SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Niittyla Totte) "

Sökning: WFRF:(Niittyla Totte)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bernacka Wojcik, Iwona, et al. (författare)
  • Flexible Organic Electronic Ion Pump for Flow-Free Phytohormone Delivery into Vasculature of Intact Plants
  • 2023
  • Ingår i: Advanced Science. - : WILEY. - 2198-3844. ; 10:14
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant vasculature transports molecules that play a crucial role in plant signaling including systemic responses and acclimation to diverse environmental conditions. Targeted controlled delivery of molecules to the vascular tissue can be a biomimetic way to induce long distance responses, providing a new tool for the fundamental studies and engineering of stress-tolerant plants. Here, a flexible organic electronic ion pump, an electrophoretic delivery device, for controlled delivery of phytohormones directly in plant vascular tissue is developed. The c-OEIP is based on polyimide-coated glass capillaries that significantly enhance the mechanical robustness of these microscale devices while being minimally disruptive for the plant. The polyelectrolyte channel is based on low-cost and commercially available precursors that can be photocured with blue light, establishing much cheaper and safer system than the state-of-the-art. To trigger OEIP-induced plant response, the phytohormone abscisic acid (ABA) in the petiole of intact Arabidopsis plants is delivered. ABA is one of the main phytohormones involved in plant stress responses and induces stomata closure under drought conditions to reduce water loss and prevent wilting. The OEIP-mediated ABA delivery triggered fast and long-lasting stomata closure far away from the delivery point demonstrating systemic vascular transport of the delivered ABA, verified delivering deuterium-labeled ABA.
  •  
2.
  • Sundell, David, et al. (författare)
  • High-spatial-resolution transcriptome profiling reveals uncharacterized regulatory complexity underlying cambial growth and wood formation in Populus tremula
  • 2016
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Trees represent the largest terrestrial carbon sink and a renewable source of ligno-cellulose. There is significant scope for yield and quality improvement in these largely undomesticated species, however, efforts to engineer new, elite varieties are constrained by the lack of a comprehensive understanding of the transcriptional network underlying cambial growth and wood formation. We generated RNA Sequencing transcriptome data for four mature, wild-growing aspens (Populus tremula) from high-spatial-resolution tangential cryosection series spanning the secondary phloem, vascular cambium, expanding and secondary cell wall forming xylem cells, cell death zone and the previous years annual ring. The transcriptome comprised 28,294 expressed, previously annotated protein-coding genes, 78 novel protein-coding genes and 567 long intergenic non-coding RNAs. Most paralogs originating from the Salicaceae whole genome duplication had diverged expression, with the notable exception of those with high expression during secondary cell wall deposition. We performed co-expression network analysis to identify central transcriptional modules and associated several of these with known biological processes. This revealed previously uncharacterized complexity underlying the regulation of cambial growth and wood formation, with modules forming a continuum of activated processes across the tissues. The high spatial resolution suggested novel roles for known genes involved in xylan and cellulose biosynthesis, regulators of xylem vessel and fiber differentiation and components of lignification. The associated web resource (AspWood, http://aspwood.popgenie.org) integrates the data within a set of interactive tools for exploring the co-expression network of cambial growth and wood formation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy