SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mergia K.) "

Sökning: WFRF:(Mergia K.)

  • Resultat 1-34 av 34
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bombarda, F., et al. (författare)
  • Runaway electron beam control
  • 2019
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 61:1
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:1
  • Forskningsöversikt (refereegranskat)
  •  
3.
  • Krasilnikov, A., et al. (författare)
  • Evidence of 9 Be + p nuclear reactions during 2ω CH and hydrogen minority ICRH in JET-ILW hydrogen and deuterium plasmas
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The intensity of 9Be + p nuclear fusion reactions was experimentally studied during second harmonic (2ω CH) ion-cyclotron resonance heating (ICRH) and further analyzed during fundamental hydrogen minority ICRH of JET-ILW hydrogen and deuterium plasmas. In relatively low-density plasmas with a high ICRH power, a population of fast H+ ions was created and measured by neutral particle analyzers. Primary and secondary nuclear reaction products, due to 9Be + p interaction, were observed with fast ion loss detectors, γ-ray spectrometers and neutron flux monitors and spectrometers. The possibility of using 9Be(p, d)2α and 9Be(p, α)6Li nuclear reactions to create a population of fast alpha particles and study their behaviour in non-active stage of ITER operation is discussed in the paper.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  • Joffrin, E., et al. (författare)
  • Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  • Murari, A., et al. (författare)
  • A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors
  • 2024
  • Ingår i: Nature Communications. - 2041-1723 .- 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of thermonuclear fusion consists of producing electricity from the coalescence of light nuclei in high temperature plasmas. The most promising route to fusion envisages the confinement of such plasmas with magnetic fields, whose most studied configuration is the tokamak. Disruptions are catastrophic collapses affecting all tokamak devices and one of the main potential showstoppers on the route to a commercial reactor. In this work we report how, deploying innovative analysis methods on thousands of JET experiments covering the isotopic compositions from hydrogen to full tritium and including the major D-T campaign, the nature of the various forms of collapse is investigated in all phases of the discharges. An original approach to proximity detection has been developed, which allows determining both the probability of and the time interval remaining before an incoming disruption, with adaptive, from scratch, real time compatible techniques. The results indicate that physics based prediction and control tools can be developed, to deploy realistic strategies of disruption avoidance and prevention, meeting the requirements of the next generation of devices.
  •  
27.
  •  
28.
  •  
29.
  •  
30.
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:9
  • Tidskriftsartikel (refereegranskat)
  •  
31.
  • Lagoyannis, A., et al. (författare)
  • Surface composition and structure of divertor tiles following the JET tokamak operation with the ITER-like wall
  • 2017
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 57:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Samples extracted from several divertor tiles following the 2011-2012 operation of JET with the ITER-Like wall were analyzed using ion beam analysis methods, x-ray fluorescence spectroscopy, scanning electron microscopy with energy dispersive spectroscopy analysis and x-ray diffraction. The emphasis was on the determination of light species and on material mixing including compound formation on the bottom and the outer divertor tiles. Deposition of deuterium, beryllium, carbon, nitrogen, oxygen, iron, chromium, nickel and molybdenum has been detected on all studied tiles. The thickest deposition, of around 4 mu m, was measured on the bottom of the outer divertor, whereas the other surfaces (inner bottom and vertical outer) the co-deposits were around 1 mu m. x-ray diffraction measurements have revealed the formation of the compound W2C on all specimens.
  •  
32.
  • Litaudon, X., et al. (författare)
  • EUROfusion contributions to ITER nuclear operation
  • 2024
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 64:11
  • Tidskriftsartikel (refereegranskat)abstract
    • ITER is of key importance in the European fusion roadmap as it aims to prove the scientific and technological feasibility of fusion as a future energy source. The EUROfusion consortium of labs within Europe is contributing to the preparation of ITER scientific exploitation and operation and aspires to exploit ITER outcomes in view of DEMO. The paper provides an overview of the major progress obtained recently, carried out in the frame of the new (initiated in 2021) EUROfusion work-package called 'Preparation of ITER Operation' (PrIO). The overview paper is directly supported by the eleven EUROfusion PrIO contributions given at the 29th Fusion Energy Conference (16-21 October 2023) London, UK [www.iaea.org/events/fec2023]. The paper covers the following topics: (i) development and validation of tools in support to ITER operation (plasma breakdown/burn-through with evolving plasma volume, new infra-red synthetic diagnostic for off-line analysis and wall monitoring using Artificial Intelligence techniques, synthetic diagnostics development, development and exploitation of multi-machine databases); (ii) R&D for the radio-frequency ITER neutral beam sources leading to long duration of negative deuterium/hydrogen ions current extraction at ELISE and participation in the neutral beam test facility with progress on the ITER source SPIDER, and, the commissioning of the 1 MV high voltage accelerator (MITICA) with lessons learned for ITER; (iii) validation of neutronic tools for ITER nuclear operation following the second JET deuterium-tritium experimental campaigns carried out in 2021 and in 2023 (neutron streaming and shutdown dose rate calculation, water activation and activated corrosion products with advanced fluid dynamic simulation; irradiation of several materials under 14.1 MeV neutron flux etc).
  •  
33.
  • Tsavalas, P., et al. (författare)
  • Be ITER-like wall at the JET tokamak under plasma
  • 2017
  • Ingår i: Physica Scripta. - : IOP PUBLISHING LTD. - 0031-8949 .- 1402-4896. ; T170
  • Tidskriftsartikel (refereegranskat)abstract
    • The JET tokamak is operated with beryllium and tungsten plasma-facing components to prepare for the exploitation of ITER. To determine beryllium erosion and migration in JET a set of markers were installed. Specimens from different beryllium marker tiles of the main wall of the ITER-like wall (ILW) JET tokamak from the first and the second D-D campaign were analyzed with nuclear reaction analysis, x-ray fluorescence spectroscopy, scanning electron microscopy and x-ray diffraction (XRD). Emphasis was on the determination of carbon plasma impurities deposited on beryllium surfaces. The C-12(d, p(0))C-13 reaction was used to quantify carbon deposition and to determine depth profiles. Carbon quantities on the surface of the Be tiles are low, varying from (0.35 +/- 0.07) x 10(17) to (11.8 +/- 0.6) x 10(17) at cm(-2) in the deposition depth from 0.4 to 6.7 mu m, respectively. In the 0.4-0.5 mm wide grooves of castellation sides the carbon content is found up to (14.3 +/- 2.5) x 10(17) at cm(-2) while it is higher (up to (38 +/- 4) x 10(17) at cm(-2)) in wider gaps (0.8 mm) separating tile segments. Oxygen (O), titanium (Ti), chromium (Cr), manganese (Mn), iron (Fe), nickel (Ni) and tungsten (W) were detected in all samples exposed to plasma and the reference one but at lower quantities at the latter. In the central part of the Inner Wall Guard Limiter from the first ILW campaign and in the Outer Poloidal Limiter from the second ILW campaign the Ni interlayer has been completely eroded. XRD shows the formation of BeNi in most specimens.
  •  
34.
  • Tsavalas, P., et al. (författare)
  • Fuel retention and carbon deposition on beryllium marker tiles from JET tokamak main chamber limiters investigated by ion beam analysis
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The JET tokamak with the ITER-like wall is operated with arrays of castellated beryllium (Be) limiters in the main chamber. In several locations Be marker tiles were installed for erosion-deposition studies. The castellation sides and the plasma-facing surfaces (PFSs) of Be marker tiles from three different locations of the JET main chamber, from the experimental campaigns 2011-12 (ILW-1) and 2013-14 (ILW-2), were analysed, employing H-2 and He-3 micro-beams in order to determine carbon
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-34 av 34

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy