors are relatively broadly tuned with regard to ligand specificity, the restricted patterns of c-Fos induction suggests that low concentrations of odorous molecules activate only one or a few ORs. Studies on olfactory detection abilities of mice with zonal-restricted lesions in the olfactory epithelium show that loss of a zone has severe effects on the detection of some odorants but not others. These findings lend support to a hypothesis that odorant receptors are tuned to more limited numbers of odorants. Regional differences in gene expression and differences in response to toxic compounds between the zones indicate that there may be differences in tissue homeostasis within the epithelium. We have found that there are differences in proliferation and survival of olfactory sensory neurons in regions correlating to receptor expression zones. Identified differences with regard to gene expression, tissue homeostasis and odorant detection show that the olfactory epithelium is divided into regions that transduce different stimulus features.
  •  
34.
  • Wu, Dan, et al. (författare)
  • The infantile myofibromatosis NOTCH3 L1519P mutation leads to hyperactivated ligand-independent Notch signaling and increased PDGFRB expression
  • 2021
  • Ingår i: Disease Models and Mechanisms. - : COMPANY BIOLOGISTS LTD. - 1754-8403 .- 1754-8411. ; 14:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Infantile myofibromatosis (IMF) is a benign tumor form characterized by the development of nonmetastatic tumors in skin, bone, muscle and sometimes viscera. Autosomal-dominant forms of IMF are caused by mutations in the PDGFRB gene, but a family carrying a L1519P mutation in the NOTCH3 gene has also recently been identified. In this study, we address the molecular consequences of the NOTCH3L1519P mutation and the relationship between Notch and PDGFRB signaling in IMF. The NOTCH3L1519P receptor generates enhanced downstream signaling in a ligand-independent manner. Despite the enhanced signaling, the NOTCH3L1519P receptor is absent from the cell surface and instead accumulates in the endoplasmic reticulum. Furthermore, the localization of the NOTCH3L1519P receptor in the bipartite, heterodimeric state is altered, combined with avid secretion of the mutated extracellular domain from the cell. Chloroquine treatment strongly reduces the amount of secreted NOTCH3L1519P extracellular domain and decreases signaling. Finally, NOTCH3L1519P upregulates PDGFRB expression in fibroblasts, supporting a functional link between Notch and PDGF dysregulation in IMF. Collectively, our data define a NOTCH3-PDGFRB axis in IMF, in which an IMF-mutated NOTCH3 receptor elevates PDGFRB expression. The functional characterization of a ligand-independent gain-of-function NOTCH3 mutation is important for Notch therapy considerations for IMF, including strategies aimed at altering lysosome function.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-34 av 34
Typ av publikation
tidskriftsartikel (28)
doktorsavhandling (4)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (29)
övrigt vetenskapligt/konstnärligt (5)
Författare/redaktör
Lendahl, Urban (30)
Betsholtz, Christer (15)
He, Liqun (9)
Hansson, Emil M. (9)
Jin, Shaobo (8)
Del Gaudio, Francesc ... (8)
visa fler...
Vanlandewijck, Micha ... (7)
Muhl, Lars (6)
Andaloussi Mäe, Maar ... (5)
Liu, Jianping (5)
Karlström, Helena (5)
Andrae, Johanna (4)
Sun, Ying (4)
Lundkvist, Johan (4)
Nilsson, Per (3)
Keller, Annika (3)
Pietras, Kristian (3)
Ando, Koji (3)
Mochizuki, Naoki (3)
Genove, Guillem (3)
Kalimo, Hannu (2)
Olsson, Fredrik (2)
Mäkinen, Taija (2)
Svensson, Samuel (2)
Vázquez-Liébanas, El ... (2)
Nahar, Khayrun (2)
Zarb, Yvette (2)
Nilsson, Charlotte (2)
Gustavsson, Susanne (2)
Gouveia, Maria Leono ... (2)
Berg, Anna-Lena (2)
Alitalo, Kari (2)
Serneels, Lutgarde (2)
De Strooper, Bart (2)
Peng, Xiao-Rong (2)
Karlstrom, Helena (2)
Parpal, Santiago (2)
Klintenberg, Rebecka (2)
Rosqvist, Susanne (2)
Yan, Hongmei (2)
Wanngren, Johanna (2)
Jureus, Anders (2)
Ridderstad-Wollberg, ... (2)
Wollberg, Patrik (2)
Stockling, Kenneth (2)
Malmberg, Asa (2)
Lund, Johan (2)
Laviña, Bàrbara (2)
Chivukula, Indira V (2)
Sahlgren, Cecilia (2)
visa färre...
Lärosäte
Karolinska Institutet (29)
Uppsala universitet (22)
Lunds universitet (4)
Stockholms universitet (3)
Linköpings universitet (3)
Göteborgs universitet (2)
visa fler...
Umeå universitet (2)
Högskolan i Skövde (1)
visa färre...
Språk
Engelska (34)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (23)
Naturvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy