SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ribas S.) "

Sökning: WFRF:(Ribas S.)

  • Resultat 1-50 av 157
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lind, Lars, et al. (författare)
  • Heterogeneous contributions of change in population distribution of body mass index to change in obesity and underweight NCD Risk Factor Collaboration (NCD-RisC)
  • 2021
  • Ingår i: eLife. - : eLife Sciences Publications Ltd. - 2050-084X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • From 1985 to 2016, the prevalence of underweight decreased, and that of obesity and severe obesity increased, in most regions, with significant variation in the magnitude of these changes across regions. We investigated how much change in mean body mass index (BMI) explains changes in the prevalence of underweight, obesity, and severe obesity in different regions using data from 2896 population-based studies with 187 million participants. Changes in the prevalence of underweight and total obesity, and to a lesser extent severe obesity, are largely driven by shifts in the distribution of BMI, with smaller contributions from changes in the shape of the distribution. In East and Southeast Asia and sub-Saharan Africa, the underweight tail of the BMI distribution was left behind as the distribution shifted. There is a need for policies that address all forms of malnutrition by making healthy foods accessible and affordable, while restricting unhealthy foods through fiscal and regulatory restrictions.
  •  
2.
  • Schael, S, et al. (författare)
  • Precision electroweak measurements on the Z resonance
  • 2006
  • Ingår i: Physics Reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 427:5-6, s. 257-454
  • Forskningsöversikt (refereegranskat)abstract
    • We report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP. The data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLID experiment using a polarised beam at SLC. The measurements include cross-sections, forward-backward asymmetries and polarised asymmetries. The mass and width of the Z boson, m(Z) and Gamma(Z), and its couplings to fermions, for example the p parameter and the effective electroweak mixing angle for leptons, are precisely measured: m(Z) = 91.1875 +/- 0.0021 GeV, Gamma(Z) = 2.4952 +/- 0.0023 GeV, rho(l) = 1.0050 +/- 0.0010, sin(2)theta(eff)(lept) = 0.23153 +/- 0.00016. The number of light neutrino species is determined to be 2.9840 +/- 0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model (SM). At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. Of the many Z-pole measurements, the forward-backward asymmetry in b-quark production shows the largest difference with respect to its SM expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, m(t) = 173(+10)(+13) GeV, and the mass of the W boson, m(W) = 80.363 +/- 0.032 GeV. These indirect constraints are compared to the direct measurements, providing a stringent test of the SM. Using in addition the direct measurements of m(t) and m(W), the mass of the as yet unobserved SM Higgs boson is predicted with a relative uncertainty of about 50% and found to be less than 285 GeV at 95% confidence level. (c) 2006 Elsevier B.V. All rights reserved.
  •  
3.
  • Bixby, H., et al. (författare)
  • Rising rural body-mass index is the main driver of the global obesity epidemic in adults
  • 2019
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 569:7755, s. 260-4
  • Tidskriftsartikel (refereegranskat)abstract
    • Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities(.)(1,2) This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity(3-6). Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55% of the global rise in mean BMI from 1985 to 2017-and more than 80% in some low- and middle-income regions-was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing-and in some countries reversal-of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories.
  •  
4.
  •  
5.
  • Mishra, A, et al. (författare)
  • Diminishing benefits of urban living for children and adolescents' growth and development
  • 2023
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 615:7954, s. 874-883
  • Tidskriftsartikel (refereegranskat)abstract
    • Optimal growth and development in childhood and adolescence is crucial for lifelong health and well-being1–6. Here we used data from 2,325 population-based studies, with measurements of height and weight from 71 million participants, to report the height and body-mass index (BMI) of children and adolescents aged 5–19 years on the basis of rural and urban place of residence in 200 countries and territories from 1990 to 2020. In 1990, children and adolescents residing in cities were taller than their rural counterparts in all but a few high-income countries. By 2020, the urban height advantage became smaller in most countries, and in many high-income western countries it reversed into a small urban-based disadvantage. The exception was for boys in most countries in sub-Saharan Africa and in some countries in Oceania, south Asia and the region of central Asia, Middle East and north Africa. In these countries, successive cohorts of boys from rural places either did not gain height or possibly became shorter, and hence fell further behind their urban peers. The difference between the age-standardized mean BMI of children in urban and rural areas was <1.1 kg m–2 in the vast majority of countries. Within this small range, BMI increased slightly more in cities than in rural areas, except in south Asia, sub-Saharan Africa and some countries in central and eastern Europe. Our results show that in much of the world, the growth and developmental advantages of living in cities have diminished in the twenty-first century, whereas in much of sub-Saharan Africa they have amplified.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  • de Rojas, I., et al. (författare)
  • Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic discoveries of Alzheimer’s disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer’s disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer’s disease patients in APOE ɛ4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer’s disease. © 2021, The Author(s).
  •  
12.
  •  
13.
  • Bousquet, J, et al. (författare)
  • Nrf2-interacting nutrients and COVID-19: time for research to develop adaptation strategies
  • 2020
  • Ingår i: Clinical and translational allergy. - : Wiley. - 2045-7022. ; 10:1, s. 58-
  • Tidskriftsartikel (refereegranskat)abstract
    • There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPARγ:Peroxisome proliferator-activated receptor, NFκB: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2α:Elongation initiation factor 2α). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT1R axis (AT1R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity.
  •  
14.
  • Abreu, P., et al. (författare)
  • Measurement of the gluon fragmentation function and a comparison of the scaling violation in gluon and quark jets
  • 2000
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 13:4, s. 573-589
  • Tidskriftsartikel (refereegranskat)abstract
    • The fragmentation functions of quarks and gluons are measured in various three-jet topologies in Z decays from the full data set collected with the DELPHI detector at the Z resonance between 1992 and 995. The results at different values of transverse momentum-like scales are compared. A parameterization of the quark and gluon fragmentation functions at a fixed reference scale is given. The quark and gluon fragmentation functions show the predicted pattern of scaling violations. The scaling violation for quark jets as a function of a transverse momentum-like scale is in a good agreement with that observed in lower energy e+e- annihilation experiments. For gluon jets it appears to be significantly stronger. The scale dependences of the gluon and quark fragmentation functions agree with the prediction of the DGLAP evolution equations from which the colour factor ratio CA/CF is measured to be: CA/CF = 2.26 ± 0.09stat. ± 0.06sys. ± 0.12clus.,scale..
  •  
15.
  • Abreu, P., et al. (författare)
  • Study of dimuon production in photon-photon collisions and measurement of QED photon structure functions at LEP
  • 2001
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 19:1, s. 15-28
  • Tidskriftsartikel (refereegranskat)abstract
    • Muon pair production in the process e+e- → e+e- μ+μ- is studied using the data taken at LEP1 (√s ≃ mz) with the DELPHI detector during the years 1992-1995. The corresponding integrated luminosity is 138.5 pb-1. The QED predictions have been tested over the whole Q2 range accessible at LEP1 (from several GeV2/c4 to several hundred GeV2/c4) by comparing experimental distributions with distributions resulting from Monte Carlo simulations using various generators. Selected events are used to extract the leptonic photon structure function Fγ 2. Azimuthal correlations are used to obtain information on additional structure functions, Fγ A and Fγ B, which originate from interference terms of the scattering amplitudes. The measured ratios Fγ A/Fγ 2 and FγB/Fγ 2 are significantly different from zero and consistent with QED predictions.
  •  
16.
  • Abreu, P., et al. (författare)
  • Search for sleptons in e+e- collisions at √s = 183 to 189 GeV
  • 2001
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 19:1, s. 29-42
  • Tidskriftsartikel (refereegranskat)abstract
    • Data taken by the DELPHI experiment at centre-of-mass energies of 183 GeV and 189 GeV with a total integrated luminosity of 212 pb-1 have been used to search for the supersymmetric partners of the electrons, muons, and taus in the context of the Minimal Supersymmetric Standard Model (MSSM). The decay topologies searched for were the direct decay (ℓ̃ → ℓx̃), producing acoplanar lepton pairs plus missing energy, and the cascade decay (ℓ → ℓx̃0 2 → ℓγx̃0 1), producing acoplanar lepton and photon pairs plus missing energy. The observed number of events is in agreement with Standard Model predictions. The 95% CL excluded mass limits for selectrons, smuons and staus are mẽ ≤ 87 GeV/c2, mμ̃ ≤ 80 GeV/c2 and mτ̃ 75 GeV/c2, respectively, for values of μ=-200 GeV/c2 and tanβ=1.5.
  •  
17.
  •  
18.
  • Bellenguez, C, et al. (författare)
  • New insights into the genetic etiology of Alzheimer's disease and related dementias
  • 2022
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 54:4, s. 412-436
  • Tidskriftsartikel (refereegranskat)abstract
    • Characterization of the genetic landscape of Alzheimer’s disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/‘proxy’ AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele.
  •  
19.
  •  
20.
  • Tinetti, Giovanna, et al. (författare)
  • The EChO science case
  • 2015
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 40:2-3, s. 329-391
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune-all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10(-4) relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength coverage of at least 0.55 to 11 mu m with a goal of covering from 0.4 to 16 mu m. Only modest spectral resolving power is needed, with R similar to 300 for wavelengths less than 5 mu m and R similar to 30 for wavelengths greater than this. The transit spectroscopy technique means that no spatial resolution is required. A telescope collecting area of about 1 m(2) is sufficiently large to achieve the necessary spectro-photometric precision: for the Phase A study a 1.13 m(2) telescope, diffraction limited at 3 mu m has been adopted. Placing the satellite at L2 provides a cold and stable thermal environment as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. EChO has been conceived to achieve a single goal: exoplanet spectroscopy. The spectral coverage and signal-to-noise to be achieved by EChO, thanks to its high stability and dedicated design, would be a game changer by allowing atmospheric composition to be measured with unparalleled exactness: at least a factor 10 more precise and a factor 10 to 1000 more accurate than current observations. This would enable the detection of molecular abundances three orders of magnitude lower than currently possible and a fourfold increase from the handful of molecules detected to date. Combining these data with estimates of planetary bulk compositions from accurate measurements of their radii and masses would allow degeneracies associated with planetary interior modelling to be broken, giving unique insight into the interior structure and elemental abundances of these alien worlds. EChO would allow scientists to study exoplanets both as a population and as individuals. The mission can target super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300-3000 K) of F to M-type host stars. The EChO core science would be delivered by a three-tier survey. The EChO Chemical Census: This is a broad survey of a few-hundred exoplanets, which allows us to explore the spectroscopic and chemical diversity of the exoplanet population as a whole. The EChO Origin: This is a deep survey of a subsample of tens of exoplanets for which significantly higher signal to noise and spectral resolution spectra can be obtained to explain the origin of the exoplanet diversity (such as formation mechanisms, chemical processes, atmospheric escape). The EChO Rosetta Stones: This is an ultra-high accuracy survey targeting a subsample of select exoplanets. These will be the bright "benchmark" cases for which a large number of measurements would be taken to explore temporal variations, and to obtain two and three dimensional spatial information on the atmospheric conditions through eclipse-mapping techniques. If EChO were launched today, the exoplanets currently observed are sufficient to provide a large and diverse sample. The Chemical Census survey would consist of > 160 exoplanets with a range of planetary sizes, temperatures, orbital parameters and stellar host properties. Additionally, over the next 10 years, several new ground- and space-based transit photometric surveys and missions will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO's launch and enable the atmospheric characterisation of hundreds of planets.
  •  
21.
  • Morales, J. C., et al. (författare)
  • A giant exoplanet orbiting a very-low-mass star challenges planet formation models
  • 2019
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 365:6460, s. 1441-1445
  • Tidskriftsartikel (refereegranskat)abstract
    • Surveys have shown that super-Earth and Neptune-mass exoplanets are more frequent than gas giants around low-mass stars, as predicted by the core accretion theory of planet formation. We report the discovery of a giant planet around the very-low-mass star GJ 3512, as determined by optical and near-infrared radial-velocity observations. The planet has a minimum mass of 0.46 Jupiter masses, very high for such a small host star, and an eccentric 204-day orbit. Dynamical models show that the high eccentricity is most likely due to planet-planet interactions. We use simulations to demonstrate that the GJ 3512 planetary system challenges generally accepted formation theories, and that it puts constraints on the planet accretion and migration rates. Disk instabilities may be more efficient in forming planets than previously thought.
  •  
22.
  • Leleu, A., et al. (författare)
  • Six transiting planets and a chain of Laplace resonances in TOI-178
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 649
  • Tidskriftsartikel (refereegranskat)abstract
    • Determining the architecture of multi-planetary systems is one of the cornerstones of understanding planet formation and evolution. Resonant systems are especially important as the fragility of their orbital configuration ensures that no significant scattering or collisional event has taken place since the earliest formation phase when the parent protoplanetary disc was still present. In this context, TOI-178 has been the subject of particular attention since the first TESS observations hinted at the possible presence of a near 2:3:3 resonant chain. Here we report the results of observations from CHEOPS, ESPRESSO, NGTS, and SPECULOOS with the aim of deciphering the peculiar orbital architecture of the system. We show that TOI-178 harbours at least six planets in the super-Earth to mini-Neptune regimes, with radii ranging from 1.152 to 2.87 Earth radii and periods of 1.91, 3.24, 6.56, 9.96, 15.23, and 20.71 days. All planets but the innermost one form a 2:4:6:9:12 chain of Laplace resonances, and the planetary densities show important variations from planet to planet, jumping from 1.02 to 0.177 times the Earth's density between planets c and d. Using Bayesian interior structure retrieval models, we show that the amount of gas in the planets does not vary in a monotonous way, contrary to what one would expect from simple formation and evolution models and unlike other known systems in a chain of Laplace resonances. The brightness of TOI-178 (H = 8.76 mag, J = 9.37 mag, V = 11.95 mag) allows for a precise characterisation of its orbital architecture as well as of the physical nature of the six presently known transiting planets it harbours. The peculiar orbital configuration and the diversity in average density among the planets in the system will enable the study of interior planetary structures and atmospheric evolution, providing important clues on the formation of super-Earths and mini-Neptunes. -0.070 -0.13 -0.23 -0.061 +0.073 +0.14 +0.28 +0.055
  •  
23.
  • Luque, R., et al. (författare)
  • A resonant sextuplet of sub-Neptunes transiting the bright star HD 110067
  • 2023
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 623:7989, s. 932-937
  • Tidskriftsartikel (refereegranskat)abstract
    • Planets with radii between that of the Earth and Neptune (hereafter referred to as ‘sub-Neptunes’) are found in close-in orbits around more than half of all Sun-like stars 1,2. However, their composition, formation and evolution remain poorly understood 3. The study of multiplanetary systems offers an opportunity to investigate the outcomes of planet formation and evolution while controlling for initial conditions and environment. Those in resonance (with their orbital periods related by a ratio of small integers) are particularly valuable because they imply a system architecture practically unchanged since its birth. Here we present the observations of six transiting planets around the bright nearby star HD 110067. We find that the planets follow a chain of resonant orbits. A dynamical study of the innermost planet triplet allowed the prediction and later confirmation of the orbits of the rest of the planets in the system. The six planets are found to be sub-Neptunes with radii ranging from 1.94R ⊕ to 2.85R ⊕. Three of the planets have measured masses, yielding low bulk densities that suggest the presence of large hydrogen-dominated atmospheres.
  •  
24.
  • Mallorquin, M., et al. (författare)
  • TOI-1801 b: A temperate mini-Neptune around a young M0.5 dwarf
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 680
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery, mass, and radius determination of TOI-1801 b, a temperate mini-Neptune around a young M dwarf. TOI-1801 b was observed in TESS sectors 22 and 49, and the alert that this was a TESS planet candidate with a period of 21.3 days went out in April 2020. However, ground-based follow-up observations, including seeing-limited photometry in and outside transit together with precise radial velocity (RV) measurements with CARMENES and HIRES revealed that the true period of the planet is 10.6 days. These observations also allowed us to retrieve a mass of 5.74 +/- 1.46 M-circle plus, which together with a radius of 2.08 +/- 0.12 R-circle plus, means that TOI-1801 b is most probably composed of water and rock, with an upper limit of 2% by mass of H-2 in its atmosphere. The stellar rotation period of 16 days is readily detectable in our RV time series and in the ground-based photometry. We derived a likely age of 600-800 Myr for the parent star TOI-1801, which means that TOI-1801 b is the least massive young mini-Neptune with precise mass and radius determinations. Our results suggest that if TOI-1801 b had a larger atmosphere in the past, it must have been removed by some evolutionary mechanism on timescales shorter than 1 Gyr.
  •  
25.
  •  
26.
  • Serrano, L. M., et al. (författare)
  • The HD 93963 A transiting system: A 1.04d super-Earth and a 3.65 d sub-Neptune discovered by TESS and CHEOPS
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 667
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the discovery of two small planets transiting HD 93963A (TOI-1797), a GOV star (M-* = 1.109 +/- 0.043M(circle dot), R-* = 1.043 +/- 0.009 R-circle dot) in a visual binary system. We combined TESS and CHEOPS space-borne photometry with MuSCAT 2 ground-based photometry, 'Alopeke and PHARO high-resolution imaging, TRES and FIES reconnaissance spectroscopy, and SOPHIE radial velocity measurements. We validated and spectroscopically confirmed the outer transiting planet HD 93963 A c, a sub-Neptune with an orbital period of P-c approximate to 3.65 d that was reported to be a TESS object of interest (TOI) shortly after the release of Sector 22 data. HD 93963 A c has amass of M-c = 19.2 +/- 4.1 M-circle plus and a radius of R-c = 3.228 +/- 0.059 R-circle plus, implying a mean density of rho(c) = 3.1 +/- 0.7 g cm(-3). The inner object, HD 93963 A b, is a validated 1.04 d ultra-short period (USP) transiting super-Earth that we discovered in the TESS light curve and that was not listed as a TOI, owing to the low significance of its signal (TESS signal-to-noise ratio approximate to 6.7, TESS + CHEOPS combined transit depth D-b = 141.5(-8.3)(+8.5) ppm). We intensively monitored the star with CHEOPS by performing nine transit observations to confirm the presence of the inner planet and validate the system. HD 93963 A b is the first small (R-b = 1.35 +/- 0.042 R-circle plus) USP planet discovered and validated by TESS and CHEOPS. Unlike planet c, HD 93963 Ab is not significantly detected in our radial velocities (M-b = 7.8 +/- 3.2 M-circle plus). The two planets are on either side of the radius valley, implying that they could have undergone completely different evolution processes. We also discovered a linear trend in our Doppler measurements, suggesting the possible presence of a long-period outer planet. With a V-band magnitude of 9.2, HD 93963 A is among the brightest stars known to host a USP planet, making it one of the most favourable targets for precise mass measurement via Doppler spectroscopy and an important laboratory to test formation, evolution, and migration models of planetary systems hosting ultra-short period planets.
  •  
27.
  • Bluhm, P., et al. (författare)
  • Precise mass and radius of a transiting super-Earth planet orbiting the M dwarf TOI-1235: a planet in the radius gap?
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 639
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the confirmation of a transiting planet around the bright weakly active M0.5 V star TOI-1235 (TYC 4384-1735-1, V ≈ 11.5 mag), whose transit signal was detected in the photometric time series of sectors 14, 20, and 21 of the TESS space mission. We confirm the planetary nature of the transit signal, which has a period of 3.44 d, by using precise RV measurements with the CARMENES, HARPS-N, and iSHELL spectrographs, supplemented by high-resolution imaging and ground-based photometry. A comparison of the properties derived for TOI-1235 b with theoretical models reveals that the planet has a rocky composition, with a bulk density slightly higher than that of Earth. In particular, we measure a mass of Mp = 5.9 ± 0.6 M⊕ and a radius of Rp = 1.69 ± 0.08 R⊕, which together result in a density of ρp = 6.7- 1.1+ 1.3 g cm-3. When compared with other well-characterized exoplanetary systems, the particular combination of planetary radius and mass places our discovery in the radius gap, which is a transition region between rocky planets and planets with significant atmospheric envelopes. A few examples of planets occupying the radius gap are known to date. While the exact location of the radius gap for M dwarfs is still a matter of debate, our results constrain it to be located at around 1.7 R⊕ or larger at the insolation levels received by TOI-1235 b (~60 S⊕). This makes it an extremely interesting object for further studies of planet formation and atmospheric evolution.
  •  
28.
  • Cabrera, J., et al. (författare)
  • The planetary system around HD 190622 (TOI-1054): Measuring the gas content of low-mass planets orbiting F-stars
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 675
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Giant planets are known to dominate the long-term stability of planetary systems due to their prevailing gravitational interactions, but they are also thought to play an important role in planet formation. Observational constraints improve our understanding of planetary formation processes such as the delivery of volatile-rich planetesimals from beyond the ice line into the inner planetary system. Additional constraints may come from studies of the atmosphere, but almost all such studies of the atmosphere investigate the detection of certain species, and abundances are not routinely quantitatively measured. Aims. Accurate measurements of planetary bulk parameters-that is, mass and density-provide constraints on the inner structure and chemical composition of transiting planets. This information provides insight into properties such as the amounts of volatile species, which in turn can be related to formation and evolution processes. Methods. The Transiting Exoplanet Survey Satellite (TESS) reported a planetary candidate around HD 190622 (TOI-1054), which was subsequently validated and found to merit further characterization with photometric and spectroscopic facilities. The KESPRINT collaboration used data from the High Accuracy Radial Velocity Planet Searcher (HARPS) to independently confirm the planetary candidate, securing its mass, and revealing the presence of an outer giant planet in the system. The CHEOPS consortium invested telescope time in the transiting target in order to reduce the uncertainty on the radius, improving the characterization of the planet. Results. We present the discovery and characterization of the planetary system around HD 190622 (TOI-1054). This system hosts one transiting planet, which is smaller than Neptune (3.087-0.053+0.058REarth, 7.7 ± 1.0 MEarth) but has a similar bulk density (1.43 ± 0.21 g cm-3) and an orbital period of 16 days; and a giant planet, not known to be transiting, with a minimum mass of 227.0 ± 6.7 MEarth in an orbit with a period of 315 days. Conclusions. Our measurements constrain the structure and composition of the transiting planet. HD 190622b has singular properties among the known population of transiting planets, which we discuss in detail. Among the sub-Neptune-sized planets known today, this planet stands out because of its large gas content.
  •  
29.
  • Esposito, M., et al. (författare)
  • HD 219666 b: a hot-Neptune from TESS Sector 1
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 623:623
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the confirmation and mass determination of a transiting planet orbiting the old and inactive G7 dwarf star HD219666 (M-star = 0.92 +/- 0.03 M-circle dot, R-star = 1.03 +/- 0.03 R-circle dot, tau(star) = 10 +/- 2 Gyr). With a mass of M-b = 16.6 +/- 1.3 M-circle plus, a radius of R-b = 4.71 +/- 0.17 R-circle plus, and an orbital period of P-orb similar or equal to 6 days, HD219666 b is a new member of a rare class of exoplanets: the hot-Neptunes. The Transiting Exoplanet Survey Satellite (TESS) observed HD219666 (also known as TOI-118) in its Sector 1 and the light curve shows four transit-like events, equally spaced in time. We confirmed the planetary nature of the candidate by gathering precise radial-velocity measurements with the High Accuracy Radial velocity Planet Searcher (HARPS) at ESO 3.6 m. We used the co-added HARPS spectrum to derive the host star fundamental parameters (T-eff = 5527 +/- 65 K, log g(star) = 4.40 +/- 0.11 (cgs), [Fe/H] = 0.04 +/- 0.04 dex, log R-HK' = -5.07 +/- 0.03), as well as the abundances of many volatile and refractory elements. The host star brightness (V = 9.9) makes it suitable for further characterisation by means of in-transit spectroscopy. The determination of the planet orbital obliquity, along with the atmospheric metal-to-hydrogen content and thermal structure could provide us with important clues on the formation mechanisms of this class of objects.
  •  
30.
  • Osborn, H. P., et al. (författare)
  • Uncovering the true periods of the young sub-Neptunes orbiting TOI-2076
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 664
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. TOI-2076 is a transiting three-planet system of sub-Neptunes orbiting a bright (G = 8.9 mag), young (340 +/- 80 Myr) K-type star. Although a validated planetary system, the orbits of the two outer planets were unconstrained as only two non-consecutive transits were seen in TESS photometry. This left 11 and 7 possible period aliases for each. Aims. To reveal the true orbits of these two long-period planets, precise photometry targeted on the highest-probability period aliases is required. Long-term monitoring of transits in multi-planet systems can also help constrain planetary masses through TTV measurements. Methods. We used the MonoTools package to determine which aliases to follow, and then performed space-based and ground-based photometric follow-up of TOI-2076 c and d with CHEOPS, SAINT-EX, and LCO telescopes. Results. CHEOPS observations revealed a clear detection for TOI-2076 c at P = 21.01538(-0.00074)(+0.00084) d, and allowed us to rule out three of the most likely period aliases for TOI-2076 d. Ground-based photometry further enabled us to rule out remaining aliases and confirm the P = 35.12537 +/- 0.00067 d alias. These observations also improved the radius precision of all three sub-Neptunes to 2.518 +/- 0.036, 3.497 +/- 0.043, and 3.232 +/- 0.063 R-circle plus. Our observations also revealed a clear anti-correlated TTV signal between planets b and c likely caused by their proximity to the 2:1 resonance, while planets c and d appear close to a 5:3 period commensurability, although model degeneracy meant we were unable to retrieve robust TTV masses. Their inflated radii, likely due to extended H-He atmospheres, combined with low insolation makes all three planets excellent candidates for future comparative transmission spectroscopy with JWST.
  •  
31.
  • Bourrier, V., et al. (författare)
  • A CHEOPS-enhanced view of the HD 3167 system
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 668
  • Tidskriftsartikel (refereegranskat)abstract
    • Much remains to be understood about the nature of exoplanets smaller than Neptune, most of which have been discovered in compact multi-planet systems. With its inner ultra-short period planet b aligned with the star and two larger outer planets d-c on polar orbits, the multi-planet system HD 3167 features a peculiar architecture and offers the possibility to investigate both dynamical and atmospheric evolution processes. To this purpose we combined multiple datasets of transit photometry and radial velocimetry (RV) to revise the properties of the system and inform models of its planets. This effort was spearheaded by CHEOPS observations of HD 3167b, which appear inconsistent with a purely rocky composition despite its extreme irradiation. Overall the precision on the planetary orbital periods are improved by an order of magnitude, and the uncertainties on the densities of the transiting planets b and c are decreased by a factor of 3. Internal structure and atmospheric simulations draw a contrasting picture between HD 3167d, likely a rocky super-Earth that lost its atmosphere through photo-evaporation, and HD 3167c, a mini-Neptune that kept a substantial primordial gaseous envelope. We detect a fourth, more massive planet on a larger orbit, likely coplanar with HD 3167d-c. Dynamical simulations indeed show that the outer planetary system d-c-e was tilted, as a whole, early in the system history, when HD 3167b was still dominated by the star influence and maintained its aligned orbit. RV data and direct imaging rule out that the companion that could be responsible for the present-day architecture is still bound to the HD 3167 system. Similar global studies of multi-planet systems will tell how many share the peculiar properties of the HD 3167 system, which remains a target of choice for follow-up observations and simulations.
  •  
32.
  • Lam, K. W. F., et al. (författare)
  • Discovery of TOI-1260d and the characterization of the multiplanet system
  • 2023
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 519:1, s. 1437-1451
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of a third planet transiting the star TOI-1260, previously known to host two transiting sub-Neptune planets with orbital periods of 3.127 and 7.493 d, respectively. The nature of the third transiting planet with a 16.6-d orbit is supported by ground-based follow-up observations, including time-series photometry, high-angular resolution images, spectroscopy, and archival imagery. Precise photometric monitoring with CHEOPS allows to improve the constraints on the parameters of the system, improving our knowledge on their composition. The improved radii of TOI-1260b and TOI-1260c are 2.36 +/- 0.06R(circle plus), 2.82 +/- 0.08R(circle plus), respectively while the newly discovered third planet has a radius of 3.09 +/- 0.09R(circle plus). The radius uncertainties are in the range of 3 per cent, allowing a precise interpretation of the interior structure of the three planets. Our planet interior composition model suggests that all three planets in the TOI-1260 system contains some fraction of gas. The innermost planet TOI-1260b has most likely lost all of its primordial hydrogen-dominated envelope. Planets c and d were also likely to have experienced significant loss of atmospheric through escape, but to a lesser extent compared to planet b.
  •  
33.
  • Morgado, B. E., et al. (författare)
  • A stellar occultation by the transneptunian object (50000) Quaoar observed by CHEOPS
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 664
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Stellar occultation is a powerful technique that allows the determination of some physical parameters of the occulting object. The result depends on the photometric accuracy, the temporal resolution, and the number of chords obtained. Space telescopes can achieve high photometric accuracy as they are not affected by atmospheric scintillation. Aims. Using ESA's CHEOPS space telescope, we observed a stellar occultation by the transneptunian object (50000) Quaoar. We compare the obtained chord with previous occultations by this object and determine its astrometry with sub-milliarcsecond precision. Also, we determine upper limits to the presence of a global methane atmosphere on the occulting body. Methods. We predicted and observed a stellar occultation by Quaoar using the CHEOPS space telescope. We measured the occultation light curve from this dataset and determined the dis- and reappearance of the star behind the occulting body. Furthermore, a ground-based telescope in Australia was used to constrain Quaoar's limb. Combined with results from previous works, these measurements allowed us to obtain a precise position of Quaoar at the occultation time. Results. We present the results obtained from the first stellar occultation by a transneptunian object using a space telescope orbiting Earth; it was the occultation by Quaoar observed on 2020 June 11. We used the CHEOPS light curve to obtain a surface pressure upper limit of 85 nbar for the detection of a global methane atmosphere. Also, combining this observation with a ground-based observation, we fitted Quaoar's limb to determine its astrometric position with an uncertainty below 1.0 mas. Conclusions. This observation is the first of its kind, and it shall be considered as a proof of concept of stellar occultation observations of transneptunian objects with space telescopes orbiting Earth. Moreover, it shows significant prospects for the James Webb Space Telescope.
  •  
34.
  • Psaridi, A., et al. (författare)
  • Discovery of two warm mini-Neptunes with contrasting densities orbiting the young K3V star TOI-815
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 685
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the discovery and characterization of two warm mini-Neptunes transiting the K3V star TOI-815 in a K–M binary system. Analysis of its spectra and rotation period reveal the star to be young, with an age of 200+−400200 Myr. TOI-815b has a 11.2-day period and a radius of 2.94 ± 0.05 R+ with transits observed by TESS, CHEOPS, ASTEP, and LCOGT. The outer planet, TOI-815c, has a radius of 2.62 ± 0.10 R+, based on observations of three nonconsecutive transits with TESS; targeted CHEOPS photometry and radial velocity follow-up with ESPRESSO were required to confirm the 35-day period. ESPRESSO confirmed the planetary nature of both planets and measured masses of 7.6 ± 1.5 M+ (ρP = 1.64+−003331 g cm−3) and 23.5 ± 2.4 M+ (ρP = 7.2+−1110 g cm−3), respectively. Thus, the planets have very different masses, which is unusual for compact multi-planet systems. Moreover, our statistical analysis of mini-Neptunes orbiting FGK stars suggests that weakly irradiated planets tend to have higher bulk densities compared to those undergoing strong irradiation. This could be ascribed to their cooler atmospheres, which are more compressed and denser. Internal structure modeling of TOI-815b suggests it likely has a H-He atmosphere that constitutes a few percent of the total planet mass, or higher if the planet is assumed to have no water. In contrast, the measured mass and radius of TOI-815c can be explained without invoking any atmosphere, challenging planetary formation theories. Finally, we infer from our measurements that the star is viewed close to pole-on, which implies a spin-orbit misalignment at the 3σ level. This emphasizes the peculiarity of the system’s orbital architecture, and probably hints at an eventful dynamical history.
  •  
35.
  • Sebastian, D., et al. (författare)
  • The EBLM project - IX. Five fully convective M-dwarfs, precisely measured with CHEOPS and TESS light curves
  • 2023
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 519:3, s. 3546-3563
  • Tidskriftsartikel (refereegranskat)abstract
    • Eclipsing binaries are important benchmark objects to test and calibrate stellar structure and evolution models. This is especially true for binaries with a fully convective M-dwarf component for which direct measurements of these stars' masses and radii are difficult using other techniques. Within the potential of M-dwarfs to be exoplanet host stars, the accuracy of theoretical predictions of their radius and effective temperature as a function of their mass is an active topic of discussion. Not only the parameters of transiting exoplanets but also the success of future atmospheric characterization relies on accurate theoretical predictions. We present the analysis of five eclipsing binaries with low-mass stellar companions out of a subsample of 23, for which we obtained ultra-high-precision light curves using the CHEOPS satellite. The observation of their primary and secondary eclipses are combined with spectroscopic measurements to precisely model the primary parameters and derive the M-dwarfs mass, radius, surface gravity, and effective temperature estimates using the PYCHEOPS data analysis software. Combining these results to the same set of parameters derived from TESS light curves, we find very good agreement (better than 1 percent for radius and better than 0.2 percent for surface gravity). We also analyse the importance of precise orbits from radial velocity measurements and find them to be crucial to derive M-dwarf radii in a regime below 5 percent accuracy. These results add five valuable data points to the mass-radius diagram of fully convective M-dwarfs.
  •  
36.
  • Swayne,, et al. (författare)
  • The EBLM project - VIII. First results for M-dwarf mass, radius, and effective temperature measurements using CHEOPS light curves
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 506:1, s. 306-322
  • Tidskriftsartikel (refereegranskat)abstract
    • The accuracy of theoretical mass, radius, and effective temperature values for M-dwarf stars is an active topic of debate. Differences between observed and theoretical values have raised the possibility that current theoretical stellar structure and evolution models are inaccurate towards the low-mass end of the main sequence. To explore this issue, we use the CHEOPS satellite to obtain high-precision light curves of eclipsing binaries with low-mass stellar companions. We use these light curves combined with the spectroscopic orbit for the solar-type companion to measure the mass, radius, and effective temperature of the M-dwarf star. Here, we present the analysis of three eclipsing binaries. We use the pycheops data analysis software to fit the observed transit and eclipse events of each system. Two of our systems were also observed by the TESS satellite - we similarly analyse these light curves for comparison. We find consistent results between CHEOPS and TESS, presenting three stellar radii and two stellar effective temperature values of low-mass stellar objects. These initial results from our on-going observing programme with CHEOPS show that we can expect to have similar to 24 new mass, radius, and effective temperature measurements for very low-mass stars within the next few years.
  •  
37.
  • Barros, S. C. C., et al. (författare)
  • Detection of the tidal deformation of WASP-103b at 3σ with CHEOPS
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 657
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Ultra-short period planets undergo strong tidal interactions with their host star which lead to planet deformation and orbital tidal decay.Aims. WASP-103b is the exoplanet with the highest expected deformation signature in its transit light curve and one of the shortest expected spiral-in times. Measuring the tidal deformation of the planet would allow us to estimate the second degree fluid Love number and gain insight into the planet's internal structure. Moreover, measuring the tidal decay timescale would allow us to estimate the stellar tidal quality factor, which is key to constraining stellar physics.Methods. We obtained 12 transit light curves of WASP-103b with the CHaracterising ExOplanet Satellite (CHEOPS) to estimate the tidal deformation and tidal decay of this extreme system. We modelled the high-precision CHEOPS transit light curves together with systematic instrumental noise using multi-dimensional Gaussian process regression informed by a set of instrumental parameters. To model the tidal deformation, we used a parametrisation model which allowed us to determine the second degree fluid Love number of the planet. We combined our light curves with previously observed transits of WASP-103b with the Hubble Space Telescope (HST) and Spitzer to increase the signal-to-noise of the light curve and better distinguish the minute signal expected from the planetary deformation.Results. We estimate the radial Love number of WASP-103b to be h(f) = 1.59(-0.53)(+0.45). This is the first time that the tidal deformation is directly detected (at 3 sigma) from the transit light curve of an exoplanet. Combining the transit times derived from CHEOPS, HST, and Spitzer light curves with the other transit times available in the literature, we find no significant orbital period variation for WASP-103b. However, the data show a hint of an orbital period increase instead of a decrease, as is expected for tidal decay. This could be either due to a visual companion star if this star is bound, the Applegate effect, or a statistical artefact.Conclusions. The estimated Love number of WASP-103b is similar to Jupiter's. This will allow us to constrain the internal structure and composition of WASP-103b, which could provide clues on the inflation of hot Jupiters. Future observations with James Webb Space Telescope can better constrain the radial Love number of WASP-103b due to their high signal-to-noise and the smaller signature of limb darkening in the infrared. A longer time baseline is needed to constrain the tidal decay in this system.
  •  
38.
  • Deline, A., et al. (författare)
  • The atmosphere and architecture of WASP-189 b probed by its CHEOPS phase curve
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 659
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Gas giants orbiting close to hot and massive early-type stars can reach dayside temperatures that are comparable to those of the coldest stars. These 'ultra-hot Jupiters' have atmospheres made of ions and atomic species from molecular dissociation and feature strong day-to-night temperature gradients. Photometric observations at different orbital phases provide insights on the planet's atmospheric properties. Aims. We aim to analyse the photometric observations of WASP-189 acquired with the Characterising Exoplanet Satellite (CHEOPS) to derive constraints on the system architecture and the planetary atmosphere. Methods. We implemented a light-curve model suited for an asymmetric transit shape caused by the gravity-darkened photosphere of the fast-rotating host star. We also modelled the reflective and thermal components of the planetary flux, the effect of stellar oblateness and light-travel time on transit-eclipse timings, the stellar activity, and CHEOPS systematics. Results. From the asymmetric transit, we measure the size of the ultra-hot Jupiter WASP-189 b, R-p = 1.600(-0.016)(+0.017)R(J), with a precision of 1%, and the true orbital obliquity of the planetary system, Psi(P) = 89.6 +/- 1.2 deg (polar orbit). We detect no significant hotspot offset from the phase curve and obtain an eclipse depth of delta ecl = 96.5(-5.9)(+4).(5) ppm, from which we derive an upper limit on the geometric albedo: A(g) < 0.48. We also find that the eclipse depth can only be explained by thermal emission alone in the case of extremely inefficient energy redistribution. Finally, we attribute the photometric variability to the stellar rotation, either through superficial inhomogeneities or resonance couplings between the convective core and the radiative envelope. Conclusions. Based on the derived system architecture, we predict the eclipse depth in the upcoming Transiting Exoplanet Survey Satellite (TESS) observations to be up to similar to 165 ppm. High-precision detection of the eclipse in both CHEOPS and TESS passbands might help disentangle reflective and thermal contributions. We also expect the right ascension of the ascending node of the orbit to precess due to the perturbations induced by the stellar quadrupole moment J(2) (oblateness).
  •  
39.
  • Fridlund, Malcolm, 1952, et al. (författare)
  • Planets observed with CHEOPS: Two super-Earths orbiting the red dwarf star TOI-776
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 684
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. M-dwarf stars are the most common of potential exoplanet host stars in the Galaxy. It is therefore very important to understand planetary systems orbiting such stars and to determine the physical parameters of such planets with high precision. Also with the launch of the James Webb Space Telescope (JWST) the observation of atmospheric parameters of planets orbiting these stars has begun. It is therefore required to determine properties of potential targets. Aims. Two planets around the red dwarf TOI-776 were detected by TESS. The objective of our study was to use transit observations obtained by the CHEOPS space mission to improve the current precision of the planetary radii, as well as additional radial velocity (RV) data in order to improve mass estimates of the two planets. Using these quantities, we wanted to derive the bulk densities of those planets, improving the precision in earlier results, and use this information to put them in context of other exoplanetary systems involving very low mass stars. Methods. Utilizing new transit data from the CHEOPS satellite and its photometric telescope, we obtained very high precision planetary transit measurements. Interpretation of these provides updated planetary radii, along with other system parameters. A concurrent ESO large observing program using the high precision spectrograph HARPS has doubled the available radial velocity data. Calculating the power spectrum of a number of stellar activity indices we update the previously estimated stellar rotation period to a lower value. Results. The CHEOPS data provide precise transit depths of 909 and 1177 ppm translating into radii of Rb = 1.798-0.077+0.078 R⊕ and Rc = 2.047-0.078+0.081 R⊕, respectively. Our interpretation of the radial velocities and activity indicator time series data estimates a stellar rotation period for this early M dwarf of ~21.1 days. A further multi-dimensional Gaussian process approach confirm this new estimate. By performing a Skew-Normal (SN) fit onto the Cross Correlation Functions we extracted the RV data and the activity indicators to estimate the planetary masses, obtaining Mb = 5.0-1.6+1.6 M⊕ and Mc = 6.9-2.5+2.6 M⊕. Conclusions. We improve the precision in planetary radius for TOI-776 b and c by a factor of more than two. Our data and modelling give us parameters of both bodies consistent with mini-Neptunes, albeit with a relatively high density. The stellar activity of TOI-776 is found to have increased by a factor larger than 2 since the last set of observations.
  •  
40.
  • Garai, Z., et al. (författare)
  • Refined parameters of the HD 22946 planetary system and the true orbital period of planet d
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 674
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Multi-planet systems are important sources of information regarding the evolution of planets. However, the long-period planets in these systems often escape detection. These objects in particular may retain more of their primordial characteristics compared to close-in counterparts because of their increased distance from the host star. HD 22946 is a bright (G = 8.13 mag) late F-type star around which three transiting planets were identified via Transiting Exoplanet Survey Satellite (TESS) photometry, but the true orbital period of the outermost planet d was unknown until now. Aims. We aim to use the Characterising Exoplanet Satellite (CHEOPS) space telescope to uncover the true orbital period of HD 22946d and to refine the orbital and planetary properties of the system, especially the radii of the planets. Methods. We used the available TESS photometry of HD 22946 and observed several transits of the planets b, c, and d using CHEOPS. We identified two transits of planet d in the TESS photometry, calculated the most probable period aliases based on these data, and then scheduled CHEOPS observations. The photometric data were supplemented with ESPRESSO (Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations) radial velocity data. Finally, a combined model was fitted to the entire dataset in order to obtain final planetary and system parameters. Results. Based on the combined TESS and CHEOPS observations, we successfully determined the true orbital period of the planet d to be 47.42489 ± 0.00011 days, and derived precise radii of the planets in the system, namely 1.362 ± 0.040 R, 2.328 ± 0.039 R, and 2.607 ± 0.060 R for planets b, c, and d, respectively. Due to the low number of radial velocities, we were only able to determine 3σ upper limits for these respective planet masses, which are 13.71 M, 9.72 M, and 26.57 M. We estimated that another 48 ESPRESSO radial velocities are needed to measure the predicted masses of all planets in HD 22946. We also derived stellar parameters for the host star. Conclusions. Planet c around HD 22946 appears to be a promising target for future atmospheric characterisation via transmission spectroscopy. We can also conclude that planet d, as a warm sub-Neptune, is very interesting because there are only a few similar confirmed exoplanets to date. Such objects are worth investigating in the near future, for example in terms of their composition and internal structure.
  •  
41.
  • Gottardo, A., et al. (författare)
  • New μs Isomers in the Neutron-rich 210Hg Nucleus
  • 2013
  • Ingår i: Physics Letters. Section B: Nuclear, Elementary Particle and High-Energy Physics. - : Elsevier BV. - 0370-2693. ; 725:4-5, s. 292-296
  • Tidskriftsartikel (refereegranskat)abstract
    • Neutron-rich nuclei in the lead region, beyond N = 126, have been studied at the FRS-RISING setup at GSI, exploiting the fragmentation of a primary uranium beam. Two isomeric states have been identified in Hg-210: the 8(+) isomer expected from the seniority scheme in the vg(9/2) shell and a second one at low spin and low excitation energy. The decay strength of the 8(+) isomer confirms the need of effective three-body forces in the case of neutron-rich lead isotopes. The other unexpected low-lying isomer has been tentatively assigned as a 3(-) state, although this is in contrast with theoretical expectations. (C) 2013 Elsevier B.V. All rights reserved.
  •  
42.
  • Harre, J. V., et al. (författare)
  • Examining the orbital decay targets KELT-9 b, KELT-16 b, and WASP-4 b, and the transit-timing variations of HD 97658 b
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 669
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Tidal orbital decay is suspected to occur for hot Jupiters in particular, with the only observationally confirmed case of this being WASP-12 b. By examining this effect, information on the properties of the host star can be obtained using the so-called stellar modified tidal quality factor Q′∗, which describes the efficiency with which the kinetic energy of the planet is dissipated within the star. This can provide information about the interior of the star. Aims. In this study, we aim to improve constraints on the tidal decay of the KELT-9, KELT-16, and WASP-4 systems in order to find evidence for or against the presence of tidal orbital decay. With this, we want to constrain the Q′∗ value for each star. In addition, we aim to test the existence of the transit timing variations (TTVs) in the HD 97658 system, which previously favoured a quadratic trend with increasing orbital period. Methods. Making use of newly acquired photometric observations from CHEOPS (CHaracterising ExOplanet Satellite) and TESS (Transiting Exoplanet Survey Satellite), combined with archival transit and occultation data, we use Markov chain Monte Carlo (MCMC) algorithms to fit three models to the data, namely a constant-period model, an orbital-decay model, and an apsidal-precession model. Results. We find that the KELT-9 system is best described by an apsidal-precession model for now, with an orbital decay trend at over 2 σ being a possible solution as well. A Keplerian orbit model with a constant orbital period provides the best fit to the transit timings of KELT-16 b because of the scatter and scale of their error bars. The WASP-4 system is best represented by an orbital decay model at a 5 σ significance, although apsidal precession cannot be ruled out with the present data. For HD 97658 b, using recently acquired transit observations, we find no conclusive evidence for a previously suspected strong quadratic trend in the data.
  •  
43.
  • Hooton, M.J., et al. (författare)
  • Spi-OPS: Spitzer and CHEOPS confirm the near-polar orbit of MASCARA-1 b and reveal a hint of dayside reflection
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 658
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The light curves of tidally locked hot Jupiters transiting fast-rotating, early-type stars are a rich source of information about both the planet and star, with full-phase coverage enabling a detailed atmospheric characterisation of the planet. Although it is possible to determine the true spin-orbit angle ψ-a notoriously difficult parameter to measure-from any transit asymmetry resulting from gravity darkening induced by the stellar rotation, the correlations that exist between the transit parameters have led to large disagreements in published values of ψ for some systems. Aims. We aimed to study these phenomena in the light curves of the ultra-hot Jupiter MASCARA-1 b, which is characteristically similar to well-studied contemporaries such as KELT-9 b and WASP-33 b. Methods. We obtained optical CHaracterising ExOPlanet Satellite (CHEOPS) transit and occultation light curves of MASCARA-1 b, and analysed them jointly with a Spitzer/IRAC 4.5 μm full-phase curve to model the asymmetric transits, occultations, and phase-dependent flux modulation. For the latter, we employed a novel physics-driven approach to jointly fit the phase modulation by generating a single 2D temperature map and integrating it over the two bandpasses as a function of phase to account for the differing planet-star flux contrasts. The reflected light component was modelled using the general ab initio solution for a semi-infinite atmosphere. Results. When fitting the CHEOPS and Spitzer transits together, the degeneracies are greatly diminished and return results consistent with previously published Doppler tomography. Placing priors informed by the tomography achieves even better precision, allowing a determination of ψ = 72.1-2.4+2.5 deg. From the occultations and phase variations, we derived dayside and nightside temperatures of 3062-68+66 K and 1720 ± 330 K, respectively.Our retrieval suggests that the dayside emission spectrum closely follows that of a blackbody. As the CHEOPS occultation is too deep to be attributed to blackbody flux alone, we could separately derive geometric albedo Ag = 0.171-0.068+0.066 and spherical albedo As = 0.266-0.100+0.097 from the CHEOPS data, and Bond albedoAB = 0.057-0.101+0.083 from the Spitzer phase curve.Although small, the Ag and As indicate that MASCARA-1 b is more reflective than most other ultra-hot Jupiters, where H- absorption is expected to dominate. Conclusions. Where possible, priors informed by Doppler tomography should be used when fitting transits of fast-rotating stars, though multi-colour photometry may also unlock an accurate measurement of ψ. Our approach to modelling the phase variations at different wavelengths provides a template for how to separate thermal emission from reflected light in spectrally resolved James Webb Space Telescope phase curve data.
  •  
44.
  • Hoyer, S., et al. (författare)
  • Characterization of the HD 108236 system with CHEOPS and TESS Confirmation of a fifth transiting planet
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 668
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The HD 108236 system was first announced with the detection of four small planets based on TESS data. Shortly after, the transit of an additional planet with a period of 29.54 d was serendipitously detected by CHEOPS. In this way, HD 108236 (V = 9.2) became one of the brightest stars known to host five small transiting planets (Rp < 3 Ro˙). Aims. We characterize the planetary system by using all the data available from CHEOPS and TESS space missions. We use the flexible pointing capabilities of CHEOPS to follow up the transits of all the planets in the system, including the fifth transiting body. Methods. After updating the host star parameters by using the results from Gaia eDR3, we analyzed 16 and 43 transits observed by CHEOPS and TESS, respectively, to derive the planets' physical and orbital parameters. We carried out a timing analysis of the transits of each of the planets of HD 108236 to search for the presence of transit timing variations. Results. We derived improved values for the radius and mass of the host star (R∗ = 0.876 ± 0.007 R0 and M∗ = 0.867-0.046+0.047M). We confirm the presence of the fifth transiting planet f in a 29.54 d orbit. Thus, the HD 108236 system consists of five planets of Rb = 1.587±0.028, Rc = 2.122±0.025, Rd = 2.629 ± 0.031, Re = 3.008 ± 0.032, and Rf = 1.89 ± 0.04 [Ro˙]. We refine the transit ephemeris for each planet and find no significant transit timing variations for planets c, d, and e. For planets b and f, instead, we measure significant deviations on their transit times (up to 22 and 28 min, respectively) with a non-negligible dispersion of 9.6 and 12.6 min in their time residuals. Conclusions. We confirm the presence of planet f and find no significant evidence for a potential transiting planet in a 10.9 d orbital period, as previously suggested. Further monitoring of the transits, particularly for planets b and f, would confirm the presence of the observed transit time variations. HD 108236 thus becomes a key multi-planetary system for the study of formation and evolution processes. The reported precise results on the planetary radii - together with a profuse RV monitoring - will allow for an accurate characterization of the internal structure of these planets.
  •  
45.
  • Jones, K., et al. (författare)
  • The stable climate of KELT-9b
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • Even among the most irradiated gas giants, so-called ultra-hot Jupiters, KELT-9b stands out as the hottest planet thus far discovered with a dayside temperature of over 4500 K. At these extreme irradiation levels, we expect an increase in heat redistribution efficiency and a low Bond albedo owed to an extended atmosphere with molecular hydrogen dissociation occurring on the planetary dayside. We present new photometric observations of the KELT-9 system throughout 4 full orbits and 9 separate occultations obtained by the 30 cm space telescope CHEOPS. The CHEOPS bandpass, located at optical wavelengths, captures the peak of the thermal emission spectrum of KELT-9b. In this work we simultaneously analyse CHEOPS phase curves along with public phase curves from TESS and Spitzer to infer joint constraints on the phase curve variation, gravity-darkened transits, and occultation depth in three bandpasses, as well as derive 2D temperature maps of the atmosphere at three different depths. We find a day-night heat redistribution efficiency of similar to 0.3 which confirms expectations of enhanced energy transfer to the planetary nightside due to dissociation and recombination of molecular hydrogen. We also calculate a Bond albedo consistent with zero. We find no evidence of variability of the brightness temperature of the planet, excluding variability greater than 1% (1 sigma).
  •  
46.
  • Krenn, A., et al. (författare)
  • The geometric albedo of the hot Jupiter HD 189733b measured with CHEOPS
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 672
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Measurements of the occultation of an exoplanet at visible wavelengths allow us to determine the reflective properties of a planetary atmosphere. The observed occultation depth can be translated into a geometric albedo. This in turn aids in characterising the structure and composition of an atmosphere by providing additional information on the wavelength-dependent reflective qualities of the aerosols in the atmosphere. Aims. Our aim is to provide a precise measurement of the geometric albedo of the gas giant HD 189733b by measuring the occultation depth in the broad optical bandpass of CHEOPS (350-1100 nm). Methods. We analysed 13 observations of the occultation of HD 189733b performed by CHEOPS utilising the Python package PyCHEOPS. The resulting occultation depth is then used to infer the geometric albedo accounting for the contribution of thermal emission from the planet. We also aid the analysis by refining the transit parameters combining observations made by the TESS and CHEOPS space telescopes. Results. We report the detection of an 24.7 ± 4.5 ppm occultation in the CHEOPS observations. This occultation depth corresponds to a geometric albedo of 0.076 ± 0.016. Our measurement is consistent with models assuming the atmosphere of the planet to be cloud-free at the scattering level and absorption in the CHEOPS band to be dominated by the resonant Na doublet. Taking into account previous optical-light occultation observations obtained with the Hubble Space Telescope, both measurements combined are consistent with a super-stellar Na elemental abundance in the dayside atmosphere of HD 189733b. We further constrain the planetary Bond albedo to between 0.013 and 0.42 at 3σconfidence. Conclusions. We find that the reflective properties of the HD 189733b dayside atmosphere are consistent with a cloud-free atmosphere having a super-stellar metal content. When compared to an analogous CHEOPS measurement for HD 209458b, our data hint at a slightly lower geometric albedo for HD 189733b (0.076 ± 0.016) than for HD 209458b (0.096 ± 0.016), or a higher atmospheric Na content in the same modelling framework. While our constraint on the Bond albedo is consistent with previously published values, we note that the higher-end values of ∼0.4, as derived previously from infrared phase curves, would also require peculiarly high reflectance in the infrared, which again would make it more difficult to disentangle reflected and emitted light in the total observed flux, and therefore to correctly account for reflected light in the interpretation of those phase curves. Lower reported values for the Bond albedos are less affected by this ambiguity.
  •  
47.
  • Maxted, P. F. L., et al. (författare)
  • Analysis of Early Science observations with the CHaracterising ExOPlanets Satellite (CHEOPS) using pycheops
  • 2022
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 514:1, s. 77-104
  • Tidskriftsartikel (refereegranskat)abstract
    • CHEOPS (CHaracterising ExOPlanet Satellite) is an ESA S-class mission that observes bright stars at high cadence from low-Earth orbit. The main aim of the mission is to characterize exoplanets that transit nearby stars using ultrahigh precision photometry. Here, we report the analysis of transits observed by CHEOPS during its Early Science observing programme for four well-known exoplanets: GJ 436 b, HD 106315 b, HD 97658 b, and GJ 1132 b. The analysis is done using pycheops, an open-source software package we have developed to easily and efficiently analyse CHEOPS light-curve data using state-of-the-art techniques that are fully described herein. We show that the precision of the transit parameters measured using CHEOPS is comparable to that from larger space telescopes such as Spitzer Space Telescope and Kepler. We use the updated planet parameters from our analysis to derive new constraints on the internal structure of these four exoplanets.
  •  
48.
  • Morris, B. M., et al. (författare)
  • CHEOPS precision phase curve of the Super-Earth 55 Cancri e
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 653
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. 55 Cnc e is a transiting super-Earth (radius 1.88 R-circle plus and mass 8 M-circle plus) orbiting a G8V host star on a 17-h orbit. Spitzer observations of the planet's phase curve at 4.5 mu m revealed a time-varying occultation depth, and MOST optical observations are consistent with a time-varying phase curve amplitude and phase offset of maximum light. Both broadband and high-resolution spectroscopic analyses are consistent with either a high mean molecular weight atmosphere or no atmosphere for planet e. A long-term photometric monitoring campaign on an independent optical telescope is needed to probe the variability in this system. Aims. We seek to measure the phase variations of 55 Cnc e with a broadband optical filter with the 30 cm effective aperture space telescope CHEOPS and explore how the precision photometry narrows down the range of possible scenarios. Methods. We observed 55 Cnc for 1.6 orbital phases in March of 2020. We designed a phase curve detrending toolkit for CHEOPS photometry which allowed us to study the underlying flux variations in the 55 Cnc system. Results. We detected a phase variation with a full-amplitude of 72 +/- 7 ppm, but did not detect a significant secondary eclipse of the planet. The shape of the phase variation resembles that of a piecewise-Lambertian; however, the non-detection of the planetary secondary eclipse, and the large amplitude of the variations exclude reflection from the planetary surface as a possible origin of the observed phase variations. They are also likely incompatible with magnetospheric interactions between the star and planet, but may imply that circumplanetary or circumstellar material modulate the flux of the system. Conclusions. This year, further precision photometry of 55 Cnc from CHEOPS will measure variations in the phase curve amplitude and shape over time.
  •  
49.
  • Nascimbeni, V., et al. (författare)
  • A new dynamical modeling of the WASP-47 system with CHEOPS observations
  • 2023
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 1432-0746 .- 0004-6361. ; 673
  • Tidskriftsartikel (refereegranskat)abstract
    • Among the hundreds of known hot Jupiters (HJs), only five have been found to have companions on short-period orbits. Within this rare class of multiple planetary systems, the architecture of WASP-47 is unique, hosting an HJ (planet-b) with both an inner and an outer sub-Neptunian mass companion (-e and -d, respectively) as well as an additional non-transiting, long-period giant (-c). The small period ratio between planets -b and -d boosts the transit time variation (TTV) signal, making it possible to reliably measure the masses of these planets in synergy with the radial velocity (RV) technique. In this paper, we present new space- and ground-based photometric data of WASP-47b and WASP-47-d, including 11 unpublished light curves from the ESA mission CHaracterising ExOPlanet Satellite (CHEOPS). We analyzed the light curves in a homogeneous way together with all the publicly available data to carry out a global N-body dynamical modeling of the TTV and RV signals. We retrieved, among other parameters, a mass and density for planet -d of Md = 15.5 ± 0.8 M⊕ and ρd = 1.69 ± 0.22 g cm−3, which is in good agreement with the literature and consistent with a Neptune-like composition. For the inner planet (-e), we found a mass and density of Me = 9.0 ± 0.5 M⊕ and ρe = 8.1 ± 0.5 g cm−3, suggesting an Earth-like composition close to other ultra-hot planets at similar irradiation levels. Though this result is in agreement with previous RV plus TTV studies, it is not in agreement with the most recent RV analysis (at 2.8σ), which yielded a lower density compatible with a pure silicate composition. This discrepancy highlights the still unresolved issue of suspected systematic offsets between RV and TTV measurements. In this paper, we also significantly improve the orbital ephemerides of all transiting planets, which will be crucial for any future follow-up.
  •  
50.
  • Quanz, S. P., et al. (författare)
  • Large Interferometer For Exoplanets (LIFE) I. Improved exoplanet detection yield estimates for a large mid-infrared space-interferometer mission
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 664
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. One of the long-term goals of exoplanet science is the atmospheric characterization of dozens of small exoplanets in order to understand their diversity and search for habitable worlds and potential biosignatures. Achieving this goal requires a space mission of sufficient scale that can spatially separate the signals from exoplanets and their host stars and thus directly scrutinize the exoplanets and their atmospheres.Aims. We seek to quantify the exoplanet detection performance of a space-based mid-infrared (MIR) nulling interferometer that measures the thermal emission of exoplanets. We study the impact of various parameters and compare the performance with that of large single-aperture mission concepts that detect exoplanets in reflected light.Methods. We have developed an instrument simulator that considers all major astrophysical noise sources and coupled it with Monte Carlo simulations of a synthetic exoplanet population around main-sequence stars within 20 pc of the Sun. This allows us to quantify the number (and types) of exoplanets that our mission concept could detect. Considering single visits only, we discuss two different scenarios for distributing 2.5 yr of an initial search phase among the stellar targets. Different apertures sizes and wavelength ranges are investigated.Results. An interferometer consisting of four 2 m apertures working in the 4–18.5 μ.m wavelength range with a total instrument throughput of 5% could detect up to ≈550 exoplanets with radii between 0.5 and 6 R⊕ with an integrated S/N ≥ 7. At least ≈160 of the detected exoplanets have radii ≤1.5 R⊕. Depending on the observing scenario, ≈25–45 rocky exoplanets (objects with radii between 0.5 and 1.5 R⊕) orbiting within the empirical habitable zone (eHZ) of their host stars are among the detections. With four 3.5 m apertures, the total number of detections can increase to up to ≈770, including ≈60–80 rocky eHZ planets. With four times 1 m apertures, the maximum detection yield is ≈315 exoplanets, including ≤20 rocky eHZ planets. The vast majority of small, temperate exoplanets are detected around M dwarfs. The impact of changing the wavelength range to 3–20 μm or 6–17 μm on the detection yield is negligible.Conclusions. A large space-based MIR nulling interferometer will be able to directly detect hundreds of small, nearby exoplanets, tens of which would be habitable world candidates. This shows that such a mission can compete with large single-aperture reflected light missions. Further increasing the number of habitable world candidates, in particular around solar-type stars, appears possible via the implementation of a multi-visit strategy during the search phase. The high median S/N of most of the detected planets will allow for first estimates of their radii and effective temperatures and will help prioritize the targets for a second mission phase to obtain high-S/N thermal emission spectra, leveraging the superior diagnostic power of the MIR regime compared to shorter wavelengths.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 157
Typ av publikation
tidskriftsartikel (148)
konferensbidrag (5)
forskningsöversikt (4)
Typ av innehåll
refereegranskat (147)
övrigt vetenskapligt/konstnärligt (10)
Författare/redaktör
Ribas, I. (83)
Davies, M. B. (82)
Fridlund, Malcolm, 1 ... (76)
Gandolfi, D. (72)
Rauer, H. (70)
Alonso, R. (65)
visa fler...
Cabrera, J (61)
Fossati, L. (59)
Deleuil, M. (58)
Pagano, I. (58)
Ehrenreich, D. (57)
Fortier, A. (57)
Alibert, Y. (57)
Bárczy, T. (57)
Baumjohann, W. (57)
Benz, W. (57)
Broeg, C. (57)
Laskar, J. (57)
Queloz, D. (57)
Rando, N. (57)
Santos, N. C. (57)
Udry, S. (57)
Barros, S.C.C. (56)
Lendl, M. (56)
Demory, B.O. (56)
Beck, T. (56)
Delrez, L. (56)
Hoyer, S. (56)
Magrin, D. (56)
Ottensamer, R. (56)
Peter, G. (56)
Van Grootel, V. (56)
Sousa, S.G. (55)
Charnoz, S. (55)
Segransan, D. (55)
Billot, N. (54)
Bonfils, X. (54)
Simon, A.E. (54)
Palle, E. (52)
Wilson, T.G. (51)
Smith, A. M.S. (51)
Walton, N. A. (49)
Erikson, Anders (49)
Demangeon, O. (46)
Csizmadia, Szilard (46)
Gudel, M. (44)
Deline, A. (41)
Gillon, Michaël (41)
Isaak, K. (41)
Nascimbeni, Valerio (41)
visa färre...
Lärosäte
Chalmers tekniska högskola (89)
Lunds universitet (70)
Stockholms universitet (52)
Karolinska Institutet (38)
Uppsala universitet (14)
Göteborgs universitet (12)
visa fler...
Umeå universitet (6)
Kungliga Tekniska Högskolan (5)
Högskolan i Skövde (5)
Luleå tekniska universitet (2)
Jönköping University (1)
Högskolan Dalarna (1)
Marie Cederschiöld högskola (1)
visa färre...
Språk
Engelska (157)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (112)
Medicin och hälsovetenskap (19)
Teknik (16)
Samhällsvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy