SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Loh N. Duane) "

Sökning: WFRF:(Loh N. Duane)

  • Resultat 1-28 av 28
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Duane Loh, N., et al. (författare)
  • Profiling structured beams using injected aerosols
  • 2012
  • Ingår i: Proceedings of SPIE. - : SPIE. - 9780819492210 ; , s. 850403-
  • Konferensbidrag (refereegranskat)abstract
    • Profiling structured beams produced by X-ray free-electron lasers (FELs) is crucial to both maximizing signal intensity for weakly scattering targets and interpreting their scattering patterns. Earlier ablative imprint studies describe how to infer the X-ray beam profile from the damage that an attenuated beam inflicts on a substrate. However, the beams in-situ profile is not directly accessible with imprint studies because the damage profile could be different from the actual beam profile. On the other hand, although a Shack-Hartmann sensor is capable of in-situ profiling, its lenses may be quickly damaged at the intense focus of hard X-ray FEL beams. We describe a new approach that probes the in-situ morphology of the intense FEL focus. By studying the translations in diffraction patterns from an ensemble of randomly injected sub-micron latex spheres, we were able to determine the non-Gaussian nature of the intense FEL beam at the Linac Coherent Light Source (SLAC National Laboratory) near the FEL focus. We discuss an experimental application of such a beam-profiling technique, and the limitations we need to overcome before it can be widely applied.
  •  
2.
  • Munke, Anna, et al. (författare)
  • Data Descriptor : Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source
  • 2016
  • Ingår i: Scientific Data. - : Nature Publishing Group. - 2052-4463. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a wellcharacterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 mu m diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 angstrom ngstrom were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here.
  •  
3.
  • Sobolev, Egor, et al. (författare)
  • Megahertz single-particle imaging at the European XFEL
  • 2020
  • Ingår i: Communications Physics. - : Springer Science and Business Media LLC. - 2399-3650. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The emergence of high repetition-rate X-ray free-electron lasers (XFELs) powered by superconducting accelerator technology enables the measurement of significantly more experimental data per day than was previously possible. The European XFEL is expected to provide 27,000 pulses per second, over two orders of magnitude more than any other XFEL. The increased pulse rate is a key enabling factor for single-particle X-ray diffractive imaging, which relies on averaging the weak diffraction signal from single biological particles. Taking full advantage of this new capability requires that all experimental steps, from sample preparation and delivery to the acquisition of diffraction patterns, are compatible with the increased pulse repetition rate. Here, we show that single-particle imaging can be performed using X-ray pulses at megahertz repetition rates. The results obtained pave the way towards exploiting high repetition-rate X-ray free-electron lasers for single-particle imaging at their full repetition rate.
  •  
4.
  • Ayyer, Kartik, et al. (författare)
  • 3D diffractive imaging of nanoparticle ensembles using an x-ray laser
  • 2021
  • Ingår i: Optica. - : Optical Society of America. - 2334-2536. ; 8:1, s. 15-23
  • Tidskriftsartikel (refereegranskat)abstract
    • Single particle imaging at x-ray free electron lasers (XFELs) has the potential to determine the structure and dynamics of single biomolecules at room temperature. Two major hurdles have prevented this potential from being reached, namely, the collection of sufficient high-quality diffraction patterns and robust computational purification to overcome structural heterogeneity. We report the breaking of both of these barriers using gold nanoparticle test samples, recording around 10 million diffraction patterns at the European XFEL and structurally and orientationally sorting the patterns to obtain better than 3-nm-resolution 3D reconstructions for each of four samples. With these new developments, integrating advancements in x-ray sources, fast-framing detectors, efficient sample delivery, and data analysis algorithms, we illuminate the path towards sub-nano meter biomolecular imaging. The methods developed here can also be extended to characterize ensembles that are inherently diverse to obtain their full structural landscape. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License.
  •  
5.
  • Daurer, Benedikt J., et al. (författare)
  • Ptychographic wavefront characterization for single-particle imaging at x-ray lasers
  • 2021
  • Ingår i: Optica. - : Optical Society of America. - 2334-2536. ; 8:4, s. 551-562
  • Tidskriftsartikel (refereegranskat)abstract
    • A well-characterized wavefront is important for many x-ray free-electron laser (XFEL) experiments, especially for single-particle imaging (SPI), where individual biomolecules randomly sample a nanometer region of highly focused femtosecond pulses. We demonstrate high-resolution multiple-plane wavefront imaging of an ensemble of XFEL pulses, focused by Kirkpatrick–Baez mirrors, based on mixed-state ptychography, an approach letting us infer and reduce experimental sources of instability. From the recovered wavefront profiles, we show that while local photon fluence correction is crucial and possible for SPI, a small diversity of phase tilts likely has no impact. Our detailed characterization will aid interpretation of data from past and future SPI experiments and provides a basis for further improvements to experimental design and reconstruction algorithms.
  •  
6.
  • Hantke, Max F., et al. (författare)
  • High-throughput imaging of heterogeneous cell organelles with an X-ray laser
  • 2014
  • Ingår i: Nature Photonics. - : Springer Science and Business Media LLC. - 1749-4885 .- 1749-4893. ; 8:12, s. 943-949
  • Tidskriftsartikel (refereegranskat)abstract
    • We overcome two of the most daunting challenges in single-particle diffractive imaging: collecting many high-quality diffraction patterns on a small amount of sample and separating components from mixed samples. We demonstrate this on carboxysomes, which are polyhedral cell organelles that vary in size and facilitate up to 40% of Earth's carbon fixation. A new aerosol sample-injector allowed us to record 70,000 low-noise diffraction patterns in 12 min with the Linac Coherent Light Source running at 120 Hz. We separate different structures directly from the diffraction data and show that the size distribution is preserved during sample delivery. We automate phase retrieval and avoid reconstruction artefacts caused by missing modes. We attain the highest-resolution reconstructions on the smallest single biological objects imaged with an X-ray laser to date. These advances lay the foundations for accurate, high-throughput structure determination by flash-diffractive imaging and offer a means to study structure and structural heterogeneity in biology and elsewhere.
  •  
7.
  • Loh, N. Duane, et al. (författare)
  • Sensing the wavefront of x-ray free-electron lasers using aerosol spheres
  • 2013
  • Ingår i: Optics Express. - 1094-4087. ; 21:10, s. 12385-12394
  • Tidskriftsartikel (refereegranskat)abstract
    • Characterizing intense, focused x-ray free electron laser (FEL) pulses is crucial for their use in diffractive imaging. We describe how the distribution of average phase tilts and intensities on hard x-ray pulses with peak intensities of 1021 W/m(2) can be retrieved from an ensemble of diffraction patterns produced by 70 nm-radius polystyrene spheres, in a manner that mimics wavefront sensors. Besides showing that an adaptive geometric correction may be necessary for diffraction data from randomly injected sample sources, our paper demonstrates the possibility of collecting statistics on structured pulses using only the diffraction patterns they generate and highlights the imperative to study its impact on single-particle diffractive imaging.
  •  
8.
  • Park, Hyung Joo, et al. (författare)
  • Toward unsupervised single-shot diffractive imaging of heterogeneous particles using X-ray free-electron lasers
  • 2013
  • Ingår i: Optics Express. - 1094-4087. ; 21:23, s. 28729-28742
  • Tidskriftsartikel (refereegranskat)abstract
    • Single shot diffraction imaging experiments via X-ray free-electron lasers can generate as many as hundreds of thousands of diffraction patterns of scattering objects. Recovering the real space contrast of a scattering object from these patterns currently requires a reconstruction process with user guidance in a number of steps, introducing severe bottlenecks in data processing. We present a series of measures that replace user guidance with algorithms that reconstruct contrasts in an unsupervised fashion. We demonstrate the feasibility of automating the reconstruction process by generating hundreds of contrasts obtained from soot particle diffraction experiments.
  •  
9.
  • Reddy, Hemanth K. N., et al. (författare)
  • Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light source
  • 2017
  • Ingår i: Scientia Danica. Series H. Humanistica 4. - : Nature Publishing Group. - 1904-5506 .- 2052-4463. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • Single-particle diffraction from X-ray Free Electron Lasers offers the potential for molecular structure determination without the need for crystallization. In an effort to further develop the technique, we present a dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source. The diameter of PR772 ranges from 65-70 nm, which is considerably smaller than the previously reported similar to 600 nm diameter Mimivirus. This reflects continued progress in XFEL-based single-particle imaging towards the single molecular imaging regime. The data set contains significantly more single particle hits than collected in previous experiments, enabling the development of improved statistical analysis, reconstruction algorithms, and quantitative metrics to determine resolution and self-consistency.
  •  
10.
  • van der Schot, Gijs, et al. (författare)
  • Open data set of live cyanobacterial cells imaged using an X-ray laser
  • 2016
  • Ingår i: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • Structural studies on living cells by conventional methods are limited to low resolution because radiation damage kills cells long before the necessary dose for high resolution can be delivered. X-ray free-electron lasers circumvent this problem by outrunning key damage processes with an ultra-short and extremely bright coherent X-ray pulse. Diffraction-before-destruction experiments provide high-resolution data from cells that are alive when the femtosecond X-ray pulse traverses the sample. This paper presents two data sets from micron-sized cyanobacteria obtained at the Linac Coherent Light Source, containing a total of 199,000 diffraction patterns. Utilizing this type of diffraction data will require the development of new analysis methods and algorithms for studying structure and structural variability in large populations of cells and to create abstract models. Such studies will allow us to understand living cells and populations of cells in new ways. New X-ray lasers, like the European XFEL, will produce billions of pulses per day, and could open new areas in structural sciences.
  •  
11.
  • Bielecki, Johan, 1982, et al. (författare)
  • Electrospray sample injection for single-particle imaging with x-ray lasers
  • 2019
  • Ingår i: Science advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 5:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The possibility of imaging single proteins constitutes an exciting challenge for x-ray lasers. Despite encouraging results on large particles, imaging small particles has proven to be difficult for two reasons: not quite high enough pulse intensity from currently available x-ray lasers and, as we demonstrate here, contamination of the aerosolized molecules by nonvolatile contaminants in the solution. The amount of contamination on the sample depends on the initial droplet size during aerosolization. Here, we show that, with our electrospray injector, we can decrease the size of aerosol droplets and demonstrate virtually contaminant-free sample delivery of organelles, small virions, and proteins. The results presented here, together with the increased performance of next-generation x-ray lasers, constitute an important stepping stone toward the ultimate goal of protein structure determination from imaging at room temperature and high temporal resolution.
  •  
12.
  • Brändén, Gisela, 1975, et al. (författare)
  • Coherent diffractive imaging of microtubules using an X-ray laser.
  • 2019
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray free electron lasers (XFELs) create new possibilities for structural studies of biological objects that extend beyond what is possible with synchrotron radiation. Serial femtosecond crystallography has allowed high-resolution structures to be determined from micro-meter sized crystals, whereas single particle coherent X-ray imaging requires development to extend the resolution beyond a few tens of nanometers. Here we describe an intermediate approach: the XFEL imaging of biological assemblies with helical symmetry. We collected X-ray scattering images from samples of microtubules injected across an XFEL beam using a liquid microjet, sorted these images into class averages, merged these data into a diffraction pattern extending to 2nm resolution, and reconstructed these data into a projection image of the microtubule. Details such as the 4nm tubulin monomer became visible in this reconstruction. These results illustrate the potential of single-molecule X-ray imaging of biological assembles with helical symmetry at room temperature.
  •  
13.
  • Daurer, Benedikt J., et al. (författare)
  • Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses
  • 2017
  • Ingår i: IUCrJ. - : INT UNION CRYSTALLOGRAPHY. - 2052-2525. ; 4, s. 251-262
  • Tidskriftsartikel (refereegranskat)abstract
    • This study explores the capabilities of the Coherent X-ray Imaging Instrument at the Linac Coherent Light Source to image small biological samples. The weak signal from small samples puts a significant demand on the experiment. Aerosolized Omono River virus particles of similar to 40 nm in diameter were injected into the submicrometre X-ray focus at a reduced pressure. Diffraction patterns were recorded on two area detectors. The statistical nature of the measurements from many individual particles provided information about the intensity profile of the X-ray beam, phase variations in the wavefront and the size distribution of the injected particles. The results point to a wider than expected size distribution (from similar to 35 to similar to 300 nm in diameter). This is likely to be owing to nonvolatile contaminants from larger droplets during aerosolization and droplet evaporation. The results suggest that the concentration of nonvolatile contaminants and the ratio between the volumes of the initial droplet and the sample particles is critical in such studies. The maximum beam intensity in the focus was found to be 1.9 * 10(12) photons per mu m(2) per pulse. The full-width of the focus at half-maximum was estimated to be 500 nm (assuming 20% beamline transmission), and this width is larger than expected. Under these conditions, the diffraction signal from a sample-sized particle remained above the average background to a resolution of 4.25 nm. The results suggest that reducing the size of the initial droplets during aerosolization is necessary to bring small particles into the scope of detailed structural studies with X-ray lasers.
  •  
14.
  • Ekeberg, Tomas, et al. (författare)
  • Single-shot diffraction data from the Mimivirus particle using an X-ray free-electron laser
  • 2016
  • Ingår i: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • Free-electron lasers (FEL) hold the potential to revolutionize structural biology by producing X-ray pules short enough to outrun radiation damage, thus allowing imaging of biological samples without the limitation from radiation damage. Thus, a major part of the scientific case for the first FELs was three-dimensional (3D) reconstruction of non-crystalline biological objects. In a recent publication we demonstrated the first 3D reconstruction of a biological object from an X-ray FEL using this technique. The sample was the giant Mimivirus, which is one of the largest known viruses with a diameter of 450 nm. Here we present the dataset used for this successful reconstruction. Data-analysis methods for single-particle imaging at FELs are undergoing heavy development but data collection relies on very limited time available through a highly competitive proposal process. This dataset provides experimental data to the entire community and could boost algorithm development and provide a benchmark dataset for new algorithms.
  •  
15.
  •  
16.
  • Hantke, Max F., et al. (författare)
  • A data set from flash X-ray imaging of carboxysomes
  • 2016
  • Ingår i: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultra-intense femtosecond X-ray pulses from X-ray lasers permit structural studies on single particles and biomolecules without crystals. We present a large data set on inherently heterogeneous, polyhedral carboxysome particles. Carboxysomes are cell organelles that vary in size and facilitate up to 40% of Earth’s carbon fixation by cyanobacteria and certain proteobacteria. Variation in size hinders crystallization. Carboxysomes appear icosahedral in the electron microscope. A protein shell encapsulates a large number of Rubisco molecules in paracrystalline arrays inside the organelle. We used carboxysomes with a mean diameter of 115±26 nm from Halothiobacillus neapolitanus. A new aerosol sample-injector allowed us to record 70,000 low-noise diffraction patterns in 12 min. Every diffraction pattern is a unique structure measurement and high-throughput imaging allows sampling the space of structural variability. The different structures can be separated and phased directly from the diffraction data and open a way for accurate, high-throughput studies on structures and structural heterogeneity in biology and elsewhere.
  •  
17.
  • Maia, Filipe R. N. C., et al. (författare)
  • CCP-FEL : a collection of computer programs for free-electron laser research
  • 2016
  • Ingår i: Journal of applied crystallography. - 0021-8898 .- 1600-5767. ; 49, s. 1117-1120
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The latest virtual special issue of Journal of Applied Crystallography (http://journals.iucr.org/special_issues/2016/ccpfel) collects software for free-electron laser research and presents tools for a range of topics such as simulation of experiments, online monitoring of data collection, selection of hits, diagnostics of data quality, data management, data analysis and structure determination for both nanocrystallography and single-particle diffractive imaging. This article provides an introduction to the special issue.
  •  
18.
  • Pietrini, Alberto, et al. (författare)
  • A statistical approach to detect protein complexes at X-ray free electron laser facilities
  • 2018
  • Ingår i: Communications Physics. - : Springer Science and Business Media LLC. - 2399-3650. ; 1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Flash X-ray Imaging (FXI) technique, under development at X-ray free electron lasers (XFEL), aims to achieve structure determination based on diffraction from individual macromolecular complexes. We report an FXI study on the first protein complex-RNA polymerase II-ever injected at an XFEL. A successful 3D reconstruction requires a high number of observations of the sample in various orientations. The measured diffraction signal for many shots can be comparable to background. Here we present a robust and highly sensitive hit-identification method based on automated modeling of beamline background through photon statistics. It can operate at controlled false positive hit-rate of 3 x10(-5). We demonstrate its power in determining particle hits and validate our findings against an independent hit-identification approach based on ion time-of-flight spectra. We also validate the advantages of our method over simpler hit-identification schemes via tests on other samples and using computer simulations, showing a doubled hit-identification power.
  •  
19.
  • Sala, Simone, et al. (författare)
  • Pulse-to-pulse wavefront sensing at free-electron lasers using ptychography
  • 2020
  • Ingår i: Journal of applied crystallography. - : INT UNION CRYSTALLOGRAPHY. - 0021-8898 .- 1600-5767. ; 53, s. 949-956
  • Tidskriftsartikel (refereegranskat)abstract
    • The pressing need for knowledge of the detailed wavefront properties of ultra-bright and ultra-short pulses produced by free-electron lasers has spurred the development of several complementary characterization approaches. Here a method based on ptychography is presented that can retrieve high-resolution complex-valued wavefunctions of individual pulses without strong constraints on the illumination or sample object used. The technique is demonstrated within experimental conditions suited for diffraction experiments and exploiting Kirkpatrick-Baez focusing optics. This lensless technique, applicable to many other short-pulse instruments, can achieve diffraction-limited resolution.
  •  
20.
  • van der Schot, Gijs, et al. (författare)
  • Imaging single cells in a beam of live cyanobacteria with an X-ray laser
  • 2015
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • There exists a conspicuous gap of knowledge about the organization of life at mesoscopic levels. Ultra-fast coherent diffractive imaging with X-ray free-electron lasers can probe structures at the relevant length scales and may reach sub-nanometer resolution on micron-sized living cells. Here we show that we can introduce a beam of aerosolised cyanobacteria into the focus of the Linac Coherent Light Source and record diffraction patterns from individual living cells at very low noise levels and at high hit ratios. We obtain two-dimensional projection images directly from the diffraction patterns, and present the results as synthetic X-ray Nomarski images calculated from the complex-valued reconstructions. We further demonstrate that it is possible to record diffraction data to nanometer resolution on live cells with X-ray lasers. Extension to sub-nanometer resolution is within reach, although improvements in pulse parameters and X-ray area detectors will be necessary to unlock this potential.
  •  
21.
  • Yoon, Chun Hong, et al. (författare)
  • Unsupervised classification of single-particle X-ray diffraction snapshots by spectral clustering
  • 2011
  • Ingår i: Optics Express. - 1094-4087. ; 19:17, s. 16542-16549
  • Tidskriftsartikel (refereegranskat)abstract
    • Single-particle experiments using X-ray Free Electron Lasers produce more than 10(5) snapshots per hour, consisting of an admixture of blank shots (no particle intercepted), and exposures of one or more particles. Experimental data sets also often contain unintentional contamination with different species. We present an unsupervised method able to sort experimental snapshots without recourse to templates, specific noise models, or user-directed learning. The results show 90% agreement with manual classification.
  •  
22.
  • Zhuang, Yulong, et al. (författare)
  • Unsupervised learning approaches to characterizing heterogeneous samples using X-ray single-particle imaging
  • 2022
  • Ingår i: IUCrJ. - : International Union of Crystallography (IUCr). - 2052-2525. ; 9, s. 204-214
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the outstanding analytical problems in X-ray single-particle imaging (SPI) is the classification of structural heterogeneity, which is especially difficult given the low signal-to-noise ratios of individual patterns and the fact that even identical objects can yield patterns that vary greatly when orientation is taken into consideration. Proposed here are two methods which explicitly account for this orientation-induced variation and can robustly determine the structural landscape of a sample ensemble. The first, termed common-line principal component analysis (PCA), provides a rough classification which is essentially parameter free and can be run automatically on any SPI dataset. The second method, utilizing variation auto-encoders (VAEs), can generate 3D structures of the objects at any point in the structural landscape. Both these methods are implemented in combination with the noise-tolerant expand-maximizecompress (EMC) algorithm and its utility is demonstrated by applying it to an experimental dataset from gold nanoparticles with only a few thousand photons per pattern. Both discrete structural classes and continuous deformations are recovered. These developments diverge from previous approaches of extracting reproducible subsets of patterns from a dataset and open up the possibility of moving beyond the study of homogeneous sample sets to addressing open questions on topics such as nanocrystal growth and dynamics, as well as phase transitions which have not been externally triggered.
  •  
23.
  • Laksmono, Hartawan, et al. (författare)
  • Anomalous Behavior of the Homogeneous Ice Nucleation Rate in No-Man's Land
  • 2015
  • Ingår i: The Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 6:14, s. 2826-2832
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an analysis of ice nucleation kinetics from near-ambient pressure water as temperature decreases below the homogeneous limit T-H by cooling micrometer-sized droplets (microdroplets) evaporatively at 10(3)-10(4) K/s and probing the structure ultrafast using femtosecond pulses from the Linac Coherent Light Source (LCLS) free-electron X-ray laser. Below 232 K, we observed a slower nucleation rate increase with decreasing temperature than anticipated from previous measurements, which we suggest is due to the rapid decrease in water's diffusivity. This is consistent with earlier findings that microdroplets do not crystallize at <227 K, but vitrify at cooling rates of 10(6)-10(7) K/s. We also hypothesize that the slower increase in the nucleation rate is connected with the proposed fragile-to-strong transition anomaly in water.
  •  
24.
  • Li, Haoyuan, et al. (författare)
  • Diffraction data from aerosolized Coliphage PR772 virus particles imaged with the Linac Coherent Light Source
  • 2020
  • Ingår i: Scientific Data. - : NATURE RESEARCH. - 2052-4463. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Single Particle Imaging (SPI) with intense coherent X-ray pulses from X-ray free-electron lasers (XFELs) has the potential to produce molecular structures without the need for crystallization or freezing. Here we present a dataset of 285,944 diffraction patterns from aerosolized Coliphage PR772 virus particles injected into the femtosecond X-ray pulses of the Linac Coherent Light Source (LCLS). Additional exposures with background information are also deposited. The diffraction data were collected at the Atomic, Molecular and Optical Science Instrument (AMO) of the LCLS in 4 experimental beam times during a period of four years. The photon energy was either 1.2 or 1.7keV and the pulse energy was between 2 and 4 mJ in a focal spot of about 1.3 mu m x 1.7 mu m full width at half maximum (FWHM). The X-ray laser pulses captured the particles in random orientations. The data offer insight into aerosolised virus particles in the gas phase, contain information relevant to improving experimental parameters, and provide a basis for developing algorithms for image analysis and reconstruction.
  •  
25.
  • Popp, David, et al. (författare)
  • Flow-aligned, single-shot fiber diffraction using a femtosecond X-ray free-electron laser
  • 2017
  • Ingår i: CYTOSKELETON. - : WILEY. - 1949-3584 .- 1949-3592. ; 74:12, s. 472-481
  • Tidskriftsartikel (refereegranskat)abstract
    • A major goal for X-ray free-electron laser (XFEL) based science is to elucidate structures of biological molecules without the need for crystals. Filament systems may provide some of the first single macromolecular structures elucidated by XFEL radiation, since they contain one-dimensional translational symmetry and thereby occupy the diffraction intensity region between the extremes of crystals and single molecules. Here, we demonstrate flow alignment of as few as 100 filaments (Escherichia coli pili, F-actin, and amyloid fibrils), which when intersected by femtosecond X-ray pulses result in diffraction patterns similar to those obtained from classical fiber diffraction studies. We also determine that F-actin can be flow-aligned to a disorientation of approximately 5 degrees. Using this XFEL-based technique, we determine that gelsolin amyloids are comprised of stacked -strands running perpendicular to the filament axis, and that a range of order from fibrillar to crystalline is discernable for individual -synuclein amyloids.
  •  
26.
  •  
27.
  • Sellberg, Jonas A., et al. (författare)
  • How Cubic Can Ice Be?
  • 2017
  • Ingår i: The Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 8:14, s. 3216-3222
  • Tidskriftsartikel (refereegranskat)abstract
    • Using an X-ray laser, we investigated the crystal structure of ice formed by homogeneous ice nucleation in deeply supercooled water nanodrops (r approximate to 10 nm) at similar to 225 K The nanodrops were formed by condensation of vapor in a supersonic nozzle, and the ice was probed within 100 mu s of freezing using femtosecond wide-angle X-ray scattering at the Linac Coherent Light Source free-electron X-ray laser. The X-ray diffraction spectra indicate that this ice has a metastable, predominantly cubic structure; the shape of the first ice diffraction peak suggests stacking-disordered ice with a cubicity value, chi, in the range of 0.78 +/- 0.05. The cubicity value determined here is higher than those determined in experiments with micron-sized drops but comparable to those found in molecular dynamics simulations. The high cubicity is most likely caused by the extremely low freezing temperatures and by the rapid freezing, which occurs on a similar to 1 mu s time scale in single nanodroplets.
  •  
28.
  • Sierra, Raymond G., et al. (författare)
  • Nanoflow electrospinning serial femtosecond crystallography
  • 2012
  • Ingår i: Acta Crystallographica Section D. - : Wiley-Blackwell. - 0907-4449 .- 1399-0047. ; 68, s. 1584-1587
  • Tidskriftsartikel (refereegranskat)abstract
    • An electrospun liquid microjet has been developed that delivers protein microcrystal suspensions at flow rates of 0.14-3.1 mu l min(-1) to perform serial femtosecond crystallography (SFX) studies with X-ray lasers. Thermolysin microcrystals flowed at 0.17 mu l min(-1) and diffracted to beyond 4 angstrom resolution, producing 14 000 indexable diffraction patterns, or four per second, from 140 mu g of protein. Nanoflow electrospinning extends SFX to biological samples that necessitate minimal sample consumption.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-28 av 28
Typ av publikation
tidskriftsartikel (26)
annan publikation (1)
konferensbidrag (1)
Typ av innehåll
refereegranskat (26)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Barty, Anton (20)
Maia, Filipe R. N. C ... (19)
Hajdu, Janos (13)
Svenda, Martin (13)
Chapman, Henry N. (13)
Seibert, M Marvin (12)
visa fler...
Martin, Andrew V. (11)
Ekeberg, Tomas (11)
Bielecki, Johan (11)
Sierra, Raymond G. (10)
Kirian, Richard A. (10)
Bostedt, Christoph (10)
DePonte, Daniel P. (10)
Liang, Mengning (10)
Aquila, Andrew (9)
Rudenko, Artem (9)
Rolles, Daniel (9)
Williams, Garth J. (9)
Andersson, Inger (9)
Timneanu, Nicusor (9)
Andreasson, Jakob (9)
Hartmann, Robert (9)
Kimmel, Nils (9)
Daurer, Benedikt J. (9)
Bogan, Michael J. (8)
Boutet, Sébastien (8)
Foucar, Lutz (7)
Nettelblad, Carl (7)
Epp, Sascha W. (7)
Iwan, Bianca (6)
Rudek, Benedikt (6)
Bozek, John D. (6)
Fleckenstein, Holger (6)
Gumprecht, Lars (6)
Hampton, Christina Y ... (6)
Holl, Peter (6)
Stellato, Francesco (6)
Ayyer, Kartik (6)
Mancuso, Adrian P. (5)
Erk, Benjamin (5)
Seibert, Marvin (5)
Hunter, Mark S. (5)
White, Thomas A. (5)
Schulz, Joachim (5)
Starodub, Dmitri (5)
Schwander, Peter (5)
Xavier, P. Lourdu (5)
Kim, Yoonhee (5)
Awel, Salah (5)
Bean, Richard (5)
visa färre...
Lärosäte
Uppsala universitet (24)
Kungliga Tekniska Högskolan (8)
Stockholms universitet (4)
Göteborgs universitet (2)
Chalmers tekniska högskola (2)
Umeå universitet (1)
visa fler...
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (28)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (25)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy