SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pronk Jack T.) "

Sökning: WFRF:(Pronk Jack T.)

  • Resultat 1-15 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fazio, Allessandro, et al. (författare)
  • Transcription factor control of growth rate dependent genes in Saccharomyces cerevisiae: A three factor design
  • 2008
  • Ingår i: BMC Genomics. ; 9:341
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Characterization of cellular growth is central to understanding living systems. Here, we applied a three-factor design to study the relationship between specific growth rate and genome-wide gene expression in 36 steady-state chemostate cultures of Saccharomyces cerevisiae. The three factors we considered were specific growth rate, nutrient limitation, and oxygen availability.Results: We identified 268 growth rate dependent genes, independent of nutrient limitation and oxygen availability. The transcriptional response was used to identify key areas in metabolism around which mRNA expression changes are significantly associated. Among key metabolic pathways, this analysis revealed de novo synthesis of pyrimidine ribonucleotides and ATP producing and consuming reactions at fast cellular growth. By scoring the significance of overlap between growth rate dependent genes and known transcription factor target sets, transcription factors that coordinate balanced growth were also identified. Our analysis shows that Fhl I, Rap I, and Sfp I, regulating protein biosynthesis, have significantly enriched target sets for genes up-regulated with increasing growth rate. Cell cycle regulators, such as Ace2 and Swi6, and stress response regulators, such as Yap I, were also shown to have significantly enriched target sets.Conclusion: Our work, which is the first genome-wide gene expression study to investigate specific growth rate and consider the impact of oxygen availability, provides a more conservative estimate of growth rate dependent genes than previously reported. We also provide a global view of how a small set of transcription factors, 13 in total, contribute to control of cellular growth rate. We anticipate that multi-factorial designs will play an increasing role in elucidating cellular regulation.
  •  
2.
  • Valk, Laura C., et al. (författare)
  • Galacturonate Metabolism in Anaerobic Chemostat Enrichment Cultures : Combined Fermentation and Acetogenesis by the Dominant sp nov "Candidatus Galacturonibacter soehngenii"
  • 2018
  • Ingår i: Applied and Environmental Microbiology. - : American Society for Microbiology. - 0099-2240 .- 1098-5336. ; 84:18
  • Tidskriftsartikel (refereegranskat)abstract
    • Agricultural residues such as sugar beet pulp and citrus peel are rich in pectin, which contains galacturonic acid as a main monomer. Pectin-rich residues are underexploited as feedstocks for production of bulk chemicals or biofuels. The anaerobic, fermentative conversion of D-galacturonate in anaerobic chemostat enrichment cultures provides valuable information toward valorization of these pectin-rich feedstocks. Replicate anaerobic chemostat enrichments, with D-galacturonate as the sole limiting carbon source and inoculum from cow rumen content and rotting orange peels, yielded stable microbial communities, which were dominated by a novel Lachnospiraceae species, for which the name "Candidatus Galacturonibacter soehngenii" was proposed. Acetate was the dominant catabolic product, with formate and H-2 as coproducts. The observed molar ratio of acetate and the combined amounts of H-2 and formate deviated significantly from 1, which suggested that some of the hydrogen and CO2 formed during D-galacturonate fermentation was converted into acetate via the Wood-Ljungdahl acetogenesis pathway. Indeed, metagenomic analysis of the enrichment cultures indicated that the genome of "Candidatus G. soehngenii" encoded enzymes of the adapted Entner-Doudoroff pathway for D-galacturonate metabolism as well as enzymes of the Wood-Ljungdahl pathway. The simultaneous operation of these pathways may provide a selective advantage under D-galacturonate-limited conditions by enabling a higher specific ATP production rate and lower residual D-galacturonate concentration than would be possible with a strictly fermentative metabolism of this carbon and energy source. IMPORTANCE This study on D-galacturonate metabolism by open, mixed-culture enrichments under anaerobic, D-galacturonate-limited chemostat conditions shows a stable and efficient fermentation of D-galacturonate into acetate as the dominant organic fermentation product. This fermentation stoichiometry and population analyses provide a valuable baseline for interpretation of the conversion of pectin-rich agricultural feedstocks by mixed microbial cultures. Moreover, the results of this study provide a reference for studies on the microbial metabolism of D-galacturonate under different cultivation regimes.
  •  
3.
  • Bracher, Jasmine M., et al. (författare)
  • Reassessment of requirements for anaerobic xylose fermentation by engineered, non-evolved Saccharomyces cerevisiae strains
  • 2019
  • Ingår i: FEMS yeast research (Print). - : Oxford University Press. - 1567-1356 .- 1567-1364. ; 19:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Expression of a heterologous xylose isomerase, deletion of the GRE3 aldose-reductase gene and overexpression of genes encoding xylulokinase (XKS1) and non-oxidative pentose-phosphate-pathway enzymes (RKI1, RPE1, TAL1, TKL1) enables aerobic growth of Saccharomyces cerevisiae on d-xylose. However, literature reports differ on whether anaerobic growth on d-xylose requires additional mutations. Here, CRISPR-Cas9-assisted reconstruction and physiological analysis confirmed an early report that this basic set of genetic modifications suffices to enable anaerobic growth on d-xylose in the CEN.PK genetic background. Strains that additionally carried overexpression cassettes for the transaldolase and transketolase paralogs NQM1 and TKL2 only exhibited anaerobic growth on d-xylose after a 7-10 day lag phase. This extended lag phase was eliminated by increasing inoculum concentrations from 0.02 to 0.2 g biomass L-1. Alternatively, a long lag phase could be prevented by sparging low-inoculum-density bioreactor cultures with a CO2/N-2-mixture, thus mimicking initial CO2 concentrations in high-inoculum-density, nitrogen-sparged cultures, or by using l-aspartate instead of ammonium as nitrogen source. This study resolves apparent contradictions in the literature on the genetic interventions required for anaerobic growth of CEN.PK-derived strains on d-xylose. Additionally, it indicates the potential relevance of CO2 availability and anaplerotic carboxylation reactions for anaerobic growth of engineered S. cerevisiae strains on d-xylose.
  •  
4.
  • Hakkaart, Xavier DV, et al. (författare)
  • A Simulator-Assisted Workshop for Teaching Chemostat Cultivation in Academic Classes on Microbial Physiology
  • 2017
  • Ingår i: Journal of Microbiology & Biology Education. - : American Society for Microbiology (ASM). - 1935-7877 .- 1935-7885. ; 18:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding microbial growth and metabolism is a key learning objective of microbiology and biotechnology courses, essential for understanding microbial ecology, microbial biotechnology and medical microbiology. Chemostat cultivation, a key research tool in microbial physiology that enables quantitative analysis of growth and metabolism under tightly defined conditions, provides a powerful platform to teach key features of microbial growth and metabolism. Substrate-limited chemostat cultivation can be mathematically described by four equations. These encompass mass balances for biomass and substrate, an empirical relation that describes distribution of consumed substrate over growth and maintenance energy requirements (Pirt equation), and a Monod-type equation that describes the relation between substrate concentration and substrate-consumption rate. The authors felt that the abstract nature of these mathematical equations and a lack of visualization contributed to a suboptimal operative understanding of quantitative microbial physiology among students who followed their Microbial Physiology B.Sc. courses. The studio-classroom workshop presented here was developed to improve student understanding of quantitative physiology by a set of question-guided simulations. Simulations are run on Chemostatus, a specially developed MATLAB-based program, which visualizes key parameters of simulated chemostat cultures as they proceed from dynamic growth conditions to steady state. In practice, the workshop stimulated active discussion between students and with their teachers. Moreover, its introduction coincided with increased average exam scores for questions on quantitative microbial physiology. The workshop can be easily implemented in formal microbial physiology courses or used by individuals seeking to test and improve their understanding of quantitative microbial physiology and/or chemostat cultivation.
  •  
5.
  • Jansen, Mickel LA, et al. (författare)
  • Saccharomyces cerevisiae strains for second-generation ethanol production : from academic exploration to industrial implementation
  • 2017
  • Ingår i: FEMS Yeast Research. - : Oxford University Press. - 1567-1364. ; 17:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The recent start-up of several full-scale 'second generation' ethanol plants marks a major milestone in the development of Saccharomyces cerevisiae strains for fermentation of lignocellulosic hydrolysates of agricultural residues and energy crops. After a discussion of the challenges that these novel industrial contexts impose on yeast strains, this minireview describes key metabolic engineering strategies that have been developed to address these challenges. Additionally, it outlines how proof-of-concept studies, often developed in academic settings, can be used for the development of robust strain platforms that meet the requirements for industrial application. Fermentation performance of current engineered industrial S. cerevisiae strains is no longer a bottleneck in efforts to achieve the projected outputs of the first large-scale second-generation ethanol plants. Academic and industrial yeast research will continue to strengthen the economic value position of second-generation ethanol production by further improving fermentation kinetics, product yield and cellular robustness under process conditions.
  •  
6.
  • Mans, Robert, et al. (författare)
  • A CRISPR/Cas9-based exploration into the elusive mechanism for lactate export in Saccharomyces cerevisiae
  • 2017
  • Ingår i: FEMS yeast research (Print). - : Oxford University Press. - 1567-1356 .- 1567-1364. ; 17:8
  • Tidskriftsartikel (refereegranskat)abstract
    • CRISPR/Cas9-based genome editing allows rapid, simultaneous modification of multiple genetic loci in Saccharomyces cerevisiae. Here, this technique was used in a functional analysis study aimed at identifying the hitherto unknown mechanism of lactate export in this yeast. First, an S. cerevisiae strain was constructed with deletions in 25 genes encoding transport proteins, including the complete aqua(glycero)porin family and all known carboxylic-acid transporters. The 25-deletion strain was then transformed with an expression cassette for Lactobacillus casei lactate dehydrogenase (LcLDH). In anaerobic, glucose-grown batch cultures, this strain exhibited a lower specific growth rate (0.15 vs. 0.25 h-1) and biomass-specific lactate production rate (0.7 vs. 2.4 mmol (g biomass)-1 h-1) than an LcLDH-expressing reference strain. However, a comparison of the two strains in anaerobic glucose-limited chemostat cultures (dilution rate 0.10 h-1) showed identical lactate production rates. These results indicate that, although deletion of the 25 transporter genes affected the maximum specific growth rate, it did not impact lactate export rates when analysed at a fixed specific growth rate. The 25-deletion strain provides a first step towards a 'minimal transportome' yeast platform, which can be applied for functional analysis of specific (heterologous) transport proteins as well as for evaluation of metabolic engineering strategies.
  •  
7.
  • Marques, Wesley Leoricy, et al. (författare)
  • Elimination of sucrose transport and hydrolysis in Saccharomyces cerevisiae : a platform strain for engineering sucrose metabolism
  • 2017
  • Ingår i: FEMS yeast research (Print). - : Oxford University Press. - 1567-1356 .- 1567-1364. ; 17:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Many relevant options to improve efficacy and kinetics of sucrose metabolism in Saccharomyces cerevisiae and, thereby, the economics of sucrose-based processes remain to be investigated. An essential first step is to identify all native sucrose-hydrolysing enzymes and sucrose transporters in this yeast, including those that can be activated by suppressor mutations in sucrose-negative strains. A strain in which all known sucrose-transporter genes (MAL11, MAL21, MAL31, MPH2, MPH3) were deleted did not grow on sucrose after 2 months of incubation. In contrast, a strain with deletions in genes encoding sucrose-hydrolysing enzymes (SUC2, MAL12, MAL22, MAL32) still grew on sucrose. Its specific growth rate increased from 0.08 to 0.25 h(-1) after sequential batch cultivation. This increase was accompanied by a 3-fold increase of in vitro sucrose-hydrolysis and isomaltase activities, as well as by a 3- to 5-fold upregulation of the isomaltase-encoding genes IMA1 and IMA5. One-step Cas9-mediated deletion of all isomaltase-encoding genes (IMA1-5) completely abolished sucrose hydrolysis. Even after 2 months of incubation, the resulting strain did not grow on sucrose. This sucrose-negative strain can be used as a platform to test metabolic engineering strategies and for fundamental studies into sucrose hydrolysis or transport.
  •  
8.
  • Marques, Wesley Leoricy, et al. (författare)
  • Laboratory evolution and physiological analysis of Saccharomyces cerevisiae strains dependent on sucrose uptake via the Phaseolus vulgaris Suf1 transporter
  • 2018
  • Ingår i: Yeast. - : Wiley. - 0749-503X .- 1097-0061. ; 35:12, s. 639-652
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge on the genetic factors important for the efficient expression of plant transporters in yeast is still very limited. Phaseolus vulgaris sucrose facilitator 1 (PvSuf1), a presumable uniporter, was an essential component in a previously published strategy aimed at increasing ATP yield in Saccharomyces cerevisiae. However, attempts to construct yeast strains in which sucrose metabolism was dependent on PvSUF1 led to slow sucrose uptake. Here, PvSUF1-dependent S. cerevisiae strains were evolved for faster growth. Of five independently evolved strains, two showed an approximately twofold higher anaerobic growth rate on sucrose than the parental strain (mu = 0.19 h(-1) and mu = 0.08 h(-1), respectively). All five mutants displayed sucrose-induced proton uptake (13-50 mu mol H+ (g biomass)(-1) min(-1)). Their ATP yield from sucrose dissimilation, as estimated from biomass yields in anaerobic chemostat cultures, was the same as that of a congenic strain expressing the native sucrose symporter Mal11p. Four out of six observed amino acid substitutions encoded by evolved PvSUF1 alleles removed or introduced a cysteine residue and may be involved in transporter folding and/or oligomerization. Expression of one of the evolved PvSUF1 alleles (PvSUF1(I209F C265F G326C)) in an unevolved strain enabled it to grow on sucrose at the same rate (0.19 h(-1)) as the corresponding evolved strain. This study shows how laboratory evolution may improve sucrose uptake in yeast via heterologous plant transporters, highlights the importance of cysteine residues for their efficient expression, and warrants reinvestigation of PvSuf1's transport mechanism.
  •  
9.
  • Papapetridis, Ioannis, et al. (författare)
  • Laboratory evolution for forced glucose-xylose co-consumption enables identification of mutations that improve mixed-sugar fermentation by xylose-fermenting Saccharomyces cerevisiae
  • 2018
  • Ingår i: FEMS yeast research (Print). - : Oxford University Press. - 1567-1356 .- 1567-1364. ; 18:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Simultaneous fermentation of glucose and xylose can contribute to improved productivity and robustness of yeast-based processes for bioethanol production from lignocellulosic hydrolysates. This study explores a novel laboratory evolution strategy for identifying mutations that contribute to simultaneous utilisation of these sugars in batch cultures of Saccharomyces cerevisiae. To force simultaneous utilisation of xylose and glucose, the genes encoding glucose-6-phosphate isomerase (PGI1) and ribulose-5-phosphate epimerase (RPE1) were deleted in a xylose-isomerase-based xylose-fermenting strain with a modified oxidative pentose-phosphate pathway. Laboratory evolution of this strain in serial batch cultures on glucose-xylose mixtures yielded mutants that rapidly co-consumed the two sugars. Whole-genome sequencing of evolved strains identified mutations in HXK2, RSP5 and GAL83, whose introduction into a non-evolved xylose-fermenting S. cerevisiae strain improved co-consumption of xylose and glucose under aerobic and anaerobic conditions. Combined deletion of HXK2 and introduction of a GAL83(G673T) allele yielded a strain with a 2.5-fold higher xylose and glucose co-consumption ratio than its xylose-fermenting parental strain. These two modifications decreased the time required for full sugar conversion in anaerobic bioreactor batch cultures, grown on 20 g L-1 glucose and 10 g L-1 xylose, by over 24 h. This study demonstrates that laboratory evolution and genome resequencing of microbial strains engineered for forced co-consumption is a powerful approach for studying and improving simultaneous conversion of mixed substrates.
  •  
10.
  • Papapetridis, Ioannis, et al. (författare)
  • Metabolic engineering strategies for optimizing acetate reduction, ethanol yield and osmotolerance in Saccharomyces cerevisiae
  • 2017
  • Ingår i: Biotechnology for Biofuels. - : BioMed Central. - 1754-6834. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Glycerol, whose formation contributes to cellular redox balancing and osmoregulation in Saccharomyces cerevisiae, is an important by-product of yeast-based bioethanol production. Replacing the glycerol pathway by an engineered pathway for NAD(+)-dependent acetate reduction has been shown to improve ethanol yields and contribute to detoxification of acetate-containing media. However, the osmosensitivity of glycerol non-producing strains limits their applicability in high-osmolarity industrial processes. This study explores engineering strategies for minimizing glycerol production by acetate-reducing strains, while retaining osmotolerance. Results: GPD2 encodes one of two S. cerevisiae isoenzymes of NAD(+)-dependent glycerol-3-phosphate dehydrogenase (G3PDH). Its deletion in an acetate-reducing strain yielded a fourfold lower glycerol production in anaerobic, low-osmolarity cultures but hardly affected glycerol production at high osmolarity. Replacement of both native G3PDHs by an archaeal NADP(+)-preferring enzyme, combined with deletion of ALD6, yielded an acetate-reducing strain the phenotype of which resembled that of a glycerol-negative gpd1 Delta gpd2 Delta strain in low-osmolarity cultures. This strain grew anaerobically at high osmolarity (1 mol L-1 glucose), while consuming acetate and producing virtually no extracellular glycerol. Its ethanol yield in high-osmolarity cultures was 13% higher than that of an acetate-reducing strain expressing the native glycerol pathway. Conclusions: Deletion of GPD2 provides an attractive strategy for improving product yields of acetate-reducing S. cerevisiae strains in low, but not in high-osmolarity media. Replacement of the native yeast G3PDHs by a heterologous NADP(+)-preferring enzyme, combined with deletion of ALD6, virtually eliminated glycerol production in high-osmolarity cultures while enabling efficient reduction of acetate to ethanol. After further optimization of growth kinetics, this strategy for uncoupling the roles of glycerol formation in redox homeostasis and osmotolerance can be applicable for improving performance of industrial strains in high-gravity acetate-containing processes.
  •  
11.
  • Papapetridis, Ioannis, et al. (författare)
  • Optimizing anaerobic growth rate and fermentation kinetics in Saccharomyces cerevisiae strains expressing Calvin-cycle enzymes for improved ethanol yield
  • 2018
  • Ingår i: Biotechnology for Biofuels. - : BioMed Central. - 1754-6834. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Reduction or elimination of by-product formation is of immediate economic relevance in fermentation processes for industrial bioethanol production with the yeast Saccharomyces cerevisiae. Anaerobic cultures of wildtype S. cerevisiae require formation of glycerol to maintain the intracellular NADH/NAD(+) balance. Previously, functional expression of the Calvin-cycle enzymes ribulose-1,5-bisphosphate carboxylase (RuBisCO) and phosphoribulokinase (PRK) in S. cerevisiae was shown to enable reoxidation of NADH with CO2 as electron acceptor. In slow-growing cultures, this engineering strategy strongly decreased the glycerol yield, while increasing the ethanol yield on sugar. The present study explores engineering strategies to improve rates of growth and alcoholic fermentation in yeast strains that functionally express RuBisCO and PRK, while maximizing the positive impact on the ethanol yield. Results: Multi-copy integration of a bacterial-RuBisCO expression cassette was combined with expression of the Escherichia coli GroEL/GroES chaperones and expression of PRK from the anaerobically inducible DAN1 promoter. In anaerobic, glucose-grown bioreactor batch cultures, the resulting S. cerevisiae strain showed a 31% lower glycerol yield and a 31% lower specific growth rate than a non-engineered reference strain. Growth of the engineered strain in anaerobic, glucose-limited chemostat cultures revealed a negative correlation between its specific growth rate and the contribution of the Calvin-cycle enzymes to redox homeostasis. Additional deletion of GPD2, which encodes an isoenzyme of NAD(+)-dependent glycerol-3-phosphate dehydrogenase, combined with overexpression of the structural genes for enzymes of the non-oxidative pentose-phosphate pathway, yielded a CO2-reducing strain that grew at the same rate as a non-engineered reference strain in anaerobic bioreactor batch cultures, while exhibiting a 86% lower glycerol yield and a 15% higher ethanol yield. Conclusions: The metabolic engineering strategy presented here enables an almost complete elimination of glycerol production in anaerobic, glucose-grown batch cultures of S. cerevisiae, with an associated increase in ethanol yield, while retaining near wild-type growth rates and a capacity for glycerol formation under osmotic stress. Using current genome-editing techniques, the required genetic modifications can be introduced in one or a few transformations. Evaluation of this concept in industrial strains and conditions is therefore a realistic next step towards its implementation for improving the efficiency of first-and second-generation bioethanol production.
  •  
12.
  •  
13.
  • Verhoeven, Maarten D, et al. (författare)
  • Fermentation of glucose-xylose-arabinose mixtures by a synthetic consortium of single-sugar-fermenting Saccharomyces cerevisiae strains
  • 2018
  • Ingår i: FEMS yeast research (Print). - : Oxford University Press. - 1567-1356 .- 1567-1364. ; 18:8
  • Tidskriftsartikel (refereegranskat)abstract
    • D-glucose, D-xylose and L-arabinose are major sugars in lignocellulosic hydrolysates. This study explores fermentation of glucose-xylose-arabinose mixtures by a consortium of three 'specialist' Saccharomyces cerevisiae strains. A D-glucose- and L-arabinose-tolerant xylose specialist was constructed by eliminating hexose phosphorylation in an engineered xylose-fermenting strain and subsequent laboratory evolution. A resulting strain anaerobically grew and fermented D-xylose in the presence of 20 g L-1 of D-glucose and L-arabinose. A synthetic consortium that additionally comprised a similarly obtained arabinose specialist and a pentose non-fermenting laboratory strain, rapidly and simultaneously converted D-glucose and L-arabinose in anaerobic batch cultures on three-sugar mixtures. However, performance of the xylose specialist was strongly impaired in these mixed cultures. After prolonged cultivation of the consortium on three-sugar mixtures, the time required for complete sugar conversion approached that of a previously constructed and evolved 'generalist' strain. In contrast to the generalist strain, whose fermentation kinetics deteriorated during prolonged repeated-batch cultivation on a mixture of 20 g L-1 D-glucose, 10 g L-1 D-xylose and 5 g L-1 L-arabinose, the evolved consortium showed stable fermentation kinetics. Understanding the interactions between specialist strains is a key challenge in further exploring the applicability of this synthetic consortium approach for industrial fermentation of lignocellulosic hydrolysates.
  •  
14.
  • Verhoeven, Maarten D., et al. (författare)
  • Laboratory evolution of a glucose-phosphorylation-deficient, arabinose-fermenting S. cerevisiae strain reveals mutations in GAL2 that enable glucose-insensitive L-arabinose uptake
  • 2018
  • Ingår i: FEMS yeast research (Print). - : Oxford University Press. - 1567-1356 .- 1567-1364. ; 18:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Cas9-assisted genome editing was used to construct an engineered glucose-phosphorylation-negative S. cerevisiae strain, expressing the Lactobacillus plantarum L-arabinose pathway and the Penicillium chrysogenum transporter PcAraT. This strain, which showed a growth rate of 0.26 h(-1) on L-arabinose in aerobic batch cultures, was subsequently evolved for anaerobic growth on L-arabinose in the presence of D-glucose and D-xylose. In four strains isolated from two independent evolution experiments the galactose-transporter gene GAL2 had been duplicated, with all alleles encoding Gal2(N376T) or Gal(2N376I) substitutions. In one strain, a single GAL2 allele additionally encoded a Gal2(T89I) substitution, which was subsequently also detected in the independently evolved strain IMS0010. In C-14-sugar-transport assays, Gal2(N376S), Gal2(N376T) and Gal(2N376I) substitutions showed a much lower glucose sensitivity of L-arabinose transport and a much higher Km for D-glucose transport than wild-type Gal2. Introduction of the Gal2(N376I) substitution in a non-evolved strain enabled growth on L-arabinose in the presence of D-glucose. Gal2(N376T), T89I and Gal2(T89I) variants showed a lower K-m for L-arabinose and a higher K-m for D-glucose than wild-type Gal2, while reverting Gal2(N376T), T89I to Gal2(N376) in an evolved strain negatively affected anaerobic growth on L-arabinose. This study indicates that optimal conversion of mixed-sugar feedstocks may require complex 'transporter landscapes', consisting of sugar transporters with complementary kinetic and regulatory properties.
  •  
15.
  • Verhoeven, Maarten D., et al. (författare)
  • Mutations in PMR1 stimulate xylose isomerase activity and anaerobic growth on xylose of engineered Saccharomyces cerevisiae by influencing manganese homeostasis
  • 2017
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Combined overexpression of xylulokinase, pentose-phosphate-pathway enzymes and a heterologous xylose isomerase (XI) is required but insufficient for anaerobic growth of Saccharomyces cerevisiae on d-xylose. Single-step Cas9-assisted implementation of these modifications yielded a yeast strain expressing Piromyces XI that showed fast aerobic growth on d-xylose. However, anaerobic growth required a 12-day adaptation period. Xylose-adapted cultures carried mutations in PMR1, encoding a Golgi Ca2+/Mn2+ ATPase. Deleting PMR1 in the parental XI-expressing strain enabled instantaneous anaerobic growth on d-xylose. In pmr1 strains, intracellular Mn2+ concentrations were much higher than in the parental strain. XI activity assays in cell extracts and reconstitution experiments with purified XI apoenzyme showed superior enzyme kinetics with Mn2+ relative to other divalent metal ions. This study indicates engineering of metal homeostasis as a relevant approach for optimization of metabolic pathways involving metal-dependent enzymes. Specifically, it identifies metal interactions of heterologous XIs as an underexplored aspect of engineering xylose metabolism in yeast.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-15 av 15
Typ av publikation
tidskriftsartikel (15)
Typ av innehåll
refereegranskat (15)
Författare/redaktör
Pronk, Jack T. (15)
Verhoeven, Maarten D ... (6)
van Maris, Antonius ... (4)
Papapetridis, Ioanni ... (4)
Daran, Jean-Marc G. (4)
Mans, Robert (3)
visa fler...
Bracher, Jasmine M. (3)
van Maris, Antonius (3)
van Maris, Antonius ... (3)
van Maris, Antonius ... (3)
van den Broek, Marce ... (3)
Nielsen, Jens B, 196 ... (2)
Marques, Wesley Leor ... (2)
Gombert, Andreas K. (2)
Goudriaan, Maaike (2)
Uhlén, Mathias (1)
Jewett, Michael C. (1)
van Loosdrecht, Mark ... (1)
de Bruijn, Hans (1)
Workman, Christopher ... (1)
Martinez-Rodriguez, ... (1)
Dekker, Wijb JC (1)
Lee, Sang Yup (1)
Daran, Jean-Marc (1)
Fazio, Allessandro (1)
Daran-Lapujade, Pasc ... (1)
Mustacchi, Roberta (1)
Usaite, Renata (1)
Driessen, Arnold J.M ... (1)
Hakkaart, Xavier DV (1)
Jansen, Mickel LA (1)
de Waal, Paul P (1)
Klaassen, Paul (1)
Hassing, Else-Jasmij ... (1)
Wijsman, Melanie (1)
Giezekamp, Annabel (1)
Marella, Eko Roy (1)
Cordeiro, Rosa Loriz ... (1)
van der Woude, Lara ... (1)
Luttik, Marijke AH (1)
Nijenhuis, Janine Ma ... (1)
Wiersma, Sanne J. (1)
van Dijk, Marlous, 1 ... (1)
Vitali, María Vázque ... (1)
Keijzer, Nikita A (1)
Broek, Marcel (1)
Lievense, Jeff (1)
Pierce, John (1)
Palsson, Bernhard (1)
Valk, Laura C. (1)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (14)
Chalmers tekniska högskola (3)
Språk
Engelska (15)
Forskningsämne (UKÄ/SCB)
Teknik (10)
Naturvetenskap (6)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy