SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pålsson Sandra) "

Sökning: WFRF:(Pålsson Sandra)

  • Resultat 1-22 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adam, Lucille, et al. (författare)
  • Early Resistance of Non-virulent Mycobacterial Infection in C57BL/6 Mice Is Associated With Rapid Up-Regulation of Antimicrobial Cathelicidin Camp
  • 2018
  • Ingår i: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Early clearance of tuberculosis is the successful eradication of inhaled bacteria before the development of an adaptive immune response. We previously showed, by utilizing a non-virulent mycobacteria infection model, that C57BL/6 mice are more efficient than BALB/c in their control of bacterial growth in the lungs during the first weeks of the infection. Here, we assessed early (within 1-3 days) innate immune events locally in the lungs to identify factors that may contribute to the control of non-virulent mycobacterial burden. We confirmed that C57BL/6 mice are more resistant to infection compared with BALB/c after intranasal inoculation with mycobacterium. Transcriptomic analyses revealed a remarkably silent signature in C57BL/6 mice despite effective control of bacterial growth. In contrast, BALB/c mice up-regulated genes associated with neutrophil and myeloid cell chemotaxis and migration. Flow cytometry analyses corroborated the transcriptomic analyses and demonstrated influx of both neutrophil and myeloid cell populations in BALB/c mice, while these did not increase in C57BL/6 mice. We further detected increased release of TNF-alpha from BALB/c lung cells but limited release from C57BL/6-derived cells. However, C57BL/6 mice showed a marked early up-regulation of the Camp gene, encoding the cathelicidin CRAMP peptide, post-mycobacterial exposure. CRAMP (LL-37 in human) expression in the lungs was confirmed using immunofluorescence staining. Altogether, these findings show that C57BL/6 mice can clear the mycobacterial infection early and that this early control is associated with high CRAMP expression in the lungs without concomitant influx of immune cells. The role of CRAMP/LL-37 during mycobacterial infection may be relevant for novel protective strategies, and warrants further studies of human cohorts.
  •  
2.
  •  
3.
  • Axberg Pålsson, Sandra, 1991-, et al. (författare)
  • Inhibition of Respiratory Syncytial Virus Infection by Small Non-Coding RNA Fragments
  • 2022
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 23:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Respiratory syncytial virus (RSV) causes acute lower respiratory tract infection in infants, immunocompromised individuals and the elderly. As the only current specific treatment options for RSV are monoclonal antibodies, there is a need for efficacious antiviral treatments against RSV to be developed. We have previously shown that a group of synthetic non-coding single-stranded DNA oligonucleotides with lengths of 25-40 nucleotides can inhibit RSV infection in vitro and in vivo. Based on this, herein, we investigate whether naturally occurring single-stranded small non-coding RNA (sncRNA) fragments present in the airways have antiviral effects against RSV infection. From publicly available sequencing data, we selected sncRNA fragments such as YRNAs, tRNAs and rRNAs present in human bronchoalveolar lavage fluid (BALF) from healthy individuals. We utilized a GFP-expressing RSV to show that pre-treatment with the selected sncRNA fragments inhibited RSV infection in A549 cells in vitro. Furthermore, by using a flow cytometry-based binding assay, we demonstrate that these naturally occurring sncRNAs fragments inhibit viral infection most likely by binding to the RSV entry receptor nucleolin and thereby preventing the virus from binding to host cells, either directly or via steric hindrance. This finding highlights a new function of sncRNAs and displays the possibility of using naturally occurring sncRNAs as treatments against RSV.
  •  
4.
  • Axberg Pålsson, Sandra, et al. (författare)
  • Single-Stranded Oligonucleotide-Mediated Inhibition of Respiratory Syncytial Virus Infection
  • 2020
  • Ingår i: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory tract infections in young children. Currently, there is no RSV vaccine or universally accessible antiviral treatment available. Addressing the urgent need for new antiviral agents, we have investigated the capacity of a non-coding single-stranded oligonucleotide (ssON) to inhibit RSV infection. By utilizing a GFP-expressing RSV, we demonstrate that the ssON significantly reduced the proportion of RSV infected A549 cells (lung epithelial cells). Furthermore, we show that ssON's antiviral activity was length dependent and that both RNA and DNA of this class of oligonucleotides have antiviral activity. We reveal that ssON inhibited RSV infection by competing with the virus for binding to the cellular receptor nucleolin in vitro. Additionally, using a recombinant RSV that expresses luciferase we show that ssON effectively blocked RSV infection in mice. Treatment with ssON in vivo resulted in the upregulation of RSV-induced interferon stimulated genes (ISGs) such as Stat1, Stat2, Cxcl10, and Ccl2. This study highlights the possibility of using oligonucleotides as therapeutic agents against RSV infection. We demonstrate that the mechanism of action of ssON is the inhibition of viral entry in vitro, likely through the binding of the receptor, nucleolin and that ssON treatment against RSV infection in vivo additionally results in the upregulation of ISGs.
  •  
5.
  • Axberg Pålsson, Sandra, 1991- (författare)
  • The role of non-coding single-stranded oligonucleotides on Respiratory syncytial virus infection
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Respiratory syncytial virus (RSV) is an enveloped RNA virus of the Pneumoviridae family. RSV is reported to infect host cells by receptor-mediated endocytosis, also called clathrin-dependent endocytosis. Many reports indicate that the virus utilizes the host receptor nucleolin for entry. RSV is one of the leading causes of acute lower respiratory tract infection in children, the elderly and immunocompromised individuals. It is therefore important to find viable treatments against RSV infections. To this date, the development of an RSV vaccine has unfortunately been unsuccessful. Therefore, a lot of research is instead focusing on developing entry or replication inhibitors against RSV.We have previously discovered that a 35 bases long single-stranded oligonucleotide (ssON) can inhibit certain endocytic pathways, such as clathrin- and caveolin-dependent endocytosis. Based on this, the overall aim of the projects in this thesis is to investigate if ssON can work as an entry inhibitor against RSV and to study the overall effect that ssON has on RSV infection in vivo in a murine RSV challenge model. Furthermore, we aim to study the effect that proteins present in the surrounding extracellular environment of the virus have on the viral infectivity and pathogenesis.In Paper I we show that single-stranded oligonucleotides can inhibit RSV infection in vitro and in vivo. We demonstrate that ssON shields nucleolin in vitro. Nucleolin is a receptor involved in RSV entry and by shielding nucleolin present in the cell membrane, ssON prevents RSV from binding to the cells. Furthermore, we show that ssON inhibits RSV infection in vivo. ssON treatment of RSV infection was associated with enhanced expression of RSV-induced Interferon-stimulated genes (ISGs), suggesting that interferon responses likely contributed to reduced RSV infection. As a continuation to Paper I, in Paper II we investigate if small non-coding RNAs (sncRNAs) exhibit the same antiviral capacity as ssON. We demonstrate that sncRNAs, of similar size as ssON, can inhibit RSV infection in vitro and similarly to ssON, they bind to the entry co-receptor nucleolin. In Paper III we study the pathogenesis of RSV. We show that proteins from the extracellular environment of the virus can bind to the virus and affect the viral infectivity as well as the interaction of the virus with host cells. We determine that RSV accumulates a rich and distinctive protein corona in different biological fluids including human plasma (HP), human bronchoalveolar lavage fluid (BALF), non-human primate plasma (MP) and fetal bovine serum (FBS). We show that RSV incubated with BALF has an increased viral infectivity in epithelial HEp-2 and monocyte-derived dendritic cells (moDCs). Moreover, RSV surrounded by a BALF-derived corona induce the activation of moDCs as assessed by increased expression of co-stimulatory molecules.In summary, the projects in this thesis aim to assess the hypothesis that single-stranded oligonucleotides of DNA or RNA origin can be used to inhibit RSV infection. Furthermore, we aim to determine the effects, in terms of viral infectivity and pathogenesis, of the differential protein compositions present in biological fluids surrounding viruses.
  •  
6.
  • Bergenstråhle, Joseph, et al. (författare)
  • Spatial transcriptomic profiling of RespiratorySyncytial Virus (RSV) infection
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Despite the fact that the human Respiratory Syncytial Virus (RSV) was first discoveredback in 1956, it remains one of the leading causes of morbidity and mortality inyoung children. Transcriptome-wide spatially resolved transcriptomics is a technologyunder rapid development that introduces a new modality for exploratory examinationof cellular behavior. With this modality, we examine how RSV infection changes thelocal cellular environment in the lung by infecting mice with RSV and comparing itto control samples four days after infection. We find viral presence in all compartmentsof the tissue, well-defined induced tertiary lymphoid tissue within some of thesamples, compartmentalized infiltration of innate immune cells, as well as functionalenrichment of airway epithelial repair pathways.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  • Dondalska, Aleksandra, 1985-, et al. (författare)
  • Is There a Role for Immunoregulatory and Antiviral Oligonucleotides Acting in the Extracellular Space? A Review and Hypothesis
  • 2022
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 23:23
  • Forskningsöversikt (refereegranskat)abstract
    • Here, we link approved and emerging nucleic acid-based therapies with the expanding universe of small non-coding RNAs (sncRNAs) and the innate immune responses that sense oligonucleotides taken up into endosomes. The Toll-like receptors (TLRs) 3, 7, 8, and 9 are located in endosomes and can detect nucleic acids taken up through endocytic routes. These receptors are key triggers in the defense against viruses and/or bacterial infections, yet they also constitute an Achilles heel towards the discrimination between self- and pathogenic nucleic acids. The compartmentalization of nucleic acids and the activity of nucleases are key components in avoiding autoimmune reactions against nucleic acids, but we still lack knowledge on the plethora of nucleic acids that might be released into the extracellular space upon infections, inflammation, and other stress responses involving increased cell death. We review recent findings that a set of single-stranded oligonucleotides (length of 25–40 nucleotides (nt)) can temporarily block ligands destined for endosomes expressing TLRs in human monocyte-derived dendritic cells. We discuss knowledge gaps and highlight the existence of a pool of RNA with an approximate length of 30–40 nt that may still have unappreciated regulatory functions in physiology and in the defense against viruses as gatekeepers of endosomal uptake through certain routes.
  •  
13.
  •  
14.
  • Ezzat, Kariem, et al. (författare)
  • The viral protein corona directs viral pathogenesis and amyloid aggregation
  • 2019
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Artificial nanoparticles accumulate a protein corona layer in biological fluids, which significantly influences their bioactivity. As nanosized obligate intracellular parasites, viruses share many biophysical properties with artificial nanoparticles in extracellular environments and here we show that respiratory syncytial virus (RSV) and herpes simplex virus type 1 (HSV-1) accumulate a rich and distinctive protein corona in different biological fluids. Moreover, we show that corona pre-coating differentially affects viral infectivity and immune cell activation. In addition, we demonstrate that viruses bind amyloidogenic peptides in their corona and catalyze amyloid formation via surface-assisted heterogeneous nucleation. Importantly, we show that HSV-1 catalyzes the aggregation of the amyloid beta-peptide (A beta(42)), a major constituent of amyloid plaques in Alzheimer's disease, in vitro and in animal models. Our results highlight the viral protein corona as an acquired structural layer that is critical for viral-host interactions and illustrate a mechanistic convergence between viral and amyloid pathologies.
  •  
15.
  • Groß, Rüdiger, et al. (författare)
  • Macromolecular Viral Entry Inhibitors as Broad-Spectrum First-Line Antivirals with Activity against SARS-CoV-2
  • 2022
  • Ingår i: Advanced Science. - : Wiley. - 2198-3844. ; 9:20
  • Tidskriftsartikel (refereegranskat)abstract
    • Inhibitors of viral cell entry based on poly(styrene sulfonate) and its core–shell nanoformulations based on gold nanoparticles are investigated against a panel of viruses, including clinical isolates of SARS-CoV-2. Macromolecular inhibitors are shown to exhibit the highly sought-after broad-spectrum antiviral activity, which covers most analyzed enveloped viruses and all of the variants of concern for SARS-CoV-2 tested. The inhibitory activity is quantified in vitro in appropriate cell culture models and for respiratory viral pathogens (respiratory syncytial virus and SARS-CoV-2) in mice. Results of this study comprise a significant step along the translational path of macromolecular inhibitors of virus cell entry, specifically against enveloped respiratory viruses. 
  •  
16.
  •  
17.
  • Häggström, Sandra, 1977, et al. (författare)
  • Policy controlled environmental management work
  • 2005
  • Ingår i: Proceedings from LCM 2005, 2nd International Conference on Life Cycle Management, Barcelona, September 5-7, 2005.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)
  •  
18.
  • Järver, Peter, et al. (författare)
  • Single-Stranded Nucleic Acids Regulate TLR3/4/7 Activation through Interference with Clathrin-Mediated Endocytosis
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Recognition of nucleic acids by endosomal Toll-like receptors (TLR) is essential to combat pathogens, but requires strict control to limit inflammatory responses. The mechanisms governing this tight regulation are unclear. We found that single-stranded oligonucleotides (ssON) inhibit endocytic pathways used by cargo destined for TLR3/4/7 signaling endosomes. Both ssDNA and ssRNA conferred the endocytic inhibition, it was concentration dependent, and required a certain ssON length. The ssON-mediated inhibition modulated signaling downstream ofTLRs that localized within the affected endosomal pathway. We further show that injection of ssON dampens dsRNA-mediated inflammatory responses in the skin of non-human primates. These studies reveal a regulatory role for extracellular ssON in the endocytic uptake of TLR ligands and provide a mechanistic explanation of their immunomodulation. The identified ssON-mediated interference of endocytosis (SOMIE) is a regulatory process that temporarily dampens TLR3/4/7 signaling, thereby averting excessive immune responses.
  •  
19.
  •  
20.
  • Poux, Candice, et al. (författare)
  • A Single-Stranded Oligonucleotide Inhibits Toll-Like Receptor 3 Activation and Reduces Influenza A (H1N1) Infection
  • 2019
  • Ingår i: Frontiers in Immunology. - : Frontiers Media S.A.. - 1664-3224. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • The initiation of an immune response is dependent on the activation and maturation of dendritic cells after sensing pathogen associated molecular patterns by pattern recognition receptors. However, the response needs to be balanced as excessive pro-inflammatory cytokine production in response to viral or stress-induced pattern recognition receptor signaling has been associated with severe influenza A virus (IAV) infection. Here, we use an inhibitor of Toll-like receptor (TLR)3, a single-stranded oligonucleotide (ssON) with the capacity to inhibit certain endocytic routes, or a TLR3 agonist (synthetic double-stranded RNA PolyI:C), to evaluate modulation of innate responses during H1N1 IAV infection. Since IAV utilizes cellular endocytic machinery for viral entry, we also assessed ssON's capacity to affect IAV infection. We first show that IAV infected human monocyte-derived dendritic cells (MoDC) were unable to up-regulate the co-stimulatory molecules CD80 and CD86 required for T cell activation. Exogenous TLR3 stimulation did not overcome the IAV-mediated inhibition of co-stimulatory molecule expression in MoDC. However, TLR3 stimulation using PolyI:C led to an augmented pro-inflammatory cytokine response. We reveal that ssON effectively inhibited PolyI:C-mediated pro-inflammatory cytokine production in MoDC, notably, ssON treatment maintained an interferon response induced by IAV infection. Accordingly, RNAseq analyses revealed robust up-regulation of interferon-stimulated genes in IAV cultures treated with ssON. We next measured reduced IAV production in MoDC treated with ssON and found a length requirement for its anti-viral activity, which overlapped with its capacity to inhibit uptake of PolyI:C. Hence, in cases wherein an overreacting TLR3 activation contributes to IAV pathogenesis, ssON can reduce this signaling pathway. Furthermore, concomitant treatment with ssON and IAV infection in mice resulted in maintained weight and reduced viral load in the lungs. Therefore, extracellular ssON provides a mechanism for immune regulation of TLR3-mediated responses and suppression of IAV infection in vitro and in vivo in mice.
  •  
21.
  •  
22.
  • Weil, Tatjana, et al. (författare)
  • Advanced Molecular Tweezers with Lipid Anchors against SARS-CoV-2 and Other Respiratory Viruses
  • 2022
  • Ingår i: JACS Au. - : American Chemical Society (ACS). - 2691-3704. ; 2:9, s. 2187-2202
  • Tidskriftsartikel (refereegranskat)abstract
    • The COVID-19 pandemic caused by SARS-CoV-2 presents a global health emergency. Therapeutic options against SARS-CoV-2 are still very limited but urgently required. Molecular tweezers are supramolecular agents that destabilize the envelope of viruses resulting in a loss of viral infectivity. Here, we show that first-generation tweezers, CLR01 and CLR05, disrupt the SARS-CoV-2 envelope and abrogate viral infectivity. To increase the antiviral activity, a series of 34 advanced molecular tweezers were synthesized by insertion of aliphatic or aromatic ester groups on the phosphate moieties of the parent molecule CLR01. A structure-activity relationship study enabled the identification of tweezers with a markedly enhanced ability to destroy lipid bilayers and to suppress SARS-CoV-2 infection. Selected tweezer derivatives retain activity in airway mucus and inactivate the SARS-CoV-2 wildtype and variants of concern as well as respiratory syncytial, influenza, and measles viruses. Moreover, inhibitory activity of advanced tweezers against respiratory syncytial virus and SARS-CoV-2 was confirmed in mice. Thus, potentiated tweezers are broad-spectrum antiviral agents with great prospects for clinical development to combat highly pathogenic viruses.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-22 av 22
Typ av publikation
tidskriftsartikel (9)
rapport (4)
annan publikation (3)
konferensbidrag (3)
doktorsavhandling (1)
forskningsöversikt (1)
visa fler...
bokkapitel (1)
visa färre...
Typ av innehåll
övrigt vetenskapligt/konstnärligt (11)
refereegranskat (10)
populärvet., debatt m.m. (1)
Författare/redaktör
Spetz, Anna-Lena (8)
Pålsson, Sandra (6)
Axberg Pålsson, Sand ... (6)
Dondalska, Aleksandr ... (5)
Lundeberg, Joakim (4)
Spetz, Anna-Lena, 19 ... (4)
visa fler...
Poux, Candice (3)
Galloux, Marie (3)
Adam, Lucille (2)
Björk, Albin (2)
Wahren-Herlenius, Ma ... (2)
Lehtio, Janne (2)
El-Andaloussi, Samir (2)
Bergenstråhle, Josep ... (2)
Kutter, Claudia (2)
Friedländer, Marc R. (2)
Bergenstråhle, Jose ... (2)
Sekar, Vaishnovi (2)
Sedano, Laura (2)
Power, Ultan F. (2)
Rameix-Welti, Marie- ... (2)
Eleouet, Jean-Franco ... (2)
Le Goffic, Ronan (2)
Albert, Jan (1)
Fernandez, Carmen (1)
Sander, Birgitta (1)
Höglund, Urban (1)
López-González, Mois ... (1)
Martinon, Frédéric (1)
Pålsson, Henrik (1)
Pernemalm, Maria (1)
Nilsson, Gunnar (1)
Nilsson, Caroline (1)
Lindén, Anders (1)
Woxenius, Johan (1)
Masich, Sergej (1)
Lagerström, Malin C. (1)
Larsson, Olivia (1)
Axberg Pålsson, Sand ... (1)
Rolfes, Caroline (1)
Mastrangelo, Peter (1)
Spetz, Anna-Lena, Pr ... (1)
Karlsson, Annika, As ... (1)
Brodin, David (1)
Franzén, Lovisa (1)
Schrader, Thomas (1)
Dondalska, Alexandra (1)
Sountoulidis, Alexan ... (1)
Samakovlis, Christos (1)
Macharis, Cathy (1)
visa färre...
Lärosäte
Stockholms universitet (12)
Chalmers tekniska högskola (7)
Karolinska Institutet (6)
Kungliga Tekniska Högskolan (4)
Uppsala universitet (1)
Lunds universitet (1)
Språk
Engelska (21)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (9)
Naturvetenskap (8)
Teknik (8)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy