SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Marcoli M) "

Search: WFRF:(Marcoli M)

  • Result 1-29 of 29
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  • Pelassa, S, et al. (author)
  • A2A-D2 Heteromers on Striatal Astrocytes: Biochemical and Biophysical Evidence
  • 2019
  • In: International journal of molecular sciences. - : MDPI AG. - 1422-0067. ; 20:10
  • Journal article (peer-reviewed)abstract
    • Our previous findings indicate that A2A and D2 receptors are co-expressed on adult rat striatal astrocytes and on the astrocyte processes, and that A2A-D2 receptor–receptor interaction can control the release of glutamate from the processes. Functional evidence suggests that the receptor–receptor interaction was based on heteromerization of native A2A and D2 receptors at the plasma membrane of striatal astrocyte processes. We here provide biochemical and biophysical evidence confirming that receptor–receptor interaction between A2A and D2 receptors at the astrocyte plasma membrane is based on A2A-D2 heteromerization. To our knowledge, this is the first direct demonstration of the ability of native A2A and D2 receptors to heteromerize on glial cells. As striatal astrocytes are recognized to be involved in Parkinson’s pathophysiology, the findings that adenosine A2A and dopamine D2 receptors can form A2A-D2 heteromers on the astrocytes in the striatum (and that these heteromers can play roles in the control of the striatal glutamatergic transmission) may shed light on the molecular mechanisms involved in the pathogenesis of the disease.
  •  
12.
  •  
13.
  • Agnati, LF, et al. (author)
  • Functional roles of three cues that provide nonsynaptic modes of communication in the brain: electromagnetic field, oxygen, and carbon dioxide
  • 2018
  • In: Journal of neurophysiology. - : American Physiological Society. - 1522-1598 .- 0022-3077. ; 119:1, s. 356-368
  • Journal article (peer-reviewed)abstract
    • The integrative actions of the brain depend on the exchange of information among its computational elements. Hence, this phenomenon plays the key role in driving the complex dynamics of the central nervous system, in which true computations interact with noncomputational dynamical processes to generate brain representations of the body and of the body in the external world, and hence the finalistic behavior of the organism. In this context, it should be pointed out that, besides the intercellular interactions mediated by classical electrochemical signals, other types of interactions, namely, “cues” and “coercions,” also appear to be exploited by the system to achieve its function. The present review focuses mainly on cues present in the environment and on those produced by cells of the body, which “pervade” the brain and contribute to its dynamics. These cues can also be metabolic substrates, and, in most cases, they are of fundamental importance to brain function and the survival of the entire organism. Three of these highly pervasive cues will be analyzed in greater detail, namely, oxygen, carbon dioxide, and electromagnetic fields (EMF). Special emphasis will be placed on EMF, since several authors have suggested that these highly pervasive energy fluctuations may play an important role in the global integrative actions of the brain; hence, EMF signaling may transcend classical connectionist models of brain function. Thus the new concept of “broadcasted neuroconnectomics” has been introduced, which transcends the current connectomics view of the brain.
  •  
14.
  •  
15.
  •  
16.
  • Agnati, LF, et al. (author)
  • Man is a "Rope" Stretched Between Virosphere and Humanoid Robots: On the Urgent Need of an Ethical Code for Ecosystem Survival
  • 2022
  • In: Foundations of science. - : Springer Science and Business Media LLC. - 1233-1821 .- 1572-8471. ; 27:2, s. 311-325
  • Journal article (peer-reviewed)abstract
    • In this paper we compare the strategies applied by two successful biological components of the ecosystem, the viruses and the human beings, to interact with the environment. Viruses have had and still exert deep and vast actions on the ecosystem especially at the genome level of most of its biotic components. We discuss on the importance of the human being as contraptions maker in particular of robots, hence of machines capable of automatically carrying out complex series of actions. Beside the relevance of designing and assembling these contraptions, it is of basic importance the goal for which they are assembled and future scenarios of their possible impact on the ecosystem. We can’t procrastinate the development and implementation of a highly inspired and stringent “ethical code” for human beings and humanoid robots because it will be a crucial aspect for the wellbeing of the mankind and of the entire ecosystem.
  •  
17.
  •  
18.
  •  
19.
  • Agnati, LF, et al. (author)
  • The multi-facet aspects of cell sentience and their relevance for the integrative brain actions: role of membrane protein energy landscape
  • 2016
  • In: Reviews in the neurosciences. - : Walter de Gruyter GmbH. - 2191-0200 .- 0334-1763. ; 27:4, s. 347-363
  • Journal article (peer-reviewed)abstract
    • Several ion channels can be randomly and spontaneously in an open state, allowing the exchange of ion fluxes between extracellular and intracellular environments. We propose that the random changes in the state of ion channels could be also due to proteins exploring their energy landscapes. Indeed, proteins can modify their steric conformation under the effects of the physicochemical parameters of the environments with which they are in contact, namely, the extracellular, intramembrane and intracellular environments. In particular, it is proposed that the random walk of proteins in their energy landscape is towards attractors that can favor the open or close condition of the ion channels and/or intrinsic activity of G-protein-coupled receptors. The main aspect of the present proposal is that some relevant physicochemical parameters of the environments (e.g. molecular composition, temperature, electrical fields) with which some signaling-involved plasma membrane proteins are in contact alter their conformations. In turn, these changes can modify their information handling via a modulatory action on their random walk towards suitable attractors of their energy landscape. Thus, spontaneous and/or signal-triggered electrical activities of neurons occur that can have emergent properties capable of influencing the integrative actions of brain networks. Against this background, Cook’s hypothesis on ‘cell sentience’ is developed by proposing that physicochemical parameters of the environments with which the plasma-membrane proteins of complex cellular networks are in contact fulfill a fundamental role in their spontaneous and/or signal-triggered activity. Furthermore, it is proposed that a specialized organelle, the primary cilium, which is present in most cells (also neurons and astrocytes), could be of peculiar importance to pick up chemical signals such as ions and transmitters and to detect physical signals such as pressure waves, thermal gradients, and local field potentials.
  •  
20.
  •  
21.
  • Guidolin, D, et al. (author)
  • A New Integrative Theory of Brain-Body-Ecosystem Medicine: From the Hippocratic Holistic View of Medicine to Our Modern Society
  • 2019
  • In: International journal of environmental research and public health. - : MDPI AG. - 1660-4601. ; 16:17
  • Journal article (peer-reviewed)abstract
    • Humans are increasingly aware that their fate will depend on the wisdom they apply in interacting with the ecosystem. Its health is defined as the condition in which the ecosystem can deliver and continuously renew its fundamental services. A healthy ecosystem allows optimal interactions between humans and the other biotic/abiotic components, and only in a healthy ecosystem can humans survive and efficiently reproduce. Thus, both the human and ecosystem health should be considered together in view of their interdependence. The present article suggests that this relationship could be considered starting from the Hippocrates (460 BC–370 BC) work “On Airs, Waters, and Places” to derive useful medical and philosophical implications for medicine which is indeed a topic that involves scientific as well as philosophical concepts that implicate a background broader than the human body. The brain-body-ecosystem medicine is proposed as a new more complete approach to safeguarding human health. Epidemiological data demonstrate that exploitation of the environment resulting in ecosystem damage affects human health and in several instances these diseases can be detected by modifications in the heart-brain interactions that can be diagnosed through the analysis of changes in heart rate variability.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  •  
27.
  • Guidolin, D, et al. (author)
  • New dimensions of connectomics and network plasticity in the central nervous system
  • 2017
  • In: Reviews in the neurosciences. - : Walter de Gruyter GmbH. - 2191-0200 .- 0334-1763. ; 28:2, s. 113-132
  • Journal article (peer-reviewed)abstract
    • Cellular network architecture plays a crucial role as the structural substrate for the brain functions. Therefore, it represents the main rationale for the emerging field of connectomics, defined as the comprehensive study of all aspects of central nervous system connectivity. Accordingly, in the present paper the main emphasis will be on the communication processes in the brain, namely wiring transmission (WT), i.e. the mapping of the communication channels made by cell components such as axons and synapses, and volume transmission (VT), i.e. the chemical signal diffusion along the interstitial brain fluid pathways. Considering both processes can further expand the connectomics concept, since both WT-connectomics and VT-connectomics contribute to the structure of the brain connectome. A consensus exists that such a structure follows a hierarchical or nested architecture, and macro-, meso- and microscales have been defined. In this respect, however, several lines of evidence indicate that a nanoscale (nano-connectomics) should also be considered to capture direct protein-protein allosteric interactions such as those occurring, for example, in receptor-receptor interactions at the plasma membrane level. In addition, emerging evidence points to novel mechanisms likely playing a significant role in the modulation of intercellular connectivity, increasing the plasticity of the system and adding complexity to its structure. In particular, the roamer type of VT (i.e. the intercellular transfer of RNA, proteins and receptors by extracellular vesicles) will be discussed since it allowed us to introduce a new concept of ‘transient changes of cell phenotype’, that is the transient acquisition of new signal release capabilities and/or new recognition/decoding apparatuses.
  •  
28.
  •  
29.
  • Marcoli, M, et al. (author)
  • On the role of the extracellular space on the holistic behavior of the brain
  • 2015
  • In: Reviews in the neurosciences. - : Walter de Gruyter GmbH. - 2191-0200 .- 0334-1763. ; 26:5, s. 489-506
  • Journal article (peer-reviewed)abstract
    • Multiple players are involved in the brain integrative action besides the classical neuronal and astrocyte networks. In the past, the concept of complex cellular networks has been introduced to indicate that all the cell types in the brain can play roles in its integrative action. Intercellular communication in the complex cellular networks depends not only on well-delimited communication channels (wiring transmission) but also on diffusion of signals in physically poorly delimited extracellular space pathways (volume transmission). Thus, the extracellular space and the extracellular matrix are the main players in the intercellular communication modes in the brain. Hence, the extracellular matrix is an ‘intelligent glue’ that fills the brain and, together with the extracellular space, contributes to the building-up of the complex cellular networks. In addition, the extracellular matrix is part of what has been defined as the global molecular network enmeshing the entire central nervous system, and plays important roles in synaptic contact homeostasis and plasticity. From these premises, a concept is introduced that the global molecular network, by enmeshing the central nervous system, contributes to the brain holistic behavior. Furthermore, it is suggested that plastic ‘brain compartments’ can be detected in the central nervous system based on the astrocyte three-dimensional tiling of the brain volume and on the existence of local differences in cell types and extracellular space fluid and extracellular matrix composition. The relevance of the present view for neuropsychiatry is discussed. A glossary box with terms and definitions is provided.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-29 of 29

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view