SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Overbosch A.) "

Sökning: WFRF:(Overbosch A.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brämming, Mats, et al. (författare)
  • BOS vessel vibration measurement for foam level detection
  • 2011
  • Ingår i: ISIJ International. - : Iron and Steel Institute of Japan. - 0915-1559 .- 1347-5460. ; 51:1, s. 71-79
  • Tidskriftsartikel (refereegranskat)abstract
    • In the BOS process liquid slag together with dispersed metal droplets, solid particles and process gases form an expanding foam. Certain process conditions may lead to excessive foam growth, forcing foam out through the vessel mouth, an event commonly known as 'slopping'. Slopping results in loss of valuable metal, equipment damage and lost production time. In the early 1980s a system for foam level and slopping control was installed at SSAB's steel plant in Luleå, a system based on the correlation between BOS vessel vibration in a narrow low frequency band and foam development. The technique, in this case with an accelerometer mounted on the trunnion bearing housing, soon showed its usefulness, for example when adapting existing lance patterns to a change in oxygen lance design from a 3-hole to a 4-hole nozzle. Estimating the actual foam height in the BOS vessel was of great importance in the recently completed RFCS funded research project "IMPHOS" (Improving Phosphorus Refining). Based on the earlier positive experiences, it was decided to further develop the vessel vibration measurement technique. Trials on an industrial size BOS vessel type LD/LBE have been carried out, this time with a tri-axial accelerometer mounted on the vessel trunnion. FFT spectrum analysis has been used in order to find the frequency band with best correlation to the foam level development. The results show that there is a correlation between vessel vibration and foam height that can be used for dynamic foam level and slopping control. © 2011 ISIJ.
  •  
2.
  • Millman, M.S., et al. (författare)
  • Observations on BOS refining
  • 2013
  • Ingår i: Transactions of the Indian Institute of Metals. - : Springer Science and Business Media LLC. - 0972-2815 .- 0975-1645. ; 66, s. 525-534
  • Tidskriftsartikel (refereegranskat)abstract
    • Selected IMPHOS (IMproving PHOSphorus refining) heats ([1], [2]: Millman et al. in Proc. Scanmet 3, 2008; and Millman et al. in Ironmak Steelmak 38:499, 2011), have been used to make observations on decarburizing and dephosphorising performance characteristics during BOS refining. If it is assumed that decarburization takes place solely in the slag/metal emulsion then maximum metal residence time in the emulsion is just under 9 sec and at peak decarburisation time, the maximum amount of metal in the emulsion is ∼ 50 % of the total metal content in the converter. To evaluate the effects of changes in slag component chemistry on phosphorus refining it is necessary to account for changes in slag weight, which can change substantially throughout a heat and be significantly different heat-to-heat. Dephosphorising performance depends on the thermodynamic stability of slag phases that are able to take-up phosphorus and the distribution of phosphorus between these thermodynamically stable phases. The application of proprietary thermodynamic models such as MTDATA and FACTSage has helped to clarify such events. The stability of the foamy slag/metal emulsion changes over the period of the blow. Slag height increases with an increase in FeO (tot) wt% and decreases with a decrease in decarburisation rate and the collapse of the foamy slag. © 2013 Indian Institute of Metals.
  •  
3.
  • Millman, M.S., et al. (författare)
  • Some observations and insights on BOS refining
  • 2013
  • Ingår i: Ironmaking & steelmaking. - 0301-9233 .- 1743-2812. ; 40:6, s. 460-469
  • Tidskriftsartikel (refereegranskat)abstract
    • Selected IMPHOS heats,1,2 have been used to make observations on decarburising and dephosphorising performance, scrap melting and slag foaming characteristics during BOS refining. If it is assumed that decarburisation takes place solely in the slag/metal emulsion then maximum metal residence time in the emulsion is just under 9 seconds and at peak decarburisation time, the maximum amount of metal in the emulsion is ∼50% of the total metal content in the converter. To evaluate the effects of changes in slag component chemistry on phosphorus refining it is necessary to account for changes in slag weight, which can change substantially throughout a heat and be significantly different heat-to-heat. Dephosphorising performance depends on the thermodynamic stability of slag phases that are able to take up phosphorus and the distribution of phosphorus between these thermodynamically stable phases. The application of proprietary thermodynamic models such as MTDATA and FACTSage has helped to clarify such events. Skull build-up on the scrap pile is at a maximum when the bulk bath temperature is ∼1460°C. At this time, the solid scrap and skull component of the bulk bath makes-up just over 60% of all the metal charged to the converter. All scrap and skull is melted out at a bulk bath temperature of ∼1610°C. The stability of the foamy slag/metal emulsion changes over the period of the blow. Slag height increases with an increase in FeO(tot)wt-% and decreases with a decrease in decarburisation rate and the collapse of the foamy slag. © 2013 Institute of Materials, Minerals and Mining.
  •  
4.
  • Millman, M.S., et al. (författare)
  • Study of refining performance in BOS converter
  • 2011
  • Ingår i: Ironmaking & steelmaking. - 0301-9233 .- 1743-2812. ; 38:7, s. 499-509
  • Tidskriftsartikel (refereegranskat)abstract
    • A unique in blow sampling system has been applied to a blowing converter to retrieve simultaneously representative bulk metal bath and slag/metal emulsion samples from seven specified positions and every 2 min from start of blow. Full sample datasets from 20 heats have been grouped according to differences in the bulk bath phosphorus removal profiles and analysed with respect to relative refining ability of the slag/metal emulsion and the bulk metal bath. The complexity of the thermokinetic relationships behind the removal of carbon and the transfer of silicon, phosphorus, manganese and sulphur between the metal and slag is highlighted and the metal circulation rate in the emulsion is derived. © 2011 Institute of Materials, Minerals and Mining.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4
Typ av publikation
tidskriftsartikel (4)
Typ av innehåll
refereegranskat (4)
Författare/redaktör
Kapilashrami, A. (4)
Brämming, Mats (4)
Overbosch, A. (4)
Malmberg, Donald (4)
Millman, M.S. (3)
Björkman, Bo (1)
visa fler...
Millman, S. (1)
visa färre...
Lärosäte
RISE (4)
Luleå tekniska universitet (1)
Språk
Engelska (4)
Forskningsämne (UKÄ/SCB)
Teknik (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy