SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pronk R) "

Sökning: WFRF:(Pronk R)

  • Resultat 1-27 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2021
  • swepub:Mat__t
  •  
2.
  • Bravo, L, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
3.
  • Tabiri, S, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
4.
  • 2021
  • swepub:Mat__t
  •  
5.
  • Glasbey, JC, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Dalton, A. S., et al. (författare)
  • An updated radiocarbon-based ice margin chronology for the last deglaciation of the North American Ice Sheet Complex
  • 2020
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791. ; 234
  • Tidskriftsartikel (refereegranskat)abstract
    • The North American Ice Sheet Complex (NAISC; consisting of the Laurentide, Cordilleran and Innuitian ice sheets) was the largest ice mass to repeatedly grow and decay in the Northern Hemisphere during the Quaternary. Understanding its pattern of retreat following the Last Glacial Maximum is critical for studying many facets of the Late Quaternary, including ice sheet behaviour, the evolution of Holocene landscapes, sea level, atmospheric circulation, and the peopling of the Americas. Currently, the most up-to-date and authoritative margin chronology for the entire ice sheet complex is featured in two publications (Geological Survey of Canada Open File 1574 [Dyke et al., 2003]; 'Quaternary Glaciations - Extent and Chronology, Part II' [Dyke, 2004]). These often-cited datasets track ice margin recession in 36 time slices spanning 18 ka to 1 ka (all ages in uncalibrated radiocarbon years) using a combination of geomorphology, stratigraphy and radiocarbon dating. However, by virtue of being over 15 years old, the ice margin chronology requires updating to reflect new work and important revisions. This paper updates the aforementioned 36 ice margin maps to reflect new data from regional studies. We also update the original radiocarbon dataset from the 2003/2004 papers with 1541 new ages to reflect work up to and including 2018. A major revision is made to the 18 ka ice margin, where Banks and Eglinton islands (once considered to be glacial refugia) are now shown to be fully glaciated. Our updated 18 ka ice sheet increased in areal extent from 17.81 to 18.37 million km(2), which is an increase of 3.1% in spatial coverage of the NAISC at that time. Elsewhere, we also summarize, region-by-region, significant changes to the deglaciation sequence. This paper integrates new information provided by regional experts and radiocarbon data into the deglaciation sequence while maintaining consistency with the original ice margin positions of Dyke et al. (2003) and Dyke (2004) where new information is lacking; this is a pragmatic solution to satisfy the needs of a Quaternary research community that requires up-to-date knowledge of the pattern of ice margin recession of what was once the world's largest ice mass. The 36 updated isochrones are available in PDF and shapefile format, together with a spreadsheet of the expanded radiocarbon dataset (n = 5195 ages) and estimates of uncertainty for each interval. (C) 2020 Elsevier Ltd. All rights reserved.
  •  
10.
  • Marques, W. L., et al. (författare)
  • Combined engineering of disaccharide transport and phosphorolysis for enhanced ATP yield from sucrose fermentation in Saccharomyces cerevisiae
  • 2018
  • Ingår i: Metabolic engineering. - : Academic Press Inc.. - 1096-7176 .- 1096-7184. ; 45, s. 121-133
  • Tidskriftsartikel (refereegranskat)abstract
    • Anaerobic industrial fermentation processes do not require aeration and intensive mixing and the accompanying cost savings are beneficial for production of chemicals and fuels. However, the free-energy conservation of fermentative pathways is often insufficient for the production and export of the desired compounds and/or for cellular growth and maintenance. To increase free-energy conservation during fermentation of the industrially relevant disaccharide sucrose by Saccharomyces cerevisiae, we first replaced the native yeast α-glucosidases by an intracellular sucrose phosphorylase from Leuconostoc mesenteroides (LmSPase). Subsequently, we replaced the native proton-coupled sucrose uptake system by a putative sucrose facilitator from Phaseolus vulgaris (PvSUF1). The resulting strains grew anaerobically on sucrose at specific growth rates of 0.09 ± 0.02 h−1 (LmSPase) and 0.06 ± 0.01 h−1 (PvSUF1, LmSPase). Overexpression of the yeast PGM2 gene, which encodes phosphoglucomutase, increased anaerobic growth rates on sucrose of these strains to 0.23 ± 0.01 h−1 and 0.08 ± 0.00 h−1, respectively. Determination of the biomass yield in anaerobic sucrose-limited chemostat cultures was used to assess the free-energy conservation of the engineered strains. Replacement of intracellular hydrolase with a phosphorylase increased the biomass yield on sucrose by 31%. Additional replacement of the native proton-coupled sucrose uptake system by PvSUF1 increased the anaerobic biomass yield by a further 8%, resulting in an overall increase of 41%. By experimentally demonstrating an energetic benefit of the combined engineering of disaccharide uptake and cleavage, this study represents a first step towards anaerobic production of compounds whose metabolic pathways currently do not conserve sufficient free-energy.
  •  
11.
  •  
12.
  •  
13.
  • Shahsavani, M, et al. (författare)
  • An in vitro model of lissencephaly : expanding the role of DCX during neurogenesis
  • 2018
  • Ingår i: Molecular Psychiatry. - : Nature Publishing Group. - 1359-4184 .- 1476-5578. ; 23:7, s. 1674-1684
  • Tidskriftsartikel (refereegranskat)abstract
    • Lissencephaly comprises a spectrum of brain malformations due to impaired neuronal migration in the developing cerebral cortex. Classical lissencephaly is characterized by smooth cerebral surface and cortical thickening that result in seizures, severe neurological impairment and developmental delay. Mutations in the X-chromosomal gene DCX, encoding doublecortin, is the main cause of classical lissencephaly. Much of our knowledge about DCX-associated lissencephaly comes from post-mortem analyses of patient's brains, mainly since animal models with DCX mutations do not mimic the disease. In the absence of relevant animal models and patient brain specimens, we took advantage of induced pluripotent stem cell (iPSC) technology to model the disease. We established human iPSCs from two males with mutated DCX and classical lissencephaly including smooth brain and abnormal cortical morphology. The disease was recapitulated by differentiation of iPSC into neural cells followed by expression profiling and dissection of DCX-associated functions. Here we show that neural stem cells, with absent or reduced DCX protein expression, exhibit impaired migration, delayed differentiation and deficient neurite formation. Hence, the patient-derived iPSCs and neural stem cells provide a system to further unravel the functions of DCX in normal development and disease.Molecular Psychiatry advance online publication, 19 September 2017; doi:10.1038/mp.2017.175.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  • Juergens, H., et al. (författare)
  • Evaluation of a novel cloud-based software platform for structured experiment design and linked data analytics
  • 2018
  • Ingår i: Scientific Data. - : Nature Publishing Groups. - 2052-4463. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Open data in science requires precise definition of experimental procedures used in data generation, but traditional practices for sharing protocols and data cannot provide the required data contextualization. Here, we explore implementation, in an academic research setting, of a novel cloud-based software system designed to address this challenge. The software supports systematic definition of experimental procedures as visual processes, acquisition and analysis of primary data, and linking of data and procedures in machine-computable form. The software was tested on a set of quantitative microbial-physiology experiments. Though time-intensive, definition of experimental procedures in the software enabled much more precise, unambiguous definitions of experiments than conventional protocols. Once defined, processes were easily reusable and composable into more complex experimental flows. Automatic coupling of process definitions to experimental data enables immediate identification of correlations between procedural details, intended and unintended experimental perturbations, and experimental outcomes. Software-based experiment descriptions could ultimately replace terse and ambiguous ‘Materials and Methods’ sections in scientific journals, thus promoting reproducibility and reusability of published studies.
  •  
18.
  • Nijkamp, J. F., et al. (författare)
  • De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology
  • 2012
  • Ingår i: Microbial Cell Factories. - : Springer Science and Business Media LLC. - 1475-2859. ; 11, s. Article Number: 36-
  • Tidskriftsartikel (refereegranskat)abstract
    • Saccharomyces cerevisiae CEN.PK 113-7D is widely used for metabolic engineering and systems biology research in industry and academia. We sequenced, assembled, annotated and analyzed its genome. Single-nucleotide variations (SNV), insertions/deletions (indels) and differences in genome organization compared to the reference strain S. cerevisiae S288C were analyzed. In addition to a few large deletions and duplications, nearly 3000 indels were identified in the CEN.PK113-7D genome relative to S288C. These differences were overrepresented in genes whose functions are related to transcriptional regulation and chromatin remodelling. Some of these variations were caused by unstable tandem repeats, suggesting an innate evolvability of the corresponding genes. Besides a previously characterized mutation in adenylate cyclase, the CEN. PK113-7D genome sequence revealed a significant enrichment of non-synonymous mutations in genes encoding for components of the cAMP signalling pathway. Some phenotypic characteristics of the CEN. PK113-7D strains were explained by the presence of additional specific metabolic genes relative to S288C. In particular, the presence of the BIO1 and BIO6 genes correlated with a biotin prototrophy of CEN. PK113-7D. Furthermore, the copy number, chromosomal location and sequences of the MAL loci were resolved. The assembled sequence reveals that CEN. PK113-7D has a mosaic genome that combines characteristics of laboratory strains and wild-industrial strains.
  •  
19.
  • Ostonen, I., et al. (författare)
  • Specific root length as an indicator of environmental change
  • 2007
  • Ingår i: Plant Biosystems. - : Informa UK Limited. - 1126-3504 .- 1724-5575. ; 141:3, s. 426-442
  • Tidskriftsartikel (refereegranskat)abstract
    • Specific root length (SRL, m g(-1)) is probably the most frequently measured morphological parameter of fine roots. It is believed to characterize economic aspects of the root system and to be indicative of environmental changes. The main objectives of this paper were to review and summarize the published SRL data for different tree species throughout Europe and to assess SRL under varying environmental conditions. Meta-analysis was used to summarize the response of SRL to the following manipulated environmental conditions: fertilization, irrigation, elevated temperature, elevated CO(2), Al-stress, reduced light, heavy metal stress and physical disturbance of soil. SRL was found to be strongly dependent on the fine root classes, i.e. on the ectomycorrhizal short roots (ECM), and on the roots < 0.5 mm, < 1 mm, < 2 mm and 1-2 mm in diameter SRL was largest for ECM and decreased with increasing diameter. Changes in soil factors influenced most strongly the SRL of ECM and roots < 0.5 mm. The variation in the SRL components, root diameter and root tissue density, and their impact on the SRL value were computed. Meta-analyses showed that SRL decreased significantly under fertilization and Al-stress; it responded negatively to reduced light, elevated temperature and CO(2). We suggest that SRL can be used successfully as an indicator of nutrient availability to trees in experimental conditions.
  •  
20.
  •  
21.
  • Pettke, A, et al. (författare)
  • Broadly Active Antiviral Compounds Disturb Zika Virus Progeny Release Rescuing Virus-Induced Toxicity in Brain Organoids
  • 2021
  • Ingår i: Viruses. - : MDPI AG. - 1999-4915. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • RNA viruses have gained plenty of attention during recent outbreaks of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Zika virus (ZIKV), and Ebola virus. ZIKV is a vector borne Flavivirus that is spread by mosquitoes and it mainly infects neuronal progenitor cells. One hallmark of congenital ZIKV disease is a reduced brain size in fetuses, leading to severe neurological defects. The World Health Organization (WHO) is urging the development of new antiviral treatments against ZIKV, as there are no efficient countermeasures against ZIKV disease. Previously, we presented a new class of host-targeting antivirals active against a number of pathogenic RNA viruses, such as SARS-CoV-2. Here, we show the transfer of the image-based phenotypic antiviral assay to ZIKV-infected brain cells, followed by mechanism-of-action studies and a proof-of-concept study in a three-dimensional (3D) organoid model. The novel antiviral compounds showed a therapeutic window against ZIKV in several cell models and rescued ZIKV-induced neurotoxicity in brain organoids. The compound’s mechanism-of-action was pinpointed to late steps in the virus life cycle, impairing the formation of new virus particles. Collectively, in this study, we expand the antiviral activity of new small molecule inhibitors to a new virus class of Flaviviruses, but also uncover compounds’ mechanism of action, which are important for the further development of antivirals.
  •  
22.
  • Pouya, Iman, et al. (författare)
  • Copernicus, a hybrid dataflow and peer-to-peer scientific computing platform for efficient large-scale ensemble sampling
  • 2017
  • Ingår i: Future generations computer systems. - : Elsevier. - 0167-739X .- 1872-7115. ; 71, s. 18-31
  • Tidskriftsartikel (refereegranskat)abstract
    • Compute-intensive applications have gradually changed focus from massively parallel supercomputers to capacity as a resource obtained on-demand. This is particularly true for the large-scale adoption of cloud computing and MapReduce in industry, while it has been difficult for traditional high-performance computing (HPC) usage in scientific and engineering computing to exploit this type of resources. However, with the strong trend of increasing parallelism rather than faster processors, a growing number of applications target parallelism already on the algorithm level with loosely coupled approaches based on sampling and ensembles. While these cannot trivially be formulated as MapReduce, they are highly amenable to throughput computing. There are many general and powerful frameworks, but in particular for sampling-based algorithms in scientific computing there are some clear advantages from having a platform and scheduler that are highly aware of the underlying physical problem. Here, we present how these challenges are addressed with combinations of dataflow programming, peer-to-peer techniques and peer-to-peer networks in the Copernicus platform. This allows automation of sampling-focused workflows, task generation, dependency tracking, and not least distributing these to a diverse set of compute resources ranging from supercomputers to clouds and distributed computing (across firewalls and fragile networks). Workflows are defined from modules using existing programs, which makes them reusable without programming requirements. The system achieves resiliency by handling node failures transparently with minimal loss of computing time due to checkpointing, and a single server can manage hundreds of thousands of cores e.g. for computational chemistry applications.
  •  
23.
  • Pronk, Sander, et al. (författare)
  • GROMACS 4.5 : a high-throughput and highly parallel open source molecular simulation toolkit
  • 2013
  • Ingår i: Bioinformatics. - : Oxford University Press (OUP). - 1367-4803 .- 1367-4811. ; 29:7, s. 845-854
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivation: Molecular simulation has historically been a low-throughput technique, but faster computers and increasing amounts of genomic and structural data are changing this by enabling large-scale automated simulation of, for instance, many conformers or mutants of biomolecules with or without a range of ligands. At the same time, advances in performance and scaling now make it possible to model complex biomolecular interaction and function in a manner directly testable by experiment. These applications share a need for fast and efficient software that can be deployed on massive scale in clusters, web servers, distributed computing or cloud resources. Results: Here, we present a range of new simulation algorithms and features developed during the past 4 years, leading up to the GROMACS 4.5 software package. The software now automatically handles wide classes of biomolecules, such as proteins, nucleic acids and lipids, and comes with all commonly used force fields for these molecules built-in. GROMACS supports several implicit solvent models, as well as new free-energy algorithms, and the software now uses multithreading for efficient parallelization even on low-end systems, including windows-based workstations. Together with hand-tuned assembly kernels and state-of-the-art parallelization, this provides extremely high performance and cost efficiency for high-throughput as well as massively parallel simulations.
  •  
24.
  •  
25.
  •  
26.
  •  
27.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-27 av 27

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy