SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Moustakas Aristidis PhD) "

Sökning: WFRF:(Moustakas Aristidis PhD)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dahl, Markus (författare)
  • Mechanisms for Quantitative Regulation of TGF-ß Signaling
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Cancer is a widely spread disease, and many cancer variants are today still difficult to treat. Efforts are being made to understand the complexity of cancer, both at a clinical level but also at a pre-clinical level. The aim is of course to merge the research from both disciplines, as an example, find out how to treat a tumour in a patient and what molecular mechanisms are behind the origin of the tumour. Basic research provides a platform that in the long run will help to create treatments for many cancer variants that exist today. Transforming Growth Factor Beta (TGF-ß) is a cytokine that regulates many cellular events such as cell differentiation, cell proliferation and migration. TGF-ß signaling is important to study since many studies show that patients with cancer actually have accumulated mutations in proteins connected to the pathway. In this thesis I try to enhance the knowledge of the TGF-ß signaling pathway, looking in more detail how the signaling output is regulated by the response to the ligand, explained in paper four. Furthermore I try to reveal the protein network that control transmission of the signal from the cell surface to the nucleus. We found that PARP-1 (paper one and two) and PARP-2 (paper three) associates with the signaling pathway to regulate the Smad proteins and to negatively regulate the transcription of Smad target genes.
  •  
2.
  • Vanlandewijck, Michael, 1982- (författare)
  • Diversification of TGF-β Signaling in Homeostasis and Disease
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • With the dawn of metazoans, the ability of cells to communicate with each other became of paramount importance in maintaining tissue homeostasis. The transforming growth factor β (TGF-β) signaling pathway, which plays important roles during embryogenesis and in the adult organism, signals via a heterodimeric receptor complex consisting of two type II and two type I receptors. After receptor activation through ligand binding, Smads mediate the signal from the receptor complex to the nucleus, where they orchestrate transcription. Depending on the context of activation, TGF-β can mediate a plethora of cellular responses, including proliferation, growth arrest, apoptosis and differentiation. In cancer, TGF-β can act as both as a tumor suppressor and promoter. During early stages of tumorigenesis, TGF-β prevents proliferation. However, TGF-β is also known to promote tumor progression during later stages of the disease, where it can induce differentiation of cancer cells towards a migratory phenotype. The aim of this thesis was to investigate how cells can differentiate their response upon TGF-β pathway activation. The first paper describes the role of Notch signaling in TGF-β induced growth arrest, demonstrating that TGF-β promotes Notch activity and that Notch signaling is required for prolonged TGF-β induced cell cycle arrest. In the second and third paper, we investigate the role of SIK, a member of the AMPK family of kinases, mediating signaling strength of TGF-β through degradation of the TGF-β type I receptor ALK5. While the second paper focuses on the effect of SIK on ALK5 stability and subsequent alterations in TGF-β signaling, the third paper emphasizes cooperation between SIK, Smad7 and the E3 ligase Smurf in degradation of ALK5. Finally, the fourth paper explores a novel role of SIK during TGF-β induced epithelial to mesenchymal transition (EMT). SIK binds to and degrades the polarity protein Par3, leading to enhanced EMT.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy