SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mellerowicz Ewa) "

Sökning: WFRF:(Mellerowicz Ewa)

  • Resultat 1-50 av 88
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Baison, J., et al. (författare)
  • Genetic control of tracheid properties in Norway spruce wood
  • 2020
  • Ingår i: Scientific Reports. - : Nature Research. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Through the use of genome-wide association studies (GWAS) mapping it is possible to establish the genetic basis of phenotypic trait variation. Our GWAS study presents the first such effort in Norway spruce (Picea abies (L). Karst.) for the traits related to wood tracheid characteristics. The study employed an exome capture genotyping approach that generated 178 101 Single Nucleotide Polymorphisms (SNPs) from 40 018 probes within a population of 517 Norway spruce mother trees. We applied a least absolute shrinkage and selection operator (LASSO) based association mapping method using a functional multi-locus mapping approach, with a stability selection probability method as the hypothesis testing approach to determine significant Quantitative Trait Loci (QTLs). The analysis has provided 30 significant associations, the majority of which show specific expression in wood-forming tissues or high ubiquitous expression, potentially controlling tracheids dimensions, their cell wall thickness and microfibril angle. Among the most promising candidates based on our results and prior information for other species are: Picea abies BIG GRAIN 2 (PabBG2) with a predicted function in auxin transport and sensitivity, and MA_373300g0010 encoding a protein similar to wall-associated receptor kinases, which were both associated with cell wall thickness. The results demonstrate feasibility of GWAS to identify novel candidate genes controlling industrially-relevant tracheid traits in Norway spruce. © 2020, The Author(s).
  •  
3.
  • Banasiak, Alicja, et al. (författare)
  • Aspen Tension Wood Fibers Contain beta-(1 -> 4)-Galactans and Acidic Arabinogalactans Retained by Cellulose Microfibrils in Gelatinous Walls
  • 2015
  • Ingår i: Plant Physiology. - : Oxford University Press (OUP). - 0032-0889 .- 1532-2548. ; 169, s. 2048-2063
  • Tidskriftsartikel (refereegranskat)abstract
    • Contractile cell walls are found in various plant organs and tissues such as tendrils, contractile roots, and tension wood. The tension-generating mechanism is not known but is thought to involve special cell wall architecture. We previously postulated that tension could result from the entrapment of certain matrix polymers within cellulose microfibrils. As reported here, this hypothesis was corroborated by sequential extraction and analysis of cell wall polymers that are retained by cellulose microfibrils in tension wood and normal wood of hybrid aspen (Populus tremula x Populus tremuloides). beta-(1 -> 4)-Galactan and type II arabinogalactan were the main large matrix polymers retained by cellulose microfibrils that were specifically found in tension wood. Xyloglucan was detected mostly in oligomeric form in the alkali-labile fraction and was enriched in tension wood. beta-(1 -> 4)-Galactan and rhamnogalacturonan I backbone epitopes were localized in the gelatinous cell wall layer. Type II arabinogalactans retained by cellulose microfibrils had a higher content of (methyl) glucuronic acid and galactose in tension wood than in normal wood. Thus, beta-(1 -> 4)-galactan and a specialized form of type II arabinogalactan are trapped by cellulose microfibrils specifically in tension wood and, thus, are the main candidate polymers for the generation of tensional stresses by the entrapment mechanism. We also found high beta-galactosidase activity accompanying tension wood differentiation and propose a testable hypothesis that such activity might regulate galactan entrapment and, thus, mechanical properties of cell walls in tension wood.
  •  
4.
  • Banasiak, Alicja, et al. (författare)
  • Glycoside hydrolase activities in cell walls of sclerenchyma cells in the inflorescence stems of Arabidopsis thaliana visualized in situ
  • 2014
  • Ingår i: PLANTS. - : MDPI AG. - 2223-7747. ; 3:4, s. 513-525
  • Tidskriftsartikel (refereegranskat)abstract
    • Techniques for in situ localization of gene products provide indispensable information for understanding biological function. In the case of enzymes, biological function is directly related to activity, and therefore, knowledge of activity patterns is central to understanding the molecular controls of plant development. We have previously developed a novel type of fluorogenic substrate for revealing glycoside hydrolase activity in planta, based on resorufin β-glycosides Here, we explore a wider range of such substrates to visualize glycoside hydrolase activities in Arabidopsis inflorescence stems in real time, especially highlighting distinct distribution patterns of these activities in the secondary cell walls of sclerenchyma cells. The results demonstrate that β-1,4-glucosidase, β-1,4-glucanase and β-1,4-galactosidase activities accompany secondary wall deposition. In contrast, xyloglucanase activity follows a different pattern, with the highest signal observed in mature cells, concentrated in the middle lamella. These data further the understanding of the process of cell wall deposition and function in sclerenchymatic tissues of plants. 
  •  
5.
  • Biswal, Ajaya K., et al. (författare)
  • Aspen pectate lyase PtxtPL1-27 mobilizes matrix polysaccharides from woody tissues and improves saccharification yield
  • 2014
  • Ingår i: Biotechnology for Biofuels. - : Springer Science and Business Media LLC. - 1754-6834. ; 7, s. 11-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Wood cell walls are rich in cellulose, hemicellulose and lignin. Hence, they are important sources of renewable biomass for producing energy and green chemicals. However, extracting desired constituents from wood efficiently poses significant challenges because these polymers are highly cross-linked in cell walls and are not easily accessible to enzymes and chemicals. Results: We show that aspen pectate lyase PL1-27, which degrades homogalacturonan and is expressed at the onset of secondary wall formation, can increase the solubility of wood matrix polysaccharides. Overexpression of this enzyme in aspen increased solubility of not only pectins but also xylans and other hemicelluloses, indicating that homogalacturonan limits the solubility of major wood cell wall components. Enzymatic saccharification of wood obtained from PL1-27-overexpressing trees gave higher yields of pentoses and hexoses than similar treatment of wood from wild-type trees, even after acid pretreatment. Conclusions: Thus, the modification of pectins may constitute an important biotechnological target for improved wood processing despite their low abundance in woody biomass.
  •  
6.
  • Bygdell, Joakim, et al. (författare)
  • Protein expression in tension wood formation monitored at high tissue resolution in Populus
  • 2017
  • Ingår i: Journal of Experimental Botany. - : Oxford University Press. - 0022-0957 .- 1460-2431. ; 68:13, s. 3405-3417
  • Tidskriftsartikel (refereegranskat)abstract
    • Tension wood (TW) is a specialized tissue with contractile properties that is formed by the vascular cambium in response to gravitational stimuli. We quantitatively analysed the proteomes of Populus tremula cambium and its xylem cell derivatives in stems forming normal wood (NW) and TW to reveal the mechanisms underlying TW formation. Phloem-, cambium-, and wood-forming tissues were sampled by tangential cryosectioning and pooled into nine independent samples. The proteomes of TW and NW samples were similar in the phloem and cambium samples, but diverged early during xylogenesis, demonstrating that reprogramming is an integral part of TW formation. For example, 14-3-3, reactive oxygen species, ribosomal and ATPase complex proteins were found to be up-regulated at early stages of xylem differentiation during TW formation. At later stages of xylem differentiation, proteins involved in the biosynthesis of cellulose and enzymes involved in the biosynthesis of rhamnogalacturonan-I, rhamnogalacturonan-II, arabinogalactan-II and fasciclin-like arabinogalactan proteins were up-regulated in TW. Surprisingly, two isoforms of exostosin family proteins with putative xylan xylosyl transferase function and several lignin biosynthesis proteins were also up-regulated, even though xylan and lignin are known to be less abundant in TW than in NW. These data provided new insight into the processes behind TW formation.
  •  
7.
  • Chen, Zhiqiang, et al. (författare)
  • Method for accurate fiber length determination from increment cores for large-scale population analyses in Norway spruce
  • 2016
  • Ingår i: Holzforschung. - : Walter de Gruyter GmbH. - 0018-3830 .- 1437-434X. ; 70:9, s. 829-838
  • Tidskriftsartikel (refereegranskat)abstract
    • Fiber (tracheid) length is an important trait targeted for genetic and silvicultural improvement. Such studies require large-scale non-destructive sampling, and accurate length determination. The standard procedure for non-destructive sampling is to collect increment cores, singularize their cells by maceration, measure them with optical analyzer and apply various corrections to suppress influence of non-fiber particles and cut fibers, as fibers are cut by the corer. The recently developed expectation-maximization method (EM) not only addresses the problem of non-fibers and cut fibers, but also corrects for the sampling bias. Here, the performance of the EM method has been evaluated by comparing it with length-weighing and squared length-weighing, both implemented in fiber analyzers, and with microscopy data for intact fibers, corrected for sampling bias, as the reference. This was done for 12-mm increment cores from 16 Norway spruce (Picea abies (L.) Karst) trees on fibers from rings 8-11 (counted from pith), representing juvenile wood of interest in breeding programs. The EM-estimates provided mean-fiber-lengths with bias of only +2.7% and low scatter. Length-weighing and length2-weighing gave biases of-7.3% and +9.3%, respectively, and larger scatter. The suggested EM approach constitutes a more accurate non-destructive method for fiber length (FL) determination, expected to be applicable also to other conifers.
  •  
8.
  • Chen, Zhi-Qiang, et al. (författare)
  • Genetic analysis of fiber dimensions and their correlation with stem diameter and solid-wood properties in Norway spruce
  • 2016
  • Ingår i: Tree Genetics & Genomes. - : Springer Science and Business Media LLC. - 1614-2942 .- 1614-2950. ; 12:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Adverse genetic correlations between growth traits and solid-wood, as well as fiber traits are a concern in conifer breeding programs. To evaluate the impact of selection for growth and solid-wood properties on fiber dimensions, we investigated the inheritance and efficiency of early selection for different wood-fiber traits and their correlations with stem diameter, wood density, modulus of elasticity (MOE), and microfibril angle (MFA) in Norway spruce (Picea abies L). The study was based on two large open-pollinated progeny trials established in southern Sweden in 1990 with material from 524 families comprising 5618 trees. Two increment cores were sampled from each tree. Radial variations from pith to bark were determined for rings 3–15 with SilviScan for fiber widths in the radial (RFW) and tangential (TFW) direction, fiber wall thickness (FWT), and fiber coarseness (FC). Fiber length (FL) was determined for rings 8–11. Heritabilities based on rings 8–11 using joint-site data were moderate to high (0.24–0.51) for all fiber-dimension traits. Heritabilities based on stem cross-sectional averages varied from 0.34 to 0.48 and reached a plateau at rings 6–9. The “age-age” genetic correlations for RFW, TFW, FWT, and FC cross-sectional averages at a particular age with cross-sectional averages at ring 15 reached 0.9 at rings 4–7. Our results indicated a moderate to high positive genetic correlation for density and MOE with FC and FWT, moderate and negative with RFW, and low with TFW and FL. Comparison of several selection scenarios indicated that the highest profitability is reached when diameter and MOE are considered jointly, in which case, the effect on any fiber dimension is negligible. Early selection was highly efficient from ring 5 for RFW and from rings 8–10 for TFW, FWT, and FC.
  •  
9.
  • Chong, Sun-Li, et al. (författare)
  • Active fungal GH115 alpha-glucuronidase produced in Arabidopsis thaliana affects only the UX1-reactive glucuronate decorations on native glucuronoxylans
  • 2015
  • Ingår i: BMC Biotechnology. - : Springer Science and Business Media LLC. - 1472-6750. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Expressing microbial polysaccharide-modifying enzymes in plants is an attractive approach to custom tailor plant lignocellulose and to study the importance of wall structures to plant development. Expression of alpha-glucuronidases in plants to modify the structures of glucuronoxylans has not been yet attempted. Glycoside hydrolase (GH) family 115 alpha-glucuronidases cleave the internal alpha-D-(4-O-methyl)glucopyranosyluronic acid ((Me)GlcA) from xylans or xylooligosaccharides. In this work, a GH115 alpha-glucuronidase from Schizophyllum commune, ScAGU115, was expressed in Arabidopsis thaliana and targeted to apoplast. The transgene effects on native xylans' structures, plant development, and lignocellulose saccharification were evaluated and compared to those of knocked out glucuronyltransferases AtGUX1 and AtGUX2.Results: The ScAGU115 extracted from cell walls of Arabidopsis was active on the internally substituted aldopentaouronic acid (XUXX). The transgenic plants did not show any change in growth or in lignocellulose saccharification. The cell wall (Me)GlcA and other non-cellulosic sugars, as well as the lignin content, remained unchanged. In contrast, the gux1gux2 double mutant showed a 70% decrease in (Me)GlcA to xylose molar ratio, and, interestingly, a 60% increase in the xylose content. Whereas ScAGU115-expressing plants exhibited a decreased signal in native secondary walls from the monoclonal antibody UX1 that recognizes (Me)GlcA on non-acetylated xylan, the signal was not affected after wall deacetylation. In contrast, gux1gux2 mutant was lacking UX1 signals in both native and deacetylated cell walls. This indicates that acetyl substitution on the xylopyranosyl residue carrying (Me)GlcA or on the neighboring xylopyranosyl residues may restrict post-synthetic modification of xylans by ScAGU115 in planta.Conclusions: Active GH115 alpha-glucuronidase has been produced for the first time in plants. The cell wall-targeted ScAGU115 was shown to affect those glucuronate substitutions of xylan, which are accessible to UX1 antibody and constitute a small fraction in Arabidopsis, whereas majority of (Me)GlcA substitutions were resistant, most likely due to the shielding by acetyl groups. Plants expressing ScAGU115 did not show any defects under laboratory conditions indicating that the UX1 epitope of xylan is not essential under these conditions. Moreover the removal of the UX1 xylan epitope does not affect lignocellulose saccharification.
  •  
10.
  •  
11.
  • Chong, Sun-Li, et al. (författare)
  • Glucuronic acid in Arabidopsis thaliana xylans carries a novel pentose substituent
  • 2015
  • Ingår i: International Journal of Biological Macromolecules. - : Elsevier BV. - 0141-8130 .- 1879-0003. ; 79, s. 807-812
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucuronic acids in Arabidopsis thaliana xylans exist in 4-O-methylated (MeGlcA) and non-methylated (GlcA) forms at a ratio of about 3:2. The matrix-assisted laser desorption/ionization mass spectrometry analysis of the endoxylanase liberated acidic oligosaccharides from the Arabidopsis inflorescence stem showed that two peaks with GlcA (GlcA-Xyl(4)Ac(1) and GlcA-Xyl(5)Ac(2)) had abnormally high intensities, as well as different tandem mass spectra, than their 4-O-methylated counterparts. These peaks were interestingly enriched in the xylan biosynthesis mutant irx7 and irx9-1. Multi-stages fragmentation analysis using negative ion electrospray-ion trap mass spectrometry indicated that this GlcA was further carrying a pentose residue in the glucuronoxylan-derived oligosaccharide from irx9-1. The structure was also identified in Arabidopsis wild type. The results prove evidence of a new pentose substitution on the GlcA residue of Arabidopsis GX, which is likely present in the primary walls. (C) 2015 Elsevier B.V. All rights reserved.
  •  
12.
  • Derba-Maceluch, Marta, et al. (författare)
  • Cell Wall Acetylation in Hybrid Aspen Affects Field Performance, Foliar Phenolic Composition and Resistance to Biological Stress Factors in a Construct-Dependent Fashion
  • 2020
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media S.A.. - 1664-462X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • The production of biofuels and "green" chemicals from the lignocellulose of fast-growing hardwood species is hampered by extensive acetylation of xylan. Different strategies have been implemented to reduce xylan acetylation, resulting in transgenic plants that show good growth in the greenhouse, improved saccharification and fermentation, but the field performance of such plants has not yet been reported. The aim of this study was to evaluate the impact of reduced acetylation on field productivity and identify the best strategies for decreasing acetylation. Growth and biological stress data were evaluated for 18 hybrid aspen lines with 10-20% reductions in the cell wall acetyl content from a five year field experiment in Southern Sweden. The reduction in acetyl content was achieved either by suppressing the process of acetylation in the Golgi by reducing expression of REDUCED WALL ACETYLATION (RWA) genes, or by post-synthetic acetyl removal by fungal acetyl xylan esterases (AXEs) from two different families, CE1 and CE5, targeting them to cell walls. Transgene expression was regulated by either a constitutive promoter (35S) or a wood-specific promoter (WP). For the majority of transgenic lines, growth was either similar to that in WT and transgenic control (WP:GUS) plants, or slightly reduced. The slight reduction was observed in the AXE-expressing lines regulated by the 35S promoter, not those with the WP promoter which limits expression to cells developing secondary walls. Expressing AXEs regulated by the 35S promoter resulted in increased foliar arthropod chewing, and altered condensed tannins and salicinoid phenolic glucosides (SPGs) profiles. Greater growth inhibition was observed in the case of CE5 than with CE1 AXE, and it was associated with increased foliar necrosis and distinct SPG profiles, suggesting that CE5 AXE could be recognized by the pathogen-associated molecular pattern system. For each of three different constructs, there was a line with dwarfism and growth abnormalities, suggesting random genetic/epigenetic changes. This high frequency of dwarfism (17%) is suggestive of a link between acetyl metabolism and chromatin function. These data represent the first evaluation of acetyl-reduced plants from the field, indicating some possible pitfalls, and identifying the best strategies, when developing highly productive acetyl-reduced feedstocks.
  •  
13.
  • Derba-Maceluch, Marta, et al. (författare)
  • Expression of Cell Wall-Modifying Enzymes in Aspen for Improved Lignocellulose Processing
  • 2020
  • Ingår i: The Plant Cell Wall : Methods and Protocols. - New York, NY : Springer New York. - 9781071606193 ; 2149, s. 145-164
  • Bokkapitel (refereegranskat)abstract
    • Wood is an important source of biomass for materials and chemicals, and a target for genetic engineering of its properties for different applications or for research. Wood properties can be altered by using different enzymes acting on cell wall polymers postsynthetically in cell walls. This approach allows for a precise polymer structure modification thanks to the specificity of enzymes used. Such enzymes can originate from all kinds of organisms, or even be modified in a desired way for novel attributes. Here we present a general strategy for expressing a microbial enzyme in aspen and targeting it to cell wall, using an example of fungal glucuronoyl esterase. We describe methods of vector cloning, plant transformation, transgenic line selection and multiplication, testing for the presence of enzymatic activity in different cell compartments, and finally the method of plant transferring from sterile culture to the greenhouse conditions.
  •  
14.
  • Derba-Maceluch, Marta, et al. (författare)
  • Impact of xylan on field productivity and wood saccharification properties in aspen
  • 2023
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media SA. - 1664-462X. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Xylan that comprises roughly 25% of hardwood biomass is undesirable in biorefinery applications involving saccharification and fermentation. Efforts to reduce xylan levels have therefore been made in many species, usually resulting in improved saccharification. However, such modified plants have not yet been tested under field conditions. Here we evaluate the field performance of transgenic hybrid aspen lines with reduced xylan levels and assess their usefulness as short-rotation feedstocks for biorefineries. Three types of transgenic lines were tested in four-year field tests with RNAi constructs targeting either Populus GT43 clades B and C (GT43BC) corresponding to Arabidopsis clades IRX9 and IRX14, respectively, involved in xylan backbone biosynthesis, GATL1.1 corresponding to AtGALT1 involved in xylan reducing end sequence biosynthesis, or ASPR1 encoding an atypical aspartate protease. Their productivity, wood quality traits, and saccharification efficiency were analyzed. The only lines differing significantly from the wild type with respect to growth and biotic stress resistance were the ASPR1 lines, whose stems were roughly 10% shorter and narrower and leaves showed increased arthropod damage. GT43BC lines exhibited no growth advantage in the field despite their superior growth in greenhouse experiments. Wood from the ASPR1 and GT43BC lines had slightly reduced density due to thinner cell walls and, in the case of ASPR1, larger cell diameters. The xylan was less extractable by alkali but more hydrolysable by acid, had increased glucuronosylation, and its content was reduced in all three types of transgenic lines. The hemicellulose size distribution in the GALT1.1 and ASPR1 lines was skewed towards higher molecular mass compared to the wild type. These results provide experimental evidence that GATL1.1 functions in xylan biosynthesis and suggest that ASPR1 may regulate this process. In saccharification without pretreatment, lines of all three constructs provided 8-11% higher average glucose yields than wild-type plants. In saccharification with acid pretreatment, the GT43BC construct provided a 10% yield increase on average. The best transgenic lines of each construct are thus predicted to modestly outperform the wild type in terms of glucose yields per hectare. The field evaluation of transgenic xylan-reduced aspen represents an important step towards more productive feedstocks for biorefineries. Copyright © 2023 Derba-Maceluch, Sivan, Donev, Gandla, Yassin, Vaasan, Heinonen, Andersson, Amini, Scheepers, Johansson, Vilaplana, Albrectsen, Hertzberg, Jönsson and Mellerowicz.
  •  
15.
  •  
16.
  • Derba-Maceluch, Marta, et al. (författare)
  • O-Acetylation of glucuronoxylan in Arabidopsis thaliana wild type and its change in xylan biosynthesis mutants
  • 2014
  • Ingår i: Glycobiology. - : Oxford University Press (OUP). - 0959-6658 .- 1460-2423. ; 24, s. 494-506
  • Tidskriftsartikel (refereegranskat)abstract
    • O-Acetylglucuronoxylans (AcGX) in Arabidopsis thaliana carry acetyl residues on the 2-O and/or 3-O positions of the xylopyranosyl (Xylp) units, but the distribution of different O-acetylated Xylp units is partly unclear. We studied a possible correlation of xylan acetylation and the activities of different glycosyltransferases involved in xylan biosynthesis by analyzing the distribution of O-acetyl substituents on AcGX from Arabidopsis wild-type and mutants irx7, irx9-1, irx10, irx14 and gux1gux2. The relative contents of the Xylp structural units were determined with quantitative two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance spectroscopy. In the wild type, the degree of acetylation (DA) was 60%. Mono- and diacetylated Xylp units constituted 44 and 6% of the AcGX backbone, respectively; while (4-O-methyl)-glucopyranosyluronic acid (1 -> 2)-linked Xylp units, most of which also carry 3-O-acetylation, represented 13%. The DA was decreased in irx7, irx9-1 and irx14 due to the decrease in monoacetylation (2-O and 3-O), indicating a relationship between acetylation and other AcGX biosynthetic processes. The possible interactions that could lead to such changes have been discussed. No change in DA was observed in irx10 and gux1gux2, but monoacetylation was nonetheless elevated in gux1gux2. This indicates that acetylation occurs after addition of GlcpA to the xylan backbone. Mass fragmentation analysis suggests that the prevalent acetylation pattern is the acetyl group added on every other Xylp unit.
  •  
17.
  • Derba-Maceluch, Marta, et al. (författare)
  • Suppression of xylan endotransglycosylase PtxtXyn10A affects cellulose microfibril angle in secondary wall in aspen wood
  • 2015
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 205:2, s. 666-681
  • Tidskriftsartikel (refereegranskat)abstract
    • Certain xylanases from family GH10 are highly expressed during secondary wall deposition, but their function is unknown. We carried out functional analyses of the secondary-wall specific PtxtXyn10A in hybrid aspen (Populus tremulaxtremuloides).PtxtXyn10A function was analysed by expression studies, overexpression in Arabidopsis protoplasts and by downregulation in aspen.PtxtXyn10A overexpression in Arabidopsis protoplasts resulted in increased xylan endotransglycosylation rather than hydrolysis. In aspen, the enzyme was found to be proteolytically processed to a 68kDa peptide and residing in cell walls. Its downregulation resulted in a corresponding decrease in xylan endotransglycosylase activity and no change in xylanase activity. This did not alter xylan molecular weight or its branching pattern but affected the cellulose-microfibril angle in wood fibres, increased primary growth (stem elongation, leaf formation and enlargement) and reduced the tendency to form tension wood. Transcriptomes of transgenic plants showed downregulation of tension wood related genes and changes in stress-responsive genes. The data indicate that PtxtXyn10A acts as a xylan endotransglycosylase and its main function is to release tensional stresses arising during secondary wall deposition. Furthermore, they suggest that regulation of stresses in secondary walls plays a vital role in plant development.
  •  
18.
  • Derba-Maceluch, Marta, et al. (författare)
  • Xylan glucuronic acid side chains fix suberin-like aliphatic compounds to wood cell walls
  • 2023
  • Ingår i: New Phytologist. - : John Wiley & Sons. - 0028-646X .- 1469-8137. ; 238:1, s. 297-312
  • Tidskriftsartikel (refereegranskat)abstract
    • Wood is the most important repository of assimilated carbon in the biosphere, in the form of large polymers (cellulose, hemicelluloses including glucuronoxylan, and lignin) that interactively form a composite, together with soluble extractives including phenolic and aliphatic compounds. Molecular interactions among these compounds are not fully understood.We have targeted the expression of a fungal α-glucuronidase to the wood cell wall of aspen (Populus tremula L. × tremuloides Michx.) and Arabidopsis (Arabidopsis thaliana (L.) Heynh), to decrease contents of the 4-O-methyl glucuronopyranose acid (mGlcA) substituent of xylan, to elucidate mGlcA's functions.The enzyme affected the content of aliphatic insoluble cell wall components having composition similar to suberin, which required mGlcA for binding to cell walls. Such suberin-like compounds have been previously identified in decayed wood, but here, we show their presence in healthy wood of both hardwood and softwood species. By contrast, γ-ester bonds between mGlcA and lignin were insensitive to cell wall-localized α-glucuronidase, supporting the intracellular formation of these bonds.These findings challenge the current view of the wood cell wall composition and reveal a novel function of mGlcA substituent of xylan in fastening of suberin-like compounds to cell wall. They also suggest an intracellular initiation of lignin–carbohydrate complex assembly.
  •  
19.
  • Dominguez, Pia Guadalupe, et al. (författare)
  • Sucrose synthase determines carbon allocation in developing wood and alters carbon flow at the whole tree level in aspen
  • 2021
  • Ingår i: New Phytologist. - : John Wiley & Sons. - 0028-646X .- 1469-8137. ; 229:1, s. 186-198
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the ecological and industrial importance of biomass accumulation in wood, the control of carbon (C) allocation to this tissue and to other tree tissues remain poorly understood. We studied sucrose synthase (SUS) to clarify its role in biomass formation and C metabolism at the whole tree level in hybrid aspen (Populus tremula x tremuloides). To this end, we analysed source leaves, phloem, developing wood, and roots ofSUSRNAitrees using a combination of metabolite profiling, 13CO2 pulse labelling experiments, and long-term field experiments. The glasshouse grownSUSRNAitrees exhibited a mild stem phenotype together with a reduction in wood total C. The 13CO2 pulse labelling experiments showed an alteration in the C flow in all the analysed tissues, indicating that SUS affects C metabolism at the whole tree level. This was confirmed when theSUSRNAitrees were grown in the field over a 5-yr period; their stem height, diameter and biomass were substantially reduced. These results establish that SUS influences C allocation to developing wood, and that it affects C metabolism at the whole tree level.
  •  
20.
  • Donev, Evgeniy, et al. (författare)
  • Engineering non-cellulosic polysaccharides of wood for the biorefinery
  • 2018
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media S.A.. - 1664-462X. ; 9
  • Forskningsöversikt (refereegranskat)abstract
    • Non-cellulosic polysaccharides constitute approximately one third of usable woody biomass for human exploitation. In contrast to cellulose, these substances are composed of several different types of unit monosaccharides and their backbones are substituted by various groups. Their structural diversity and recent examples of their modification in transgenic plants and mutants suggest they can be targeted for improving wood-processing properties, thereby facilitating conversion of wood in a biorefinery setting. Critical knowledge on their structure-function relationship is slowly emerging, although our understanding of molecular interactions responsible for observed phenomena is still incomplete. This review: (1) provides an overview of structural features of major non-cellulosic polysaccharides of wood, (2) describes the fate of non-cellulosic polysaccharides during biorefinery processing, (3) shows how the non-cellulosic polysaccharides impact lignocellulose processing focused on yields of either sugars or polymers, and (4) discusses outlooks for the improvement of tree species for biorefinery by modifying the structure of non-cellulosic polysaccharides.
  •  
21.
  • Donev, Evgeniy N., et al. (författare)
  • Field testing of transgenic aspen from large greenhouse screening identifies unexpected winners
  • 2023
  • Ingår i: Plant Biotechnology Journal. - : Wiley. - 1467-7644 .- 1467-7652. ; 21:5, s. 1005-1021
  • Tidskriftsartikel (refereegranskat)abstract
    • Trees constitute promising renewable feedstocks for biorefinery using biochemical conversion, but their recalcitrance restricts their attractiveness for the industry. To obtain trees with reduced recalcitrance, large-scale genetic engineering experiments were performed in hybrid aspen blindly targeting genes expressed during wood formation and 32 lines representing seven constructs were selected for characterization in the field. Here we report phenotypes of five-year old trees considering 49 traits related to growth and wood properties. The best performing construct considering growth and glucose yield in saccharification with acid pretreatment had suppressed expression of the gene encoding an uncharacterized 2-oxoglutarate-dependent dioxygenase (2OGD). It showed minor changes in wood chemistry but increased nanoporosity and glucose conversion. Suppressed levels of SUCROSE SYNTHASE, (SuSy), CINNAMATE 4-HYDROXYLASE (C4H) and increased levels of GTPase activating protein for ADP-ribosylation factor ZAC led to significant growth reductions and anatomical abnormalities. However, C4H and SuSy constructs greatly improved glucose yields in saccharification without and with pretreatment, respectively. Traits associated with high glucose yields were different for saccharification with and without pretreatment. While carbohydrates, phenolics and tension wood contents positively impacted the yields without pretreatment and growth, lignin content and S/G ratio were negative factors, the yields with pretreatment positively correlated with S lignin and negatively with carbohydrate contents. The genotypes with high glucose yields had increased nanoporosity and mGlcA/Xyl ratio, and some had shorter polymers extractable with subcritical water compared to wild-type. The pilot-scale industrial-like pretreatment of best-performing 2OGD construct confirmed its superior sugar yields, supporting our strategy.
  •  
22.
  • Escamez, Sacha, et al. (författare)
  • A collection of genetically engineered Populus trees reveals wood biomass traits that predict glucose yield from enzymatic hydrolysis
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Wood represents a promising source of sugars to produce bio-based renewables, including biofuels. However, breaking down lignocellulose requires costly pretreatments because lignocellulose is recalcitrant to enzymatic saccharification. Increasing saccharification potential would greatly contribute to make wood a competitive alternative to petroleum, but this requires improving wood properties. To identify wood biomass traits associated with saccharification, we analyzed a total of 65 traits related to wood chemistry, anatomy and structure, biomass production and saccharification in 40 genetically engineered Populus tree lines. These lines exhibited broad variation in quantitative traits, allowing for multivariate analyses and mathematical modeling. Modeling revealed that seven wood biomass traits associated in a predictive manner with saccharification of glucose after pretreatment. Four of these seven traits were also negatively associated with biomass production, suggesting a trade-off between saccharification potential and total biomass, which has previously been observed to offset the overall sugar yield from whole trees. We therefore estimated the "total-wood glucose yield" (TWG) from whole trees and found 22 biomass traits predictive of TWG after pretreatment. Both saccharification and TWG were associated with low abundant, often overlooked matrix polysaccharides such as arabinose and rhamnose which possibly represent new markers for improved Populus feedstocks.
  •  
23.
  • Gandla, Madhavi Latha, et al. (författare)
  • Expression of a fungal glucuronoyl esterase in Populus : Effects on wood properties and saccharification efficiency
  • 2015
  • Ingår i: Phytochemistry. - : Elsevier BV. - 0031-9422 .- 1873-3700. ; 112, s. 210-220
  • Tidskriftsartikel (refereegranskat)abstract
    • The secondary walls of angiosperms contain large amounts of glucuronoxylan that is thought to be covalently linked to lignin via ester bonds between 4-O-methyl-alpha-D-glucuronic acid (4-O-Me-GlcA) moieties in glucuronoxylan and alcohol groups in lignin. This linkage is proposed to be hydrolysed by glucuronoyl esterases (GCEs) secreted by wood-degrading fungi. We report effects of overexpression of a GCE from the white-rot basidiomycete Phanerochaete carnosa, PcGCE, in hybrid aspen (Populus tremula L. x tremuloides Michx.) on the wood composition and the saccharification efficiency. The recombinant enzyme, which was targeted to the plant cell wall using the signal peptide from hybrid aspen cellulase PttCel9B3, was constitutively expressed resulting in the appearance of GCE activity in protein extracts from developing wood. Diffuse reflectance FT-IR spectroscopy and pyrolysis-GC/MS analyses showed significant alternation in wood chemistry of transgenic plants including an increase in lignin content and S/G ratio, and a decrease in carbohydrate content Sequential wood extractions confirmed a massive (+43%) increase of Klason lignin, which was accompanied by a ca. 5% decrease in cellulose, and ca. 20% decrease in wood extractives. Analysis of the monosaccharide composition using methanolysis showed a reduction of 4-O-Me-GlcA content without a change in Xyl contents in transgenic lines, suggesting that the covalent links between 4-O-Me-GlcA moieties and lignin protect these moieties from degradation. Enzymatic saccharification without pretreatment resulted in significant decreases of the yields of Gal, Glc, Xyl and Man in transgenic lines, consistent with their increased recalcitrance caused by the increased lignin content In contrast, the enzymatic saccharification after acid pretreatment resulted in Glc yields similar to wild-type despite of their lower cellulose content. These data indicate that whereas PcGCE expression in hybrid aspen increases lignin deposition, the inhibitory effects of lignin are efficiently removed during acid pretreatment, and the extent of wood cellulose conversion during hydrolysis after acid pretreatment is improved in the transgenic lines possible due to reduced cell wall cross-links between cell wall biopolymers by PcGCE. 
  •  
24.
  • Geisler-Lee, Jane, et al. (författare)
  • Poplar carbohydrate-active enzymes. Gene identification and expression analyses.
  • 2006
  • Ingår i: Plant Physiology. - : Oxford University Press (OUP). - 0032-0889 .- 1532-2548. ; 140:3, s. 946-62
  • Tidskriftsartikel (refereegranskat)abstract
    • Over 1,600 genes encoding carbohydrate-active enzymes (CAZymes) in the Populus trichocarpa (Torr. & Gray) genome were identified based on sequence homology, annotated, and grouped into families of glycosyltransferases, glycoside hydrolases, carbohydrate esterases, polysaccharide lyases, and expansins. Poplar (Populus spp.) had approximately 1.6 times more CAZyme genes than Arabidopsis (Arabidopsis thaliana). Whereas most families were proportionally increased, xylan and pectin-related families were underrepresented and the GT1 family of secondary metabolite-glycosylating enzymes was overrepresented in poplar. CAZyme gene expression in poplar was analyzed using a collection of 100,000 expressed sequence tags from 17 different tissues and compared to microarray data for poplar and Arabidopsis. Expression of genes involved in pectin and hemicellulose metabolism was detected in all tissues, indicating a constant maintenance of transcripts encoding enzymes remodeling the cell wall matrix. The most abundant transcripts encoded sucrose synthases that were specifically expressed in wood-forming tissues along with cellulose synthase and homologs of KORRIGAN and ELP1. Woody tissues were the richest source of various other CAZyme transcripts, demonstrating the importance of this group of enzymes for xylogenesis. In contrast, there was little expression of genes related to starch metabolism during wood formation, consistent with the preferential flux of carbon to cell wall biosynthesis. Seasonally dormant meristems of poplar showed a high prevalence of transcripts related to starch metabolism and surprisingly retained transcripts of some cell wall synthesis enzymes. The data showed profound changes in CAZyme transcriptomes in different poplar tissues and pointed to some key differences in CAZyme genes and their regulation between herbaceous and woody plants.
  •  
25.
  • Gray-Mitsumune, Madoka, et al. (författare)
  • Ectopic expression of a wood-abundant expansin PttEXPA1 promotes cell expansion in primary and secondary tissues in aspen
  • 2008
  • Ingår i: Plant Biotechnology Journal. - : Wiley. - 1467-7644 .- 1467-7652. ; 6:1, s. 62-72
  • Tidskriftsartikel (refereegranskat)abstract
    • Expansins are primary agents inducing cell wall extension, and are therefore obvious targets in biotechnological applications aimed at the modification of cell size in plants. In trees, increased fibre length is a goal of both breeding and genetic engineering programmes. We used an alpha-expansin PttEXPA1 that is highly abundant in the wood-forming tissues of hybrid aspen (Populus tremula L. x P. tremuloides Michx.) to evaluate its role in fibre elongation and wood cell development. PttEXPA1 belongs to Subfamily A of alpha-expansins that have conserved motifs at the N- and C-termini of the mature protein. When PttEXPA1 was over-expressed in aspen, an extract of the cell wall-bound proteins of the transgenic plants exhibited an increased expansin activity on cellulose-xyloglucan composites in vitro, indicating that PttEXPA1 is an active expansin. The transgenic lines exhibited increased stem internode elongation and leaf expansion, and larger cell sizes in the leaf epidermis, indicating that PttEXPA1 protein is capable of increasing the growth of these organs by enhancing cell wall expansion in planta. Wood cell development was also modified in the transgenic lines, but the effects were different for vessel elements and fibres, the two main cell types of aspen wood. PttEXPA1 stimulated fibre, but not vessel element, diameter growth, and marginally increased vessel element length, but did not affect fibre length. The observed differences in responsiveness to expansin of these cell types are discussed in the light of differences in their growth strategies and cell wall composition.
  •  
26.
  • Gray-Mitsumune, Madoka, et al. (författare)
  • Expansins abundant in secondary xylem belong to subgroup a of the alpha-expansin gene family (1 w )
  • 2004
  • Ingår i: Plant Physiology. - : Oxford University Press (OUP). - 0032-0889 .- 1532-2548. ; 135:3, s. 1552-1564
  • Tidskriftsartikel (refereegranskat)abstract
    • Differentiation of xylem cells in dicotyledonous plants involves expansion of the radial primary cell walls and intrusive tip growth of cambial derivative cells prior to the deposition of a thick secondary wall essential for xylem function. Expansins are cell wall-residing proteins that have an ability to plasticize the cellulose-hemicellulose network of primary walls. We found expansin activity in proteins extracted from the cambial region of mature stems in a model tree species hybrid aspen (Populus tremula X Populus tremuloides Michx). We identified three a-expansin genes (PttEXP1, PttEXP2, and PttEXP8) and one beta-expansin gene (PttEXPB1) in a cambial region expressed sequence tag library, among which PttEXP1 was most abundantly represented. Northern-blot analyses in aspen vegetative organs and tissues showed that PttEXP1 was specifically expressed in mature stems exhibiting secondary growth, where it was present in the cambium and in the radial expansion zone. By contrast, PttEXP2 was mostly expressed in developing leaves. In situ reverse transcription-PCR provided evidence for accumulation of mRNA of PttEXP1 along with ribosomal rRNA at the tips of intrusively growing xylem fibers, suggesting that PttEXP1 protein has a role in intrusive tip growth. An examination of tension wood and leaf cDNA libraries identified another expansin, PttEXP5, very similar to PttEXP1, as the major expansin in developing tension wood, while PttEXP3 was the major expansin expressed in developing leaves. Comparative analysis of expansins expressed in woody stems in aspen, Arabidopsis, and pine showed that the most abundantly expressed expansins share sequence similarities, belonging to the subfamily A of alpha-expansins and having two conserved motifs at the beginning and end of the mature protein, RIPVG and KNFRV, respectively. This conservation suggests that these genes may share a specialized, not yet identified function.
  •  
27.
  • Hayatgheibi, Haleh, et al. (författare)
  • Genetic control of transition from juvenile to mature wood with respect to microfibril angle in Norway spruce (Picea abies) and lodgepole pine (Pinus contorta)
  • 2018
  • Ingår i: Canadian Journal of Forest Research. - : Canadian Science Publishing. - 0045-5067 .- 1208-6037. ; 48:11, s. 1358-1365
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic control of microfibril angle (MFA) transition from juvenile wood to mature wood was evaluated in Norway spruce (Picea abies (L.) Karst) and lodgepole pine (Pinus contorta Douglas ex Loudon). Increment cores were collected at breast height (1.3 m) from 5664 trees in two 21-year-old Norway spruce progeny trials in southern Sweden and from 823 trees in two lodgepole pine progeny trials, aged 34–35 years, in northern Sweden. Radial variations in MFA from pith to bark were measured for each core using SilviScan. To estimate MFA transition from juvenile wood to mature wood, a threshold level of MFA 20° was considered, and six different regression functions were fitted to the MFA profile of each tree after exclusion of outliers, following three steps. The narrow-sense heritability estimates (h2) obtained for MFA transition were highest based on the slope function, ranging from 0.21 to 0.23 for Norway spruce and from 0.34 to 0.53 for lodgepole pine, while h2 were mostly non-significant based on the logistic function, under all exclusion methods. Results of this study indicate that it is possible to select for an earlier MFA transition from juvenile wood to mature wood in Norway spruce and lodgepole pine selective breeding programs, as the genetic gains (∆G) obtained in direct selection of this trait were very high in both species.
  •  
28.
  • Ibatullin, Farid M., et al. (författare)
  • A Real-Time Fluorogenic Assay for the Visualization of Glycoside Hydrolase Activity in Planta
  • 2009
  • Ingår i: Plant Physiology. - : Oxford University Press (OUP). - 0032-0889 .- 1532-2548. ; 151:4, s. 1741-1750
  • Tidskriftsartikel (refereegranskat)abstract
    • There currently exists a diverse array of molecular probes for the in situ localization of polysaccharides, nucleic acids, and proteins in plant cells, including reporter enzyme strategies (e. g. protein-glucuronidase fusions). In contrast, however, there is a paucity of methods for the direct analysis of endogenous glycoside hydrolases and transglycosidases responsible for cell wall remodeling. To exemplify the potential of fluorogenic resorufin glycosides to address this issue, a resorufin beta-glycoside of a xylogluco-oligosaccharide (XXXG-beta-Res) was synthesized as a specific substrate for in planta analysis of XEH activity. The resorufin aglycone is particularly distinguished for high sensitivity in muro assays due to a low pK(a) (5.8) and large extinction coefficient (epsilon 62,000 M-1 cm(-1)), long-wavelength fluorescence (excitation 571 nm/emission 585 nm), and high quantum yield (0.74) of the corresponding anion. In vitro analyses demonstrated that XXXG-beta-Res is hydrolyzed by the archetypal plant XEH, nasturtium (Tropaeolum majus) NXG1, with classical Michaelis-Menten substrate saturation kinetics and a linear dependence on both enzyme concentration and incubation time. Further, XEH activity could be visualized in real time by observing the localized increase in fluorescence in germinating nasturtium seeds and Arabidopsis (Arabidopsis thaliana) inflorescent stems by confocal microscopy. Importantly, this new in situ XEH assay provides an essential complement to the in situ xyloglucan endotransglycosylase assay, thus allowing delineation of the disparate activities encoded by xyloglucan endotransglycosylase/hydrolase genes directly in plant tissues. The observation that XXXG-beta-Res is also hydrolyzed by diverse microbial XEHs indicates that this substrate, and resorufin glycosides in general, may find broad applicability for the analysis of wall restructuring by polysaccharide hydrolases during morphogenesis and plant-microbe interactions.
  •  
29.
  •  
30.
  • Immerzeel, Peter, et al. (författare)
  • Pectin Methylesterase Is Induced in Arabidopsis upon Infection and Is Necessary for a Successful Colonization by Necrotrophic Pathogens
  • 2011
  • Ingår i: Molecular plant-microbe interactions. - 0894-0282 .- 1943-7706. ; 24, s. 432-440
  • Tidskriftsartikel (refereegranskat)abstract
    • The ability of bacterial or fungal necrotrophs to produce enzymes capable of degrading pectin is often related to a successful initiation of the infective process. Pectin is synthesized in a highly methylesterified form and is subsequently de-esterified in muro by pectin methylesterase. De-esterification makes pectin more susceptible to the degradation by pectic enzymes such as endopolygalacturonases (endoPG) and pectate lyases secreted by necrotrophic pathogens during the first stages of infection. We show that, upon infection, Pectobacterium carotovorum and Botrytis cinerea induce in Arabidopsis a rapid expression of AtPME3 that acts as a susceptibility factor and is required for the initial colonization of the host tissue.
  •  
31.
  •  
32.
  •  
33.
  • Kumar, Manoj, et al. (författare)
  • An update on the nomenclature for the cellulose synthase genes in Populus
  • 2009
  • Ingår i: Trends in Plant Science. - : Elsevier BV. - 1360-1385 .- 1878-4372. ; 14:5, s. 248-254
  • Forskningsöversikt (refereegranskat)abstract
    • Cellulose synthase (CesA) is a central catalyst in the generation of the plant cell wall biomass and is, therefore, the focus of intense research. Characterization of individual CesA genes from Populus species has led to the publication of several different naming conventions for CesA gene family members in this model tree. To help reduce the resulting confusion, we propose here a new phylogeny-based CesA nomenclature that aligns the Populus CesA gene family with the established Arabidopsis thaliana CesA family structure.
  •  
34.
  • Kumar, Vikash, et al. (författare)
  • Genome-Wide Identification of Populus Malectin/Malectin-Like Domain-Containing Proteins and Expression Analyses Reveal Novel Candidates for Signaling and Regulation of Wood Development
  • 2020
  • Ingår i: Frontiers in Plant Science. - : FRONTIERS MEDIA SA. - 1664-462X. ; 11, s. 1-20
  • Tidskriftsartikel (refereegranskat)abstract
    • Malectin domain (MD) is a ligand-binding protein motif of pro- and eukaryotes. It is particularly abundant in Viridiplantae, where it occurs as either a single (MD, PF11721) or tandemly duplicated domain (PF12819) called malectin-like domain (MLD). In herbaceous plants, MD- or MLD-containing proteins (MD proteins) are known to regulate development, reproduction, and resistance to various stresses. However, their functions in woody plants have not yet been studied. To unravel their potential role in wood development, we carried out genome-wide identification of MD proteins in the model tree species black cottonwood (Populus trichocarpa), and analyzed their expression and co-expression networks. P. trichocarpa had 146 MD genes assigned to 14 different clades, two of which were specific to the genus Populus. 87% of these genes were located on chromosomes, the rest being associated with scaffolds. Based on their protein domain organization, and in agreement with the exon-intron structures, the MD genes identified here could be classified into five superclades having the following domains: leucine-rich repeat (LRR)-MD-protein kinase (PK), MLD-LRR-PK, MLD-PK (CrRLK1L), MLD-LRR, and MD-Kinesin. Whereas the majority of MD genes were highly expressed in leaves, particularly under stress conditions, eighteen showed a peak of expression during secondary wall formation in the xylem and their co-expression networks suggested signaling functions in cell wall integrity, pathogen-associated molecular patterns, calcium, ROS, and hormone pathways. Thus, P. trichocarpa MD genes having different domain organizations comprise many genes with putative foliar defense functions, some of which could be specific to Populus and related species, as well as genes with potential involvement in signaling pathways in other tissues including developing wood.
  •  
35.
  • Kumar, Vikash, et al. (författare)
  • Poplar carbohydrate-active enzymes : whole-genome annotation and functional analyses based on RNA expression data
  • 2019
  • Ingår i: The Plant Journal. - Hoboken : John Wiley & Sons. - 0960-7412 .- 1365-313X. ; 99:4, s. 589-609
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbohydrate-active enzymes (CAZymes) catalyze the formation and modification of glycoproteins, glycolipids, starch, secondary metabolites and cell wall biopolymers. They are key enzymes for the biosynthesis of food and renewable biomass. Woody biomass is particularly important for long-term carbon storage and as an abundant renewable natural resource for many industrial applications. This study presents a re-annotation of CAZyme genes in the current Populus trichocarpa genome assembly and in silico functional characterization, based on high-resolution RNA-Seq data sets. Altogether, 1914 CAZyme and expansin genes were annotated in 101 families. About 1797 of these genes were found expressed in at least one Populus organ. We identified genes involved in the biosynthesis of different cell wall polymers and their paralogs. Whereas similar families exist in poplar and Arabidopsis thaliana (with the exception of CBM13 found only in poplar), a few families had significantly different copy numbers between the two species. To identify the transcriptional coordination and functional relatedness within the CAZymes and other proteins, we performed co-expression network analysis of CAZymes in wood-forming tissues using the AspWood database () for Populus tremula. This provided an overview of the transcriptional changes in CAZymes during the transition from primary to secondary wall formation, and the clustering of transcripts into potential regulons. Candidate enzymes involved in the biosynthesis of polysaccharides were identified along with many tissue-specific uncharacterized genes and transcription factors. These collections offer a rich source of targets for the modification of secondary cell wall biosynthesis and other developmental processes in woody plants.
  •  
36.
  • Kushwah, Sunita, et al. (författare)
  • Arabidopsis XTH4 and XTH9 Contribute to Wood Cell Expansion and Secondary Wall Formation(1)([OPEN])
  • 2020
  • Ingår i: Plant Physiology. - : American Society of Plant Science. - 0032-0889 .- 1532-2548. ; 182:4, s. 1946-1965
  • Tidskriftsartikel (refereegranskat)abstract
    • Xyloglucan is the major hemicellulose of dicotyledon primary cell walls, affecting the load-bearing framework with the participation of xyloglucan endo-transglycosylase/hydrolases (XTHs). We used loss- and gain-of function approaches to study functions of XTH4 and XTH9 abundantly expressed in cambial regions during secondary growth of Arabidopsis (Arabidopsis thaliana). In secondarily thickened hypocotyls, these enzymes had positive effects on vessel element expansion and fiber intrusive growth. They also stimulated secondary wall thickening but reduced secondary xylem production. Cell wall analyses of inflorescence stems revealed changes in lignin, cellulose, and matrix sugar composition indicating an overall increase in secondary versus primary walls in mutants, indicative of higher xylem production compared with the wild type (since secondary walls were thinner). Intriguingly, the number of secondary cell wall layers compared with the wild type was increased in xth9 and reduced in xth4, whereas the double mutant xth4x9 displayed an intermediate number of layers. These changes correlated with specific Raman signals from the walls, indicating changes in lignin and cellulose. Secondary walls were affected also in the interfascicular fibers, where neither XTH4 nor XTH9 was expressed, indicating that these effects were indirect. Transcripts involved in secondary wall biosynthesis and cell wall integrity sensing, including THESEUS1 and WALL ASSOCIATED KINASE2, were highly induced in the mutants, indicating that deficiency in XTH4 and XTH9 triggers cell wall integrity signaling, which, we propose, stimulates xylem cell production and modulates secondary wall thickening. Prominent effects of XTH4 and XTH9 on secondary xylem support the hypothesis that altered xyloglucan affects wood properties both directly and via cell wall integrity sensing.
  •  
37.
  • Lesniewska, Joanna, et al. (författare)
  • Defense Responses in Aspen with Altered Pectin Methylesterase Activity Reveal the Hormonal Inducers of Tyloses
  • 2017
  • Ingår i: Plant Physiology. - : AMER SOC PLANT BIOLOGISTS. - 0032-0889 .- 1532-2548. ; 173:2, s. 1409-1419
  • Tidskriftsartikel (refereegranskat)abstract
    • Tyloses are ingrowths of parenchyma cells into the lumen of embolized xylem vessels, thereby protecting the remaining xylem from pathogens. They are found in heartwood, sapwood, and in abscission zones and can be induced by various stresses, but their molecular triggers are unknown. Here, we report that down-regulation of PECTIN METHYLESTERASE1 (PtxtPME1) in aspen (Populus tremula 3 tremuloides) triggers the formation of tyloses and activation of oxidative stress. We tested whether any of the oxidative stress-related hormones could induce tyloses in intact plantlets grown in sterile culture. Jasmonates, including jasmonic acid (JA) and methyl jasmonate, induced the formation of tyloses, whereas treatments with salicylic acid (SA) and 1-aminocyclopropane-1carboxylic acid (ACC) were ineffective. SA abolished the induction of tyloses by JA, whereas ACC was synergistic with JA. The ability of ACC to stimulate tyloses formation when combined with JA depended on ethylene (ET) signaling, as shown by a decrease in the response in ET-insensitive plants. Measurements of internal ACC and JA concentrations in wild-type and ET-insensitive plants treated simultaneously with these two compounds indicated that ACC and JA regulate each other's concentration in an ET-dependent manner. The findings indicate that jasmonates acting synergistically with ethylene are the key molecular triggers of tyloses.
  •  
38.
  • Lundberg-Felten, Judith, et al. (författare)
  • Ethylene signaling induces gelatinous layers with typical features of tension wood in hybrid aspen
  • 2018
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 218:3, s. 999-1014
  • Tidskriftsartikel (refereegranskat)abstract
    • The phytohormone ethylene impacts secondary stem growth in plants by stimulating cambial activity, xylem development and fiber over vessel formation. We report the effect of ethylene on secondary cell wall formation and the molecular connection between ethylene signaling and wood formation. We applied exogenous ethylene or its precursor 1-aminocyclopropane-1-carboxylic acid (ACC) to wild-type and ethylene-insensitive hybrid aspen trees (Populus tremulaxtremuloides) and studied secondary cell wall anatomy, chemistry and ultrastructure. We furthermore analyzed the transcriptome (RNA Seq) after ACC application to wild-type and ethylene-insensitive trees. We demonstrate that ACC and ethylene induce gelatinous layers (G-layers) and alter the fiber cell wall cellulose microfibril angle. G-layers are tertiary wall layers rich in cellulose, typically found in tension wood of aspen trees. A vast majority of transcripts affected by ACC are downstream of ethylene perception and include a large number of transcription factors (TFs). Motif-analyses reveal potential connections between ethylene TFs (Ethylene Response Factors (ERFs), ETHYLENE INSENSITIVE 3/ETHYLENE INSENSITIVE3-LIKE1 (EIN3/EIL1)) and wood formation. G-layer formation upon ethylene application suggests that the increase in ethylene biosynthesis observed during tension wood formation is important for its formation. Ethylene-regulated TFs of the ERF and EIN3/EIL1 type could transmit the ethylene signal.
  •  
39.
  • Mahboubi, Miramirhossein, et al. (författare)
  • Aspen SUCROSE TRANSPORTER3 Allocates Carbon into Wood Fibers
  • 2013
  • Ingår i: Plant Physiology. - : Oxford University Press (OUP). - 0032-0889 .- 1532-2548. ; 163, s. 1729-1740
  • Tidskriftsartikel (refereegranskat)abstract
    • Wood formation in trees requires carbon import from the photosynthetic tissues. In several tree species, including Populus species, the majority of this carbon is derived from sucrose (Suc) transported in the phloem. The mechanism of radial Suc transport from phloem to developing wood is not well understood. We investigated the role of active Suc transport during secondary cell wall formation in hybrid aspen (Populus tremula x Populus tremuloides). We show that RNA interference-mediated reduction of PttSUT3 (for Suc/H+ symporter) during secondary cell wall formation in developing wood caused thinner wood fiber walls accompanied by a reduction in cellulose and an increase in lignin. Suc content in the phloem and developing wood was not significantly changed. However, after (CO2)-C-13 assimilation, the SUT3RNAi lines contained more C-13 than the wild type in the Suc-containing extract of developing wood. Hence, Suc was transported into developing wood, but the Suc-derived carbon was not efficiently incorporated to wood fiber walls. A yellow fluorescent protein: PttSUT3 fusion localized to plasma membrane, suggesting that reduced Suc import into developing wood fibers was the cause of the observed cell wall phenotype. The results show the importance of active Suc transport for wood formation in a symplasmically phloem-loading tree species and identify PttSUT3 as a principal transporter for carbon delivery into secondary cell wall-forming wood fibers.
  •  
40.
  • Majda, Mateusz, et al. (författare)
  • Elongation of wood fibers combines features of diffuse and tip growth
  • 2021
  • Ingår i: New Phytologist. - : John Wiley & Sons. - 0028-646X .- 1469-8137. ; 232:2, s. 673-691
  • Tidskriftsartikel (refereegranskat)abstract
    • Xylem fibers are highly elongated cells that are key constituents of wood, play major physiological roles in plants, comprise an important terrestrial carbon reservoir, and thus have enormous ecological and economic importance. As they develop, from fusiform initials, their bodies remain the same length while their tips elongate and intrude into intercellular spaces.To elucidate mechanisms of tip elongation, we studied the cell wall along the length of isolated, elongating aspen xylem fibers and used computer simulations to predict the forces driving the intercellular space formation required for their growth.We found pectin matrix epitopes (JIM5, LM7) concentrated at the tips where cellulose microfibrils have transverse orientation, and xyloglucan epitopes (CCRC-M89, CCRC-M58) in fiber bodies where microfibrils are disordered. These features are accompanied by changes in cell wall thickness, indicating that while the cell wall elongates strictly at the tips, it is deposited all over fibers. Computer modeling revealed that the intercellular space formation needed for intrusive growth may only require targeted release of cell adhesion, which allows turgor pressure in neighboring fiber cells to ‘round’ the cells creating spaces.These characteristics show that xylem fibers’ elongation involves a distinct mechanism that combines features of both diffuse and tip growth.
  •  
41.
  • Majda, Mateusz, et al. (författare)
  • Mechanochemical Polarization of Contiguous Cell Walls Shapes Plant Pavement Cells
  • 2017
  • Ingår i: Developmental Cell. - : Elsevier BV. - 1534-5807 .- 1878-1551. ; 43:3, s. 4-304
  • Tidskriftsartikel (refereegranskat)abstract
    • The epidermis of aerial plant organs is thought to be limiting for growth, because it acts as a continuous load-bearing layer, resisting tension. Leaf epidermis contains jigsaw puzzle piece-shaped pavement cells whose shape has been proposed to be a result of subcellular variations in expansion rate that induce local buckling events. Paradoxically, such local compressive buckling should not occur given the tensile stresses across the epidermis. Using computational modeling, we show that the simplest scenario to explain pavement cell shapes within an epidermis under tension must involve mechanical wall heterogeneities across and along the anticlinal pavement cell walls between adjacent cells. Combining genetics, atomic force microscopy, and immunolabeling, we demonstrate that contiguous cell walls indeed exhibit hybrid mechanochemical properties. Such biochemical wall heterogeneities precede wall bending. Altogether, this provides a possible mechanism for the generation of complex plant cell shapes. Pavement cells in the leaf epidermis are multi-lobed like jigsaw puzzle pieces. Majda et al. provide evidence through in vivo analyses using atomic force microscopy and computational modeling that mechanical heterogeneities across and along anticlinal cell walls allow wall bending that contributes to lobe formation and these complex cell shapes.
  •  
42.
  • Mellerowicz, Ewa (författare)
  • An efficient method for medium throughput screening of cuticular wax composition in different plant species
  • 2016
  • Ingår i: Metabolomics. - : Springer Science and Business Media LLC. - 1573-3882 .- 1573-3890. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Most aerial plant organs are covered by a cuticle, which largely consists of cutin and wax. Cuticular waxes are mixtures of dozens of compounds, mostly very-long-chain aliphatics that are easily extracted by solvents. Over the last four decades, diverse cuticular wax analysis protocols have been developed, most of which are complex and time-consuming, and need to be adapted for each plant species or organ. Plant genomics and breeding programs often require mid-throughput metabolic phenotyping approaches to screen large numbers of individuals and obtain relevant biological information.Objectives To generate a fast, simple and user-friendly methodology able to capture most wax complexity independently of the plant, cultivar and organ.Methods Here we present a simple GC-MS method for screening relatively small wax amounts, sampled by short extraction with a versatile, uniform solvent. The method will be tested and validated in leaves and fruits from three different crop species: tomato (Solanum lycopersicum), apple (Malus domestica) and hybrid aspen (Populus tremula x tremuloides).Results Consistent results were obtained in tomato cultivar M82 across three consecutive years (2010-2012), two organs (leaf and fruit), and also in two different tomato (M82 and MicroTom) and apple (Golden Delicious and Granny Smith) cultivars. Our results on tomato wax composition match those reported previously, while our apple and hybrid aspen analyses provide the first comprehensive cuticular wax profile of these species.Conclusion This protocol allows standardized identification and quantification of most cuticular wax components in a range of species.
  •  
43.
  • Mellerowicz, Ewa (författare)
  • Biotechnological Potential of the Stress Response and Plant Cell Death Regulators Proteins in the Biofuel Industry
  • 2023
  • Ingår i: Cells. - 2073-4409. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Production of biofuel from lignocellulosic biomass is relatively low due to the limited knowledge about natural cell wall loosening and cellulolytic processes in plants. Industrial separation of cellulose fiber mass from lignin, its saccharification and alcoholic fermentation is still cost-ineffective and environmentally unfriendly. Assuming that the green transformation is inevitable and that new sources of raw materials for biofuels are needed, we decided to study cell death-a natural process occurring in plants in the context of reducing the recalcitrance of lignocellulose for the production of second-generation bioethanol. "Members of the enzyme families responsible for lysigenous aerenchyma formation were identified during the root hypoxia stress in Arabidopsis thaliana cell death mutants. The cell death regulatory genes, LESION SIMULATING DISEASE 1 (LSD1), PHYTOALEXIN DEFICIENT 4 (PAD4) and ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) conditionally regulate the cell wall when suppressed in transgenic aspen. During four years of growth in the field, the following effects were observed: lignin content was reduced, the cellulose fiber polymerization degree increased and the growth itself was unaffected. The wood of transgenic trees was more efficient as a substrate for saccharification, alcoholic fermentation and bioethanol production. The presented results may trigger the development of novel biotechnologies in the biofuel industry.
  •  
44.
  • Mellerowicz, Ewa (författare)
  • Cell Wall Polymers in Reaction Wood
  • 2014
  • Ingår i: The Biology of Reaction Wood. - Berlin, Heidelberg : Springer Berlin Heidelberg. - 9783642108136 ; , s. 37-106
  • Bokkapitel (refereegranskat)
  •  
45.
  •  
46.
  • Mellerowicz, Ewa (författare)
  • Colocalization of low-methylesterified pectins and Pb deposits in the apoplast of aspen roots exposed to lead
  • 2015
  • Ingår i: Environmental Pollution. - : Elsevier BV. - 0269-7491 .- 1873-6424. ; 205, s. 315-326
  • Tidskriftsartikel (refereegranskat)abstract
    • Low-methylesterified homogalacturonans have been suggested to play a role in the binding and immobilization of Pb in CW. Using root apices of hybrid aspen, a plant with a high phytoremediation potential, as a model, we demonstrated that the in situ distribution pattern of low-methylesterified homogalacturonan, pectin epitope (JIM5-P), reflects the pattern of Pb occurrence. The region which indicated high JIM5-P level corresponded with "Pb accumulation zone". Moreover, JIM5-P was especially abundant in cell junctions, CWs lining the intercellular spaces and the corners of intercellular spaces indicating the highest accumulation of Pb. Furthermore, JIM5-P and Pb commonly co-localized.The observations indicate that low-methylesterified homogalacturonan is the CW polymer that determines the capacity of ON for Pb sequestration. Our results suggest a promising directions for CW modification for enhancing the efficiency of plant roots in Pb accumulation, an important aspect in the phytoremediation of soils contaminated with trace metals. (C) 2015 Elsevier Ltd. All rights reserved.
  •  
47.
  •  
48.
  • Mellerowicz, Ewa (författare)
  • Modifying lignin composition and xylan O-acetylation induces changes in cell wall composition, extractability, and digestibility
  • 2024
  • Ingår i: Biotechnology for Biofuels and Bioproducts. - 2731-3654. ; 17
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Lignin and xylan are important determinants of cell wall structure and lignocellulosic biomass digestibility. Genetic manipulations that individually modify either lignin or xylan structure improve polysaccharide digestibility. However, the effects of their simultaneous modifications have not been explored in a similar context. Here, both individual and combinatorial modification in xylan and lignin was studied by analysing the effect on plant cell wall properties, biotic stress responses and integrity sensing. Results Arabidopsis plant co-harbouring mutation in FERULATE 5-HYDROXYLASE (F5H) and overexpressing Aspergillus niger acetyl xylan esterase (35S:AnAXE1) were generated and displayed normal growth attributes with intact xylem architecture. This fah1-2/35S:AnAXE1 cross was named as hyper G lignin and hypoacetylated (HrGHypAc) line. The HrGHypAc plants showed increased crystalline cellulose content with enhanced digestibility after chemical and enzymatic pre-treatment. Moreover, both parents and HrGHypAc without and after pre-treating with glucuronyl esterase and alpha glucuronidase exhibited an increase in xylose release after xylanase digestion as compared to wild type. The de-pectinated fraction in HrGHypAc displayed elevated levels of xylan and cellulose. Furthermore, the transcriptomic analysis revealed differential expression in cell wall biosynthetic, transcription factors and wall-associated kinases genes implying the role of lignin and xylan modification on cellular regulatory processes. Conclusions Simultaneous modification in xylan and lignin enhances cellulose content with improved saccharification efficiency. These modifications loosen cell wall complexity and hence resulted in enhanced xylose and xylobiose release with or without pretreatment after xylanase digestion in both parent and HrGHypAc. This study also revealed that the disruption of xylan and lignin structure is possible without compromising either growth and development or defense responses against Pseudomonas syringae infection.
  •  
49.
  • Mellerowicz, Ewa (författare)
  • Pb induces plant cell wall modifications - in particular - the increase of pectins able to bind metal ions level
  • 2013
  • Ingår i: E3S web of conferences. - : EDP Sciences. - 2555-0403 .- 2267-1242. ; 1
  • Konferensbidrag (refereegranskat)abstract
    • Low - methylesterified pectin fraction, able to bind metal ions, is the cell wall compound which participates in land and water plant cell response to toxic metals. Protonemata of Funaria hygrometrica (Hedw.), root tips of Populus tremula x P.tremuloides and Lemna trisulca fronds, were used for studying the effects of Pb on plants cell walls (CW). The study were focused on the low-methylesterified pectins level and distribution. It was carried out by immunocytochemical methods, using JIM5 antibody which recognized low-methylesterified pectins fraction - up 40%. Pb exposure resulted in the cell wall modifications in all investigated objects. The most striking result was the marked increase of the low-methylesterified pectins level. Moreover, cell walls thickenings were formed both in the moss protonemata and the poplar roots. The cell wall thickenings in both objects contained especially high level of low-methylesterified pectins. Simultaneously, cell wall thickenings accumulated extremely large and numerous Pb deposits. In many regions of the cell wall and cell wall thickenings the colocalization of low-methylesterified pectins and Pb deposits occurred. Low -methylesterified pectins level increased also in the cell walls of Lemna trisulca fronds and some of Pb deposits were colocalized with this pectin fraction in the CW. In fronds several Pb deposits occurred between plasma membrane and cell wall and only occasionally they were colocalized with low-methylesterified pectins. However, in L. trisulca - cell wall was generally thicker in response to Pb. We did not observed almost any local cell wall thickenings as in Funaria and Populus. Taken these facts together we can conclude that plant cell walls were actively and intensively modified in response to Pb. In particular, the amount of low-methylesterified pectins, able to bind toxic Pb ions, markedly increased. Simultaneously, both cell wall and cell wall thickenings were the compartments which accumulate large amount of Pb. Hence, modified cell walls appear to be a very important repository for Pb2+ in different types of plant cells and different species. Detection of such a reaction in three different plant species and three different types of plant cells indicates that it may be more common plant tolerance strategy to Pb.
  •  
50.
  • Mellerowicz, Ewa (författare)
  • Pectinous cell wall thickenings formation - A common defense strategy of plants to cope with Pb
  • 2016
  • Ingår i: Environmental Pollution. - : Elsevier BV. - 0269-7491 .- 1873-6424. ; 214, s. 354-361
  • Tidskriftsartikel (refereegranskat)abstract
    • Lead, one of the most abundant and hazardous trace metals affecting living organisms, has been commonly detected in plant cell walls including some tolerant plants, mining ecotypes and hyper accumulators. We have previously shown that in tip growing Funaria sp. protonemata cell wall is remodeled in response to lead by formation of thickenings rich in low-methylesterified pectins (pectin epitope JIM5 - JIM5-P) able to bind metal ions, which accumulate large amounts of Pb. Hence, it leads to the increase of cell wall capacity for Pb compartmentalization.Here we show that diverse plant species belonging to different phyla (Arabidopsis, hybrid aspen, star duckweed), form similar cell wall thickenings in response to Pb. These thickenings are formed in tip growing cells such as the root hairs, and in diffuse growing cells such as meristematic and root cap columella cells of root apices in hybrid aspen and Arabidopsis and in mesophyll cells in star duckweed fronds. Notably, all analyzed cell wall thickenings were abundant in JIM5-P and accumulated high amounts of Pb. In addition, the co-localization of JIM5-P and Pb commonly occurred in these cells. Hence, cell wall thickenings formed the extra compartment for Pb accumulation. In this way plant cells increased cell wall capacity for compartmentalization of this toxic metal, protecting protoplast from its toxicity.As cell wall thickenings occurred in diverse plant species and cell types differing in the type of growth we may conclude that pectinous cell wall thickenings formation is a widespread defense strategy of plants to cope with Pb. Moreover, detection of natural defense strategy, increasing plant cell walls capacity for metal accumulation, reveals a promising direction for enhancing plant efficiency in phytoremediation. (C) 2016 Elsevier Ltd. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 88
Typ av publikation
tidskriftsartikel (71)
annan publikation (5)
forskningsöversikt (5)
konferensbidrag (4)
bokkapitel (3)
Typ av innehåll
refereegranskat (79)
övrigt vetenskapligt/konstnärligt (7)
populärvet., debatt m.m. (2)
Författare/redaktör
Mellerowicz, Ewa (76)
Derba-Maceluch, Mart ... (25)
Sundberg, Björn (16)
Jönsson, Leif J (14)
Teeri, Tuula T. (12)
Gandla, Madhavi Lath ... (11)
visa fler...
Banasiak, Alicja (9)
Mohan Pawar, Prashan ... (9)
Immerzeel, Peter (7)
Ratke, Christine (7)
Brumer, Harry (6)
Sivan, Pramod, 1984- (6)
Lundqvist, Sven-Olof (6)
Chong, Sun-Li (6)
Kumar, Vikash (6)
Gorzsás, András (5)
Vilaplana, Francisco ... (5)
Kumar, Manoj (5)
Ezcurra, Ines (5)
Donev, Evgeniy N. (5)
Lesniewska, Joanna (5)
Moritz, Thomas (4)
Wu, Harry (4)
Garcia Gil, Rosario (4)
Delhomme, Nicolas (4)
Mörling, Tommy (4)
Takahashi Schmidt, J ... (4)
Heinonen, Emilia (4)
Niittylä, Totte (3)
Johansson, Ulf (3)
Tuominen, Hannele (3)
Nilsson, Ove (3)
Street, Nathaniel, 1 ... (3)
Hedenström, Mattias, ... (3)
Bulone, Vincent (3)
Aspeborg, Henrik (3)
Hedenström, Mattias (3)
Henrissat, Bernard (3)
Hertzberg, Magnus (3)
Karlsson, Bo (3)
Ibatullin, Farid (3)
Scheepers, Gerhard (3)
Geisler, Matt (3)
Tenkanen, Maija (3)
Winestrand, Sandra (3)
Karpinski, Stanislaw (3)
Mannapperuma, Chanak ... (3)
Majda, Mateusz (3)
Yassin, Zakiya (3)
Winzell, Anders (3)
visa färre...
Lärosäte
Sveriges Lantbruksuniversitet (70)
Umeå universitet (41)
Kungliga Tekniska Högskolan (25)
RISE (9)
Stockholms universitet (3)
Lunds universitet (2)
visa fler...
Uppsala universitet (1)
Chalmers tekniska högskola (1)
Karlstads universitet (1)
visa färre...
Språk
Engelska (87)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (51)
Lantbruksvetenskap (46)
Teknik (10)
Medicin och hälsovetenskap (2)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy