SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Nave F.) "

Search: WFRF:(Nave F.)

  • Result 1-50 of 99
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bombarda, F., et al. (author)
  • Runaway electron beam control
  • 2019
  • In: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 61:1
  • Journal article (peer-reviewed)
  •  
2.
  • Joffrin, E., et al. (author)
  • Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
  • 2019
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Research review (peer-reviewed)abstract
    • For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
  •  
3.
  •  
4.
  • Krasilnikov, A., et al. (author)
  • Evidence of 9 Be + p nuclear reactions during 2ω CH and hydrogen minority ICRH in JET-ILW hydrogen and deuterium plasmas
  • 2018
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:2
  • Journal article (peer-reviewed)abstract
    • The intensity of 9Be + p nuclear fusion reactions was experimentally studied during second harmonic (2ω CH) ion-cyclotron resonance heating (ICRH) and further analyzed during fundamental hydrogen minority ICRH of JET-ILW hydrogen and deuterium plasmas. In relatively low-density plasmas with a high ICRH power, a population of fast H+ ions was created and measured by neutral particle analyzers. Primary and secondary nuclear reaction products, due to 9Be + p interaction, were observed with fast ion loss detectors, γ-ray spectrometers and neutron flux monitors and spectrometers. The possibility of using 9Be(p, d)2α and 9Be(p, α)6Li nuclear reactions to create a population of fast alpha particles and study their behaviour in non-active stage of ITER operation is discussed in the paper.
  •  
5.
  •  
6.
  • 2018
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:1
  • Research review (peer-reviewed)
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  • Overview of the JET results
  • 2015
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 55:10
  • Journal article (peer-reviewed)
  •  
26.
  •  
27.
  • 2018
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:9
  • Journal article (peer-reviewed)
  •  
28.
  • Abel, I, et al. (author)
  • Overview of the JET results with the ITER-like wall
  • 2013
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:10, s. 104002-
  • Journal article (peer-reviewed)abstract
    • Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials. The large reduction in the carbon content (more than a factor ten) led to a much lower Z(eff) (1.2-1.4) during L- and H-mode plasmas, and radiation during the burn-through phase of the plasma initiation with the consequence that breakdown failures are almost absent. Gas balance experiments have shown that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. The re-establishment of the baseline H-mode and hybrid scenarios compatible with the new wall has required an optimization of the control of metallic impurity sources and heat loads. Stable type-I ELMy H-mode regimes with H-98,H-y2 close to 1 and beta(N) similar to 1.6 have been achieved using gas injection. ELM frequency is a key factor for the control of the metallic impurity accumulation. Pedestal temperatures tend to be lower with the new wall, leading to reduced confinement, but nitrogen seeding restores high pedestal temperatures and confinement. Compared with the carbon wall, major disruptions with the new wall show a lower radiated power and a slower current quench. The higher heat loads on Be wall plasma-facing components due to lower radiation made the routine use of massive gas injection for disruption mitigation essential.
  •  
29.
  • Romanelli, F, et al. (author)
  • Overview of the JET results
  • 2011
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 51:9
  • Journal article (peer-reviewed)abstract
    • Since the last IAEA Conference JET has been in operation for one year with a programmatic focus on the qualification of ITER operating scenarios, the consolidation of ITER design choices and preparation for plasma operation with the ITER-like wall presently being installed in JET. Good progress has been achieved, including stationary ELMy H-mode operation at 4.5 MA. The high confinement hybrid scenario has been extended to high triangularity, lower ρ*and to pulse lengths comparable to the resistive time. The steady-state scenario has also been extended to lower ρ*and ν*and optimized to simultaneously achieve, under stationary conditions, ITER-like values of all other relevant normalized parameters. A dedicated helium campaign has allowed key aspects of plasma control and H-mode operation for the ITER non-activated phase to be evaluated. Effective sawtooth control by fast ions has been demonstrated with3He minority ICRH, a scenario with negligible minority current drive. Edge localized mode (ELM) control studies using external n = 1 and n = 2 perturbation fields have found a resonance effect in ELM frequency for specific q95values. Complete ELM suppression has, however, not been observed, even with an edge Chirikov parameter larger than 1. Pellet ELM pacing has been demonstrated and the minimum pellet size needed to trigger an ELM has been estimated. For both natural and mitigated ELMs a broadening of the divertor ELM-wetted area with increasing ELM size has been found. In disruption studies with massive gas injection up to 50% of the thermal energy could be radiated before, and 20% during, the thermal quench. Halo currents could be reduced by 60% and, using argon/deuterium and neon/deuterium gas mixtures, runaway electron generation could be avoided. Most objectives of the ITER-like ICRH antenna have been demonstrated; matching with closely packed straps, ELM resilience, scattering matrix arc detection and operation at high power density (6.2 MW m-2) and antenna strap voltages (42 kV). Coupling measurements are in very good agreement with TOPICA modelling. © 2011 IAEA, Vienna.
  •  
30.
  • Murari, A., et al. (author)
  • A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors
  • 2024
  • In: Nature Communications. - 2041-1723 .- 2041-1723. ; 15:1
  • Journal article (peer-reviewed)abstract
    • The objective of thermonuclear fusion consists of producing electricity from the coalescence of light nuclei in high temperature plasmas. The most promising route to fusion envisages the confinement of such plasmas with magnetic fields, whose most studied configuration is the tokamak. Disruptions are catastrophic collapses affecting all tokamak devices and one of the main potential showstoppers on the route to a commercial reactor. In this work we report how, deploying innovative analysis methods on thousands of JET experiments covering the isotopic compositions from hydrogen to full tritium and including the major D-T campaign, the nature of the various forms of collapse is investigated in all phases of the discharges. An original approach to proximity detection has been developed, which allows determining both the probability of and the time interval remaining before an incoming disruption, with adaptive, from scratch, real time compatible techniques. The results indicate that physics based prediction and control tools can be developed, to deploy realistic strategies of disruption avoidance and prevention, meeting the requirements of the next generation of devices.
  •  
31.
  •  
32.
  •  
33.
  •  
34.
  •  
35.
  • Taddei, C, et al. (author)
  • Repositioning of the global epicentre of non-optimal cholesterol
  • 2020
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 582:7810, s. 73-
  • Journal article (peer-reviewed)abstract
    • High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol—which is a marker of cardiovascular risk—changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million–4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.
  •  
36.
  • Fenstermacher, M.E., et al. (author)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Journal article (peer-reviewed)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
37.
  • Danaei, Goodarz, et al. (author)
  • Effects of diabetes definition on global surveillance of diabetes prevalence and diagnosis: a pooled analysis of 96 population-based studies with 331288 participants
  • 2015
  • In: The Lancet Diabetes & Endocrinology. - 2213-8595 .- 2213-8587. ; 3:8, s. 624-637
  • Journal article (peer-reviewed)abstract
    • Background Diabetes has been defined on the basis of different biomarkers, including fasting plasma glucose (FPG), 2-h plasma glucose in an oral glucose tolerance test (2hOGTT), and HbA(1c). We assessed the effect of different diagnostic definitions on both the population prevalence of diabetes and the classification of previously undiagnosed individuals as having diabetes versus not having diabetes in a pooled analysis of data from population-based health examination surveys in different regions. Methods We used data from 96 population-based health examination surveys that had measured at least two of the biomarkers used for defining diabetes. Diabetes was defined using HbA(1c) (HbA(1c) >= 6 . 5% or history of diabetes diagnosis or using insulin or oral hypoglycaemic drugs) compared with either FPG only or FPG-or-2hOGTT definitions (FPG >= 7 . 0 mmol/L or 2hOGTT >= 11 . 1 mmol/L or history of diabetes or using insulin or oral hypoglycaemic drugs). We calculated diabetes prevalence, taking into account complex survey design and survey sample weights. We compared the prevalences of diabetes using different definitions graphically and by regression analyses. We calculated sensitivity and specificity of diabetes diagnosis based on HbA1c compared with diagnosis based on glucose among previously undiagnosed individuals (ie, excluding those with history of diabetes or using insulin or oral hypoglycaemic drugs). We calculated sensitivity and specificity in each survey, and then pooled results using a random-effects model. We assessed the sources of heterogeneity of sensitivity by meta-regressions for study characteristics selected a priori. Findings Population prevalence of diabetes based on FPG- or-2hOGTT was correlated with prevalence based on FPG alone (r= 0 . 98), but was higher by 2-6 percentage points at different prevalence levels. Prevalence based on HbA(1c) was lower than prevalence based on FPG in 42 . 8% of age-sex-survey groups and higher in another 41 . 6%; in the other 15 . 6%, the two definitions provided similar prevalence estimates. The variation across studies in the relation between glucose-based and HbA(1c)-based prevalences was partly related to participants' age, followed by natural logarithm of per person gross domestic product, the year of survey, mean BMI, and whether the survey population was national, subnational, or from specific communities. Diabetes defined as HbA(1c) 6 . 5% or more had a pooled sensitivity of 52 . 8% (95% CI 51 . 3-54 . 3%) and a pooled specificity of 99 . 74% (99 . 71-99 . 78%) compared with FPG 7 . 0 mmol/L or more for diagnosing previously undiagnosed participants; sensitivity compared with diabetes defined based on FPG-or-2hOGTT was 30 . 5% (28 . 7-32 . 3%). None of the preselected study-level characteristics explained the heterogeneity in the sensitivity of HbA(1c) versus FPG. Interpretation Different biomarkers and definitions for diabetes can provide different estimates of population prevalence of diabetes, and differentially identify people without previous diagnosis as having diabetes. Using an HbA(1c)-based definition alone in health surveys will not identify a substantial proportion of previously undiagnosed people who would be considered as having diabetes using a glucose-based test.
  •  
38.
  • Sauter, O., et al. (author)
  • Control of neoclassical tearing modes by sawtooth control
  • 2002
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 88:10
  • Journal article (peer-reviewed)abstract
    • The onset of a neoclassical tearing mode (NTM) depends on the existence of a large enough seed island. It is shown in the Joint European Torus that NTMs can be readily destabilized by long-period sawteeth, such as obtained by sawtooth stabilization from ion-cyclotron heating or current drive. This has important implications for burning plasma scenarios, as alpha particles strongly stabilize the sawteeth. It is also shown that, by adding heating and current drive just outside the inversion radius, sawteeth are destabilized, resulting in shorter sawtooth periods and larger beta values being obtained without NTMs.
  •  
39.
  • Kalupin, D., et al. (author)
  • Numerical analysis of JET discharges with the European Transport Simulator
  • 2013
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:12, s. article nr. 123007-
  • Journal article (peer-reviewed)abstract
    • The 'European Transport Simulator' (ETS) (Coster et al 2010 IEEE Trans. Plasma Sci. 38 2085-92, Kalupin et al 2011 Proc. 38th EPS Conf. on Plasma Physics (Strasbourg, France, 2011) vol 35G (ECA) P. 4.111) is the new modular package for 1D discharge evolution developed within the EFDA Integrated Tokamak Modelling (ITM) Task Force. It consists of precompiled physics modules combined into a workflow through standardized input/output data structures. Ultimately, the ETS will allow for an entire discharge simulation from the start up until the current termination phase, including controllers and sub-systems. The paper presents the current status of the ETS towards this ultimate goal. It discusses the design of the workflow, the validation and verification of its components on the example of impurity solver and demonstrates a proof-of-principles coupling of a local gyrofluid model for turbulent transport to the ETS. It also presents the first results on the application of the ETS to JET tokamak discharges with the ITER like wall. It studies the correlations of the radiation from impurity to the choice of the sources and transport coefficients.
  •  
40.
  •  
41.
  • Kazakov, Ye O., et al. (author)
  • Physics and applications of three-ion ICRF scenarios for fusion research
  • 2021
  • In: Physics of Plasmas. - : American Institute of Physics (AIP). - 1070-664X .- 1089-7674. ; 28:2
  • Research review (peer-reviewed)abstract
    • This paper summarizes the physical principles behind the novel three-ion scenarios using radio frequency waves in the ion cyclotron range of frequencies (ICRF). We discuss how to transform mode conversion electron heating into a new flexible ICRF technique for ion cyclotron heating and fast-ion generation in multi-ion species plasmas. The theoretical section provides practical recipes for selecting the plasma composition to realize three-ion ICRF scenarios, including two equivalent possibilities for the choice of resonant absorbers that have been identified. The theoretical findings have been convincingly confirmed by the proof-of-principle experiments in mixed H–D plasmas on the Alcator C-Mod and JET tokamaks, using thermal 3He and fast D ions from neutral beam injection as resonant absorbers. Since 2018, significant progress has been made on the ASDEX Upgrade and JET tokamaks in H–4He and H–D plasmas, guided by the ITER needs. Furthermore, the scenario was also successfully applied in JET D–3He plasmas as a technique to generate fusion-born alpha particles and study effects of fast ions on plasma confinement under ITER-relevant plasma heating conditions. Tuned for the central deposition of ICRF power in a small region in the plasma core of large devices such as JET, three-ion ICRF scenarios are efficient in generating large populations of passing fast ions and modifying the q-profile. Recent experimental and modeling developments have expanded the use of three-ion scenarios from dedicated ICRF studies to a flexible tool with a broad range of different applications in fusion research.
  •  
42.
  • Mayoral, M. -L, et al. (author)
  • Overview of Recent Results on Heating and Current Drive in the JET tokamak
  • 2009
  • In: RADIO FREQUENCY POWER IN PLASMAS. - : AIP. - 9780735407534 ; , s. 39-46
  • Conference paper (peer-reviewed)abstract
    • In this paper, significant results in the heating and current drive domains obtained at JET in the past few years following systems upgrade and dedicated experimental time, will be reviewed. Firstly, an overview of the new Ion Cyclotron Resonance Frequency (ICRF) heating capabilities will be presented i.e. results from the ITER-Like ICRF antenna (ILA), the use of External Conjugate-T and 3dB hybrid couplers to increase the ICRF power during ELMy H-mode, Furthermore, experiments to study the influence of the phasing of the ICRF antenna on power absorption and coupling will be described. Looking at Low Hybrid (I-H) issues for ITER, the effect of the location of gas injection on the LH coupling improvement at large launcher-separatrix distances will be discussed as the possibility to operate at ITER-relevant power densities. Experiments to characterise the LH power losses in the Scrape-Off-Layer (SOL) and to determine the LH wave absorption and current drive using power modulation will be shown. Finally, plasma rotation studies in the presence of ICRF heating with standard and enhanced JET toroidal field ripple will be presented.
  •  
43.
  • Noterdaeme, J. M., et al. (author)
  • Spatially resolved toroidal plasma rotation with ICRF on JET
  • 2003
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 43:4, s. 274-289
  • Journal article (peer-reviewed)abstract
    • Plasmas heated by ICRF only in the JET tokamak show distinct structures in the toroidal rotation profile, with regions where domega/dr > 0 when the minority cyclotron resonance layer is far off-axis. The rotation is dominantly co-current with a clear off-axis maximum. There is only a slight difference between a high-field side (HFS) or a low-field side position of this resonance layer: the off-axis maximum in the rotation profile is modestly higher for the HFS position. This is in contrast to the predictions of theories that rely mainly on the effects arising from ICRF-driven fast ions to account for ICRF-induced plasma rotation. The differences due to the direction of the antenna spectrum (co- or counter-) are small. A more central deposition of the ICRF power in L-mode and operation in H-mode both lead to more centrally peaked profiles, both in the co-direction. Strong MHD modes brake the rotation and lead to overall flat rotation profiles.
  •  
44.
  • Ongena, J., et al. (author)
  • Recent progress on JET towards the ITER reference mode of operation at high density
  • 2001
  • In: Plasma Physics and Controlled Fusion. - 0741-3335 .- 1361-6587. ; 43, s. A11-A30
  • Journal article (peer-reviewed)abstract
    • Recent progress towards obtaining high density and high confinement in JET as required for the ITER reference scenario at Q = 10 is summarized. Plasmas with simultaneous confinement H-98(y.2) = 1 and densities up to n/n(Gw) similar to 1 are now routinely obtained. This has been possible (i) by using plasmas at high (delta similar to 0.5) and medium (delta similar to 0.3-0.4) triangularity with sufficient heating power to maintain Type I ELMs, (ii) with impurity seeded plasmas at high (delta similar to 0.5) and low (delta less than or equal to 0.2) triangularity, (iii) with an optimized pellet injection sequence, maintaining the energy confinement and raising the density, and (iv) by carefully tuning the gas puff rate leading to plasmas with peaked density profiles and good confinement at long time scales. These high performance discharges exhibit Type I ELMs, with a new and more favourable behaviour observed at high densities, requiring further studies. Techniques for a possible mitigation of these ELMs are discussed, and first promising results are obtained with impurity seeding in discharges at high triangularity. Scaling studies using the new data of this year show a strong dependence of confinement on upper triangularity, density and proximity to the Greenwald limit. Observed MHD instabilities and methods to avoid these in high density and high confinement plasmas are discussed.
  •  
45.
  • Severo, J. H. F., et al. (author)
  • Investigation of rotation at the plasma edge in TCABR
  • 2015
  • In: Nuclear Fusion. - : Institute of Physics (IOP). - 0029-5515 .- 1741-4326. ; 55:9
  • Journal article (peer-reviewed)abstract
    • This paper summarizes experimental results from recent studies on intrinsic rotation at the plasma edge of the TCABR tokamak. These results were obtained after upgrading the number of channels of the rotation diagnostic to three. The measurements were carried out in the collisional (Pfirsch-Schluter) regime and the rotation profiles of the ions were obtained from the Doppler shifts of the impurity carbon lines, CIII (464.74 nm), and CVI (529.06 nm). Results on the correlation between toroidal rotation at the plasma edge and direction of gas injection are also presented. They indicate that the direction of gas injection has a small effect on rotation; the velocity of the background neutral hydrogen is affected by direct momentum transfer from the injected gas (also hydrogen), while the carbon ions' velocity is affected by inward radial friction force between the injected gas atoms and ions, increasing their velocity in the opposite sense of the plasma current.
  •  
46.
  • Versloot, T W, et al. (author)
  • Comparison between dominant NB and dominant IC heated ELMy H-mode discharges in JET
  • 2011
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 51:10, s. 103033-
  • Journal article (peer-reviewed)abstract
    • The experiment described in this paper is aimed at characterization of ELMy H-mode discharges with varying momentum input, rotation, power deposition profiles and ion to electron heating ratio obtained by varying the proportion between ion cyclotron (IC) and neutral beam (NB) heating. The motivation for the experiment was to verify if the basic confinement and transport properties of the baseline ITER H-mode are robust to these changes, and similar to those derived mostly from dominant NB heated H-modes. No significant difference in the density and temperature profiles or in the global confinement were found. Although ion temperature profiles were seen to be globally stiff, some variation of stiffness was obtained in the experiment by varying the deposition profiles, but not one that could significantly affect the profiles in terms of global confinement. This analysis shows the thermal plasma energy confinement enhancement factor to be independent of the heating mix, for the range of conditions explored. Moreover, the response of the global confinement to changes in density and power were also independent of heating mix, reflecting the changes in the pedestal, which is in agreement with globally stiff profiles. Consistently, the pedestal characteristics (pressure and width) and their dependences on global parameters such as density and power were the same during NB only or with predominant IC heating.
  •  
47.
  • Westerhof, E., et al. (author)
  • Control of sawteeth and triggering of NTMs with ion cyclotron resonance frequency waves in JET
  • 2002
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 42:11, s. 1324-1334
  • Journal article (peer-reviewed)abstract
    • A new scenario to delay or prevent neoclassical tearing mode (NTM) onset is presented. By active sawtooth destabilization, short period and low amplitude sawteeth are generated, such that the sawtooth produced NTM seed island is reduced and the threshold normalized plasma pressure for triggering of NTMs, beta(Nonset), is increased. The scenario has been explored experimentally in the Joint European Torus (JET). Ion cyclotron resonance frequency (ICRF) waves tuned to the 2nd harmonic H-minority resonance have been used for sawtooth control. Whereas ICRF waves generally induce sawtooth stabilization, favouring the triggering of NTMs and reducing beta(Nonset), the present experiments show that by toroidally directed waves, ion cyclotron current drive is produced, and that sawteeth can be destabilized by careful positioning of the 2nd harmonic H resonance layer with respect to the sawtooth inversion radius. As a result, NTM onset is delayed and beta(Nonset) is increased above its value obtained in discharges with additional heating from neutral beam injection alone.
  •  
48.
  • Zhou, Bin, et al. (author)
  • Worldwide trends in diabetes since 1980: A pooled analysis of 751 population-based studies with 4.4 million participants
  • 2016
  • In: The Lancet. - : Elsevier B.V.. - 0140-6736 .- 1474-547X. ; 387:10027, s. 1513-1530
  • Journal article (peer-reviewed)abstract
    • Background: One of the global targets for non-communicable diseases is to halt, by 2025, the rise in the age standardised adult prevalence of diabetes at its 2010 levels. We aimed to estimate worldwide trends in diabetes, how likely it is for countries to achieve the global target, and how changes in prevalence, together with population growth and ageing, are aff ecting the number of adults with diabetes.Methods: We pooled data from population-based studies that had collected data on diabetes through measurement of its biomarkers. We used a Bayesian hierarchical model to estimate trends in diabetes prevalence-defined as fasting plasma glucose of 7.0 mmol/L or higher, or history of diagnosis with diabetes, or use of insulin or oral hypoglycaemic drugs-in 200 countries and territories in 21 regions, by sex and from 1980 to 2014. We also calculated the posterior probability of meeting the global diabetes target if post-2000 trends continue.Findings: We used data from 751 studies including 4372000 adults from 146 of the 200 countries we make estimates for. Global age-standardised diabetes prevalence increased from 4.3% (95% credible interval 2.4-17.0) in 1980 to 9.0% (7.2-11.1) in 2014 in men, and from 5.0% (2.9-7.9) to 7.9% (6.4-9.7) in women. The number of adults with diabetes in the world increased from 108 million in 1980 to 422 million in 2014 (28.5% due to the rise in prevalence, 39.7% due to population growth and ageing, and 31.8% due to interaction of these two factors). Age-standardised adult diabetes prevalence in 2014 was lowest in northwestern Europe, and highest in Polynesia and Micronesia, at nearly 25%, followed by Melanesia and the Middle East and north Africa. Between 1980 and 2014 there was little change in age-standardised diabetes prevalence in adult women in continental western Europe, although crude prevalence rose because of ageing of the population. By contrast, age-standardised adult prevalence rose by 15 percentage points in men and women in Polynesia and Micronesia. In 2014, American Samoa had the highest national prevalence of diabetes (>30% in both sexes), with age-standardised adult prevalence also higher than 25% in some other islands in Polynesia and Micronesia. If post-2000 trends continue, the probability of meeting the global target of halting the rise in the prevalence of diabetes by 2025 at the 2010 level worldwide is lower than 1% for men and is 1% for women. Only nine countries for men and 29 countries for women, mostly in western Europe, have a 50% or higher probability of meeting the global target.Interpretation: Since 1980, age-standardised diabetes prevalence in adults has increased, or at best remained unchanged, in every country. Together with population growth and ageing, this rise has led to a near quadrupling of the number of adults with diabetes worldwide. The burden of diabetes, both in terms of prevalence and number of adults aff ected, has increased faster in low-income and middle-income countries than in high-income countries.
  •  
49.
  • Graves, J. P., et al. (author)
  • Sawtooth control in JET with ITER relevant low field side resonance ICRH and ITER like wall
  • 2014
  • In: 41st EPS Conference on Plasma Physics, EPS 2014. - : European Physical Society (EPS).
  • Conference paper (peer-reviewed)abstract
    • New experiments at JET with the ITER like wall show for the first time that ITER-relevant low field side resonance first harmonic ICRH with can be used to control sawteeth that have been initially lengthened by fast particles. In contrast to previous [J. P. Graves et al, Nature Communs 3, 624 (2012)] high field side resonance sawtooth control experiments undertaken at JET, it is found that the sawteeth of L-mode plasmas can be controlled with less accurate alignment between the resonance layer and the sawtooth inversion radius. This advantage, as well as the discovery that sawteeth can be shortened with various antenna phasings, including dipole, indicates that ICRH is a particularly effective and versatile tool that can be used in future fusion machines for controlling sawteeth. Without sawtooth control, NTMs and locked modes were triggered at very low normalised beta. High power H-mode experiments show the extent to which ICRH can be tuned to control sawteeth and NTMs while simultaneously providing effective electron heating with improved flushing of high Z core impurities. Dedicated ICRH simulations using SELFO, SCENIC and EVE, including wide drift orbit effects, explain why sawtooth control is effective with various antenna phasings, and show that the sawtooth control mechanism cannot be explained by enhancement of the magnetic shear. Hybrid kinetic-MHD stability calculations using MISHKA and HAGIS unravel the optimal sawtooth control regimes in these ITER relevant plasma conditions.
  •  
50.
  • Graves, J. P., et al. (author)
  • Sawtooth control in JET with ITER relevant low field side resonance ion cyclotron resonance heating and ITER-like wall
  • 2015
  • In: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 57:1, s. 014033-
  • Journal article (peer-reviewed)abstract
    • New experiments at JET with the ITER-like wall show for the first time that ITER-relevant low field side resonance first harmonic ion cyclotron resonance heating (ICRH) can be used to control sawteeth that have been initially lengthened by fast particles. In contrast to previous (Graves et al 2012 Nat. Commun. 3 624) high field side resonance sawtooth control experiments undertaken at JET, it is found that the sawteeth of L-mode plasmas can be controlled with less accurate alignment between the resonance layer and the sawtooth inversion radius. This advantage, as well as the discovery that sawteeth can be shortened with various antenna phasings, including dipole, indicates that ICRH is a particularly effective and versatile tool that can be used in future fusion machines for controlling sawteeth. Without sawtooth control, neoclassical tearing modes (NTMs) and locked modes were triggered at very low normalised beta. High power H-mode experiments show the extent to which ICRH can be tuned to control sawteeth and NTMs while simultaneously providing effective electron heating with improved flushing of high Z core impurities. Dedicated ICRH simulations using SELFO, SCENIC and EVE, including wide drift orbit effects, explain why sawtooth control is effective with various antenna phasings and show that the sawtooth control mechanism cannot be explained by enhancement of the magnetic shear. Hybrid kinetic-magnetohydrodynamic stability calculations using MISHKA and HAGIS unravel the optimal sawtooth control regimes in these ITER relevant plasma conditions.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 99

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view