SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pironon Samuel) "

Sökning: WFRF:(Pironon Samuel)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Antonelli, Alexandre, 1978, et al. (författare)
  • Madagascar's extraordinary biodiversity : Evolution, distribution, and use
  • 2022
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 378:6623, s. 962-
  • Tidskriftsartikel (refereegranskat)abstract
    • Madagascar's biota is hyperdiverse and includes exceptional levels of endemicity. We review the current state of knowledge on Madagascar's past and current terrestrial and freshwater biodiversity by compiling and presenting comprehensive data on species diversity, endemism, and rates of species description and human uses, in addition to presenting an updated and simplified map of vegetation types. We report a substantial increase of records and species new to science in recent years; however, the diversity and evolution of many groups remain practically unknown (e.g., fungi and most invertebrates). Digitization efforts are increasing the resolution of species richness patterns and we highlight the crucial role of field- and collections-based research for advancing biodiversity knowledge and identifying gaps in our understanding, particularly as species richness corresponds closely to collection effort. Phylogenetic diversity patterns mirror that of species richness and endemism in most of the analyzed groups. We highlight humid forests as centers of diversity and endemism because of their role as refugia and centers of recent and rapid radiations. However, the distinct endemism of other areas, such as the grassland-woodland mosaic of the Central Highlands and the spiny forest of the southwest, is also biologically important despite lower species richness. The documented uses of Malagasy biodiversity are manifold, with much potential for the uncovering of new useful traits for food, medicine, and climate mitigation. The data presented here showcase Madagascar as a unique " living laboratory" for our understanding of evolution and the complex interactions between people and nature. The gathering and analysis of biodiversity data must continue and accelerate if we are to fully understand and safeguard this unique subset of Earth's biodiversity.
  •  
2.
  • Pironon, Samuel, et al. (författare)
  • Do geographic, climatic or historical ranges differentiate the performance of central versus peripheral populations?
  • 2015
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 24:6, s. 611-620
  • Tidskriftsartikel (refereegranskat)abstract
    • AimThe centre-periphery hypothesis' (CPH) predicts that species performance (genetics, physiology, morphology, demography) will decline gradually from the centre towards the periphery of the geographic range. This hypothesis has been subjected to continuous debate since the 1980s, essentially because empirical studies have shown contrasting patterns. Moreover, it has been proposed that species performance might not be higher at the geographic range centre but rather at the environmental optimum or at sites presenting greater environmental stability in time. In this paper we re-evaluate the CPH by disentangling the effects of geographic, climatic and historical centrality/marginality on the demography of three widely distributed plant species and the genetic diversity of one of them. LocationEurope and North America. MethodsBased on a species distribution modelling approach, we test whether demographic parameters (vital rates, stochastic population growth rates, density) of three plant species of contrasting life-forms, and the genetic diversity of one of them, are higher at their geographic range centres, climatic optima or projected glacial refugia. ResultsWhile geographic, climatic and historical centre-periphery gradients are often not concordant, overall, none of them explain well the distribution of species demographic performance, whereas genetic diversity responds positively only to a historical centrality, related to post-glacial range dynamics. Main conclusionsTo our knowledge, this is the first assessment of the response of species performance to three centrality gradients, considering all the components of different species life cycles and genetic diversity information across continental distributions. Our results are inconsistent with the idea that geographically, climatically or historically marginal populations generally perform worse than central ones. We particularly emphasize the importance of adopting an interdisciplinary approach in order to understand the relative effects of contemporary versus historical and geographic versus ecological factors on the distribution of species performance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy