SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Shetrone Matthew) "

Sökning: WFRF:(Shetrone Matthew)

  • Resultat 1-23 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Blanton, Michael R., et al. (författare)
  • Sloan Digital Sky Survey IV : Mapping the Milky Way, Nearby Galaxies, and the Distant Universe
  • 2017
  • Ingår i: Astronomical Journal. - : IOP Publishing Ltd. - 0004-6256 .- 1538-3881. ; 154:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and. high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z similar to 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z similar to 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs. and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the. Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July.
  •  
2.
  • Abolfathi, Bela, et al. (författare)
  • The Fourteenth Data Release of the Sloan Digital Sky Survey : First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment
  • 2018
  • Ingår i: Astrophysical Journal Supplement Series. - : IOP Publishing Ltd. - 0067-0049 .- 1538-4365. ; 235:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since 2014 July. This paper describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14). This release makes the data taken by SDSS-IV in its first two years of operation (2014-2016 July) public. Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey; the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data-driven machine-learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from the SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS web site (www.sdss.org) has been updated for this release and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020 and will be followed by SDSS-V.
  •  
3.
  • The Seventeenth Data Release of the Sloan Digital Sky Surveys : Complete Release of MaNGA, MaStar, and APOGEE-2 Data
  • 2022
  • Ingår i: Astrophysical Journal Supplement Series. - : Institute of Physics (IOP). - 0067-0049 .- 1538-4365. ; 259:2
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper documents the seventeenth data release (DR17) from the Sloan Digital Sky Surveys; the fifth and final release from the fourth phase (SDSS-IV). DR17 contains the complete release of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, which reached its goal of surveying over 10,000 nearby galaxies. The complete release of the MaNGA Stellar Library accompanies this data, providing observations of almost 30,000 stars through the MaNGA instrument during bright time. DR17 also contains the complete release of the Apache Point Observatory Galactic Evolution Experiment 2 survey that publicly releases infrared spectra of over 650,000 stars. The main sample from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), as well as the subsurvey Time Domain Spectroscopic Survey data were fully released in DR16. New single-fiber optical spectroscopy released in DR17 is from the SPectroscipic IDentification of ERosita Survey subsurvey and the eBOSS-RM program. Along with the primary data sets, DR17 includes 25 new or updated value-added catalogs. This paper concludes the release of SDSS-IV survey data. SDSS continues into its fifth phase with observations already underway for the Milky Way Mapper, Local Volume Mapper, and Black Hole Mapper surveys.
  •  
4.
  • Cunha, Katia, et al. (författare)
  • Adding the s-Process Element Cerium to the APOGEE Survey : Identification and Characterization of Ce II Lines in the H-band Spectral Window
  • 2017
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 844:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Nine Ce II lines have been identified and characterized within the spectral window observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey (between lambda 1.51 and 1.69 mu m). At solar metallicities, cerium is an element that is produced predominantly as a result of the slow capture of neutrons (the s-process) during asymptotic giant branch stellar evolution. The Ce II lines were identified using a combination of a high-resolution (R = lambda/delta lambda = 100,000) Fourier Transform Spectrometer (FTS) spectrum of a Boo and an APOGEE spectrum (R. =. 22,400) of a metal-poor, but s-process enriched, red giant (2M16011638-1201525). Laboratory oscillator strengths are not available for these lines. Astrophysical gf-values were derived using alpha Boo as a standard star, with the absolute cerium abundance in alpha Boo set by using optical Ce II lines that have precise published laboratory gf-values. The near-infrared Ce II lines identified here are also analyzed, as consistency checks, in a small number of bright red giants using archival FTS spectra, as well as a small sample of APOGEE red giants, including two members of the open cluster NGC 6819, two field stars, and seven metal-poor N-and Al-rich stars. The conclusion is that this set of Ce II lines can be detected and analyzed in a large fraction of the APOGEE red giant sample and will be useful for probing chemical evolution of the s-process products in various populations of the Milky Way.
  •  
5.
  • Hasselquist, Sten, et al. (författare)
  • APOGEE Chemical Abundance Patterns of the Massive Milky Way Satellites
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 923:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The SDSS-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey has obtained high-resolution spectra for thousands of red giant stars distributed among the massive satellite galaxies of the Milky Way (MW): the Large and Small Magellanic Clouds (LMC/SMC), the Sagittarius Dwarf Galaxy (Sgr), Fornax (Fnx), and the now fully disrupted Gaia Sausage/Enceladus (GSE) system. We present and analyze the APOGEE chemical abundance patterns of each galaxy to draw robust conclusions about their star formation histories, by quantifying the relative abundance trends of multiple elements (C, N, O, Mg, Al, Si, Ca, Fe, Ni, and Ce), as well as by fitting chemical evolution models to the [α/Fe]-[Fe/H] abundance plane for each galaxy. Results show that the chemical signatures of the starburst in the Magellanic Clouds (MCs) observed by Nidever et al. in the α-element abundances extend to C+N, Al, and Ni, with the major burst in the SMC occurring some 3-4 Gyr before the burst in the LMC. We find that Sgr and Fnx also exhibit chemical abundance patterns suggestive of secondary star formation epochs, but these events were weaker and earlier (∼5-7 Gyr ago) than those observed in the MCs. There is no chemical evidence of a second starburst in GSE, but this galaxy shows the strongest initial star formation as compared to the other four galaxies. All dwarf galaxies had greater relative contributions of AGB stars to their enrichment than the MW. Comparing and contrasting these chemical patterns highlight the importance of galaxy environment on its chemical evolution.
  •  
6.
  • Hayes, Christian R., et al. (författare)
  • BACCHUS Analysis of Weak Lines in APOGEE Spectra (BAWLAS)
  • 2022
  • Ingår i: Astrophysical Journal Supplement Series. - : Institute of Physics Publishing (IOPP). - 0067-0049 .- 1538-4365. ; 262:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Elements with weak and blended spectral features in stellar spectra are challenging to measure and require specialized analysis methods to precisely measure their chemical abundances. In this work, we have created a catalog of approximately 120,000 giants with high signal-to-noise Apache Point Observatory Galactic Evolution Experiment (APOGEE) Data Release 17 (DR17) spectra, for which we explore weak and blended species to measure Na, P, S, V, Cu, Ce, and Nd abundances and C-12/C-13 isotopic ratios. We employ an updated version of the Brussels Automatic Code for Characterizing High-accuracy Spectra (BACCHUS) code to derive these abundances using the stellar parameters measured by APOGEE's DR17 Stellar Parameters and Chemical Abundances Pipeline, quality flagging to identify suspect spectral lines, and a prescription for upper limits. Combined, these allow us to provide our BACCHUS Analysis of Weak Lines in APOGEE Spectra catalog of precise chemical abundances for these weak and blended species, which agrees well with the literature and improves upon APOGEE abundances for these elements, some of which are unable to be measured with APOGEE's current, grid-based approach without computationally expensive expansions. This new catalog can be used alongside APOGEE and provides measurements for many scientific applications ranging from nuclear physics to Galactic chemical evolution and Milky Way population studies. To illustrate this we show some examples of uses for this catalog, such as showing that we observe stars with enhanced s-process abundances or that we can use the C-12/C-13 ratios to explore extra mixing along the red giant branch.
  •  
7.
  • Holtzman, Jon A., et al. (författare)
  • APOGEE Data Releases 13 and 14: Data and Analysis
  • 2018
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 156:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The data and analysis methodology used for the SDSS/APOGEE Data Releases 13 and 14 are described, highlighting differences from the DR12 analysis presented in Holtzman et al. Some improvement in the handling of telluric absorption and persistence is demonstrated. The derivation and calibration of stellar parameters, chemical abundances, and respective uncertainties are described, along with the ranges over which calibration was performed. Some known issues with the public data related to the calibration of the effective temperatures (DR13), surface gravity (DR13 and DR14), and C and N abundances for dwarfs (DR13 and DR14) are highlighted. We discuss how results from a data-driven technique, The Cannon, are included in DR14 and compare those with results from the APOGEE Stellar Parameters and Chemical Abundances Pipeline. We describe how using The Cannon in a mode that restricts the abundance analysis of each element to regions of the spectrum with known features from that element leads to Cannon abundances can lead to significantly different results for some elements than when all regions of the spectrum are used to derive abundances.
  •  
8.
  • Horta, Danny, et al. (författare)
  • The chemical characterization of halo substructure in the Milky Way based on APOGEE
  • 2023
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 520:4, s. 5671-5711
  • Tidskriftsartikel (refereegranskat)abstract
    • Galactic haloes in a Λ-CDM universe are predicted to host today a swarm of debris resulting from cannibalized dwarf galaxies. The chemodynamical information recorded in their stellar populations helps elucidate their nature, constraining the assembly history of the Galaxy. Using data from APOGEE and Gaia, we examine the chemical properties of various halo substructures, considering elements that sample various nucleosynthetic pathways. The systems studied are Heracles, Gaia-Enceladus/Sausage (GES), the Helmi stream, Sequoia, Thamnos, Aleph, LMS-1, Arjuna, I’itoi, Nyx, Icarus, and Pontus. Abundance patterns of all substructures are cross-compared in a statistically robust fashion. Our main findings include: (i) the chemical properties of most substructures studied match qualitatively those of dwarf Milky Way satellites, such as the Sagittarius dSph. Exceptions are Nyx and Aleph, which are chemically similar to disc stars, implying that these substructures were likely formed in situ; (ii) Heracles differs chemically from in situ populations such as Aurora and its inner halo counterparts in a statistically significant way. The differences suggest that the star formation rate was lower in Heracles than in the early Milky Way; (iii) the chemistry of Arjuna, LMS-1, and I’itoi is indistinguishable from that of GES, suggesting a possible common origin; (iv) all three Sequoia samples studied are qualitatively similar. However, only two of those samples present chemistry that is consistent with GES in a statistically significant fashion; (v) the abundance patterns of the Helmi stream and Thamnos are different from all other halo substructures.
  •  
9.
  • Imig, Julie, et al. (författare)
  • A Tale of Two Disks : Mapping the Milky Way with the Final Data Release of APOGEE
  • 2023
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 954:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present new maps of the Milky Way disk showing the distribution of metallicity ([Fe/H]), alpha-element abundances ([Mg/Fe]), and stellar age, using a sample of 66,496 red giant stars from the final data release (DR17) of the Apache Point Observatory Galactic Evolution Experiment survey. We measure radial and vertical gradients, quantify the distribution functions for age and metallicity, and explore chemical clock relations across the Milky Way for the low-a disk, high-alpha disk, and total population independently. The low-alpha disk exhibits a negative radial metallicity gradient of -0.06 +/- 0.001 dex kpc(-1), which flattens with distance from the midplane. The high-alpha disk shows a flat radial gradient in metallicity and age across nearly all locations of the disk. The age and metallicity distribution functions shift from negatively skewed in the inner Galaxy to positively skewed at large radius. Significant bimodality in the [Mg/Fe]-[Fe/H] plane and in the [Mg/Fe]-age relation persist across the entire disk. The age estimates have typical uncertainties of similar to 0.15 in log(age) and may be subject to additional systematic errors, which impose limitations on conclusions drawn from this sample. Nevertheless, these results act as critical constraints on galactic evolution models, constraining which physical processes played a dominant role in the formation of the Milky Way disk. We discuss how radial migration predicts many of the observed trends near the solar neighborhood and in the outer disk, but an additional more dramatic evolution history, such as the multi-infall model or a merger event, is needed to explain the chemical and age bimodality elsewhere in the Galaxy.
  •  
10.
  • Jönsson, Henrik, et al. (författare)
  • APOGEE Data and Spectral Analysis from SDSS Data Release 16 : Seven Years of Observations Including First Results from APOGEE-South
  • 2020
  • Ingår i: Astronomical Journal. - : Institute of Physics Publishing (IOPP). - 0004-6256 .- 1538-3881. ; 160:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The spectral analysis and data products in Data Release 16 (DR16; 2019 December) from the high-resolution near-infrared Apache Point Observatory Galactic Evolution Experiment (APOGEE)-2/Sloan Digital Sky Survey (SDSS)-IV survey are described. Compared to the previous APOGEE data release (DR14; 2017 July), APOGEE DR16 includes about 200,000 new stellar spectra, of which 100,000 are from a new southern APOGEE instrument mounted on the 2.5 m du Pont telescope at Las Campanas Observatory in Chile. DR16 includes all data taken up to 2018 August, including data released in previous data releases. All of the data have been re-reduced and re-analyzed using the latest pipelines, resulting in a total of 473,307 spectra of 437,445 stars. Changes to the analysis methods for this release include, but are not limited to, the use of MARCS model atmospheres for calculation of the entire main grid of synthetic spectra used in the analysis, a new method for filling "holes" in the grids due to unconverged model atmospheres, and a new scheme for continuum normalization. Abundances of the neutron-capture element Ce are included for the first time. A new scheme for estimating uncertainties of the derived quantities using stars with multiple observations has been applied, and calibrated values of surface gravities for dwarf stars are now supplied. Compared to DR14, the radial velocities derived for this release more closely match those in the Gaia DR2 database, and a clear improvement in the spectral analysis of the coolest giants can be seen. The reduced spectra as well as the result of the analysis can be downloaded using links provided on the SDSS DR16 web page.
  •  
11.
  • Jönsson, Henrik, et al. (författare)
  • APOGEE Data Releases 13 and 14 : Stellar Parameter and Abundance Comparisons with Independent Analyses
  • 2018
  • Ingår i: Astronomical Journal. - : Institute of Physics Publishing (IOPP). - 0004-6256 .- 1538-3881. ; 156:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Data from the SDSS-IV/Apache Point Observatory Galactic Evolution Experiment (APOGEE-2) have been released as part of SDSS Data Releases 13 (DR13) and 14 (DR14). These include high-resolution H-band spectra, radial velocities, and derived stellar parameters and abundances. DR13, released in 2016 August, contained APOGEE data for roughly 150,000 stars, and DR14, released in 2017 August, added about 110,000 more. Stellar parameters and abundances have been derived with an automated pipeline, the APOGEE Stellar Parameter and Chemical Abundance Pipeline (ASPCAP). We evaluate the performance of this pipeline by comparing the derived stellar parameters and abundances to those inferred from optical spectra and analysis for several hundred stars. For most elements-C, Na, Mg, Al, Si, S, Ca, Cr, Mn, Ni-the DR14 ASPCAP analyses have systematic differences with the comparisons samples of less than 0.05 dex (median), and random differences of less than 0.15 dex (standard deviation). These differences are a combination of the uncertainties in both the comparison samples as well as the ASPCAP analysis. Compared to the references, magnesium is the most accurate alpha-element derived by ASPCAP, and shows a very clear thin/thick disk separation, while nickel is the most accurate iron-peak element (besides iron itself).
  •  
12.
  • Meszaros, Szabolcs, et al. (författare)
  • Homogeneous analysis of globular clusters from the APOGEE survey with the BACCHUS code - III. omega Cen
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 505:2, s. 1645-1660
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the multiple populations of omega Cen by using the abundances of Fe, C, N, O, Mg, Al, Si, K, Ca, and Ce from the high-resolution, high signal-to-noise (S/N > 70) spectra of 982 red giant stars observed by the SDSS-IV/APOGEE-2 survey. We find that the shape of the Al-Mg and N-C anticorrelations changes as a function of metallicity, continuous for the metal-poor groups, but bimodal (or unimodal) at high metallicities. There are four Fe populations, similarly to previous literature findings, but we find seven populations based on Fe, Al, and Mg abundances. The evolution of Al in omega Cen is compared to its evolution in the Milky Way and in five representative globular clusters. We find that the distribution of Al in metal-rich stars of omega Cen closely follows what is observed in the Galaxy. Other alpha-elements and C, N, O, and Ce are also compared to the Milky Way, and significantly elevated abundances are observed over what is found in the thick disc for almost all elements. However, we also find some stars with high metallicity and low [Al/Fe], suggesting that omega Cen could be the remnant core of a dwarf galaxy, but the existence of these peculiar stars needs an independent confirmation. We also confirm the increase in the sum of CNO as a function of metallicity previously reported in the literature and find that the [C/N] ratio appears to show opposite correlations between Al-poor and Al-rich stars as a function of metallicity.
  •  
13.
  • Nidever, David L., et al. (författare)
  • The Lazy Giants : APOGEE Abundances Reveal Low Star Formation Efficiencies in the Magellanic Clouds
  • 2020
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 895:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the first APOGEE metallicities and alpha-element abundances measured for 3600 red giant stars spanning a large radial range of both the Large (LMC) and Small Magellanic Clouds, the largest Milky Way (MW) dwarf galaxies. Our sample is an order of magnitude larger than that of previous studies and extends to much larger radial distances. These are the first results presented that make use of the newly installed southern APOGEE instrument on the du Pont telescope at Las Campanas Observatory. Our unbiased sample of the LMC spans a large range in metallicity, from [Fe/H] = -0.2 to very metal-poor stars with [Fe/H] -2.5, the most metal-poor Magellanic Cloud (MC) stars detected to date. The LMC [alpha/Fe]-[Fe/H] distribution is very flat over a large metallicity range but rises by similar to 0.1 dex at -1.0 < [Fe/H] less than or similar to -0.5. We interpret this as a sign of the known recent increase in MC star formation activity and are able to reproduce the pattern with a chemical evolution model that includes a recent "starburst." At the metal-poor end, we capture the increase of [alpha/Fe] with decreasing [Fe/H] and constrain the "alpha-knee" to [Fe/H] less than or similar to -2.2 in both MCs, implying a low star formation efficiency of similar to 0.01 Gyr(-1). The MC knees are more metal-poor than those of less massive MW dwarf galaxies such as Fornax, Sculptor, or Sagittarius. One possible interpretation is that the MCs formed in a lower-density environment than the MW, a hypothesis that is consistent with the paradigm that the MCs fell into the MW's gravitational potential only recently.
  •  
14.
  • Pinsonneault, Marc H., et al. (författare)
  • The Second APOKASC Catalog : The Empirical Approach
  • 2018
  • Ingår i: Astrophysical Journal Supplement Series. - : Institute of Physics Publishing (IOPP). - 0067-0049 .- 1538-4365. ; 239:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a catalog of stellar properties for a large sample of 6676 evolved stars with Apache Point Observatory Galactic Evolution Experiment spectroscopic parameters and Kepler asteroseismic data analyzed using five independent techniques. Our data include evolutionary state, surface gravity, mean density, mass, radius, age, and the spectroscopic and asteroseismic measurements used to derive them. We employ a new empirical approach for combining asteroseismic measurements from different methods, calibrating the inferred stellar parameters, and estimating uncertainties. With high statistical significance, we find that asteroseismic parameters inferred from the different pipelines have systematic offsets that are not removed by accounting for differences in their solar reference values. We include theoretically motivated corrections to the large frequency spacing (Av) scaling relation, and we calibrate the zero-point of the frequency of the maximum power (vmax) relation to be consistent with masses and radii for members of star clusters. For most targets, the parameters returned by different pipelines are in much better agreement than would be expected from the pipeline-predicted random errors, but 22% of them had at least one method not return a result and a much larger measurement dispersion. This supports the usage of multiple analysis techniques for asteroseismic stellar population studies. The measured dispersion in mass estimates for fundamental calibrators is consistent with our error model, which yields median random and systematic mass uncertainties for RGB stars of order 4%. Median random and systematic mass uncertainties are at the 9% and 8% level, respectively, for red clump stars.
  •  
15.
  • Santana, Felipe A., et al. (författare)
  • Final Targeting Strategy for the SDSS-IV APOGEE-2S Survey
  • 2021
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 162:6
  • Tidskriftsartikel (refereegranskat)abstract
    • APOGEE is a high-resolution (R similar to 22,000), near-infrared, multi-epoch, spectroscopic survey of the Milky Way. The second generation of the APOGEE project, APOGEE-2, includes an expansion of the survey to the Southern Hemisphere called APOGEE-2S. This expansion enabled APOGEE to perform a fully panoramic mapping of all of the main regions of the Milky Way; in particular, by operating in the H band, APOGEE is uniquely able to probe the dust-hidden inner regions of the Milky Way that are best accessed from the Southern Hemisphere. In this paper we present the targeting strategy of APOGEE-2S, with special attention to documenting modifications to the original, previously published plan. The motivation for these changes is explained as well as an assessment of their effectiveness in achieving their intended scientific objective. In anticipation of this being the last paper detailing APOGEE targeting, we present an accounting of all such information complete through the end of the APOGEE-2S project; this includes several main survey programs dedicated to exploration of major stellar populations and regions of the Milky Way, as well as a full list of programs contributing to the APOGEE database through allocations of observing time by the Chilean National Time Allocation Committee and the Carnegie Institution for Science. This work was presented along with a companion article, Beaton et al. (2021), presenting the final target selection strategy adopted for APOGEE-2 in the Northern Hemisphere.
  •  
16.
  • Shetrone, Matthew, et al. (författare)
  • Constraining Metallicity-dependent Mixing and Extra Mixing Using [C/N] in Alpha-rich Field Giants
  • 2019
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 872:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Internal mixing on the giant branch is an important process which affects the evolution of stars and the chemical evolution of the galaxy. While several mechanisms have been proposed to explain this mixing, better empirical constraints are necessary. Here, we use [C/N] abundances in 26,097 evolved stars from the SDSS-IV/APOGEE-2 Data Release 14 to trace mixing and extra mixing in old field giants with -1.7 < [Fe/H] < 0.1. We show that the APOGEE [C/N] ratios before any dredge-up occurs are metallicity dependent, but that the change in [C/N] at the first dredge-up is metallicity independent for stars above [Fe/H] similar to -1. We identify the position of the red giant branch (RGB) bump as a function of metallicity, note that a metallicity-dependent extra mixing episode takes place for low-metallicity stars ([Fe/H] < -0.4) 0.14 dex in log g above the bump, and confirm that this extra mixing is stronger at low metallicity, reaching Delta[C/N] = 0.58 dex at [Fe/H] = -1.4. We show evidence for further extra mixing on the upper giant branch, well above the bump, among the stars with [Fe/H] < -1.0. This upper giant branch mixing is stronger in the more metal-poor stars, reaching 0.38 dex in [C/N] for each 1.0 dex in log g. The APOGEE [C/N] ratios for red clump (RC) stars are significantly higher than for stars at the tip of the RGB, suggesting additional mixing processes occur during the helium flash or that unknown abundance zero points for C and N may exist among the RC sample. Finally, because of extra mixing, we note that current empirical calibrations between [C/N] ratios and ages cannot be naively extrapolated for use in low-metallicity stars specifically for those above the bump in the luminosity function.
  •  
17.
  • Smith, Verne V., et al. (författare)
  • The APOGEE Data Release 16 Spectral Line List
  • 2021
  • Ingår i: Astronomical Journal. - : Institute of Physics Publishing (IOPP). - 0004-6256 .- 1538-3881. ; 161:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The updated H-band spectral-line list (from lambda 15000-17000) adopted by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) for the SDSS-IV Data Release 16 (DR16) is presented in this work. The APOGEE line list is a combination of atomic and molecular lines, with data drawn from laboratory, theoretical, and astrophysical sources. Oscillator strengths and damping constants are adjusted using high signal-to-noise, high-resolution spectra of the Sun, and alpha Boo (Arcturus), as "standard stars." Updates to the DR16 line list, as compared to the previous DR14 version, include the addition of molecular H2O and FeH lines, as well as a much larger (by a factor of similar to 4) atomic line list, including a significantly greater number of transitions with hyperfine splitting. More recent references and line lists for the crucial molecules, CO and OH, as well as for C-2 and SiH, are also included. In contrast to DR14, DR16 contains measurable lines from the heavy neutron-capture elements cerium (as Ce ii), neodymium (as Nd ii), and ytterbium (as Yb ii), as well as one line from rubidium (as Rb i), which may be detectable in a small fraction of APOGEE red giants.
  •  
18.
  • Souto, Diogo, et al. (författare)
  • Chemical Abundances of Main-sequence, Turnoff, Subgiant, and Red Giant Stars from APOGEE Spectra. I. Signatures of Diffusion in the Open Cluster M67
  • 2018
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 857:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Detailed chemical abundance distributions for 14 elements are derived for eight high-probability stellar members of the solar metallicity old open cluster M67 with an age of similar to 4 Gyr. The eight stars consist of four pairs, with each pair occupying a distinct phase of stellar evolution: two G dwarfs, two turnoff stars, two G subgiants, and two red clump (RC) K giants. The abundance analysis uses near-IR high-resolution spectra (lambda 1.5-1.7 mu m) from the Apache Point Observatory Galactic Evolution Experiment survey and derives abundances for C, N, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, and Fe. Our derived stellar parameters and metallicity for 2M08510076+1153115 suggest that this star is a solar twin, exhibiting abundance differences relative to the Sun of <= 0.04 dex for all elements. Chemical homogeneity is found within each class of stars (similar to 0.02 dex), while significant abundance variations (similar to 0.05-0.20 dex) are found across the different evolutionary phases; the turnoff stars typically have the lowest abundances, while the RCs tend to have the largest. Non-LTE corrections to the LTE-derived abundances are unlikely to explain the differences. A detailed comparison of the derived Fe, Mg, Si, and Ca abundances with recently published surface abundances from stellar models that include chemical diffusion provides a good match between the observed and predicted abundances as a function of stellar mass. Such agreement would indicate the detection of chemical diffusion processes in the stellar members of M67.
  •  
19.
  • Souto, Diogo, et al. (författare)
  • Chemical Abundances of Main-sequence, Turnoff, Subgiant, and Red Giant Stars from APOGEE Spectra. II. Atomic Diffusion in M67 Stars
  • 2019
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 874:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemical abundances for 15 elements (C, N, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, and Ni) are presented for 83 stellar members of the 4 Gyr old solar-metallicity open cluster M67. The sample contains stars spanning a wide range of evolutionary phases, from G dwarfs to red clump stars. The abundances were derived from near-IR (lambda 1.5-1.7 mu m) high-resolution spectra (R = 22,500) from the SDSS-IV/Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. A 1D local thermodynamic equilibrium abundance analysis was carried out using the APOGEE synthetic spectral libraries, via chi(2) minimization of the synthetic and observed spectra with the qASPCAP code. We found significant abundance differences (similar to 0.05-0.30 dex) between the M67 member stars as a function of the stellar mass (or position on the Hertzsprung-Russell diagram), where the abundance patterns exhibit a general depletion (in [X/H]) in stars at the main-sequence turnoff. The amount of the depletion is different for different elements. We find that atomic diffusion models provide, in general, good agreement with the abundance trends for most chemical species, supporting recent studies indicating that measurable atomic diffusion operates in M67 stars.
  •  
20.
  • Souto, Diogo, et al. (författare)
  • Detailed Chemical Abundances for a Benchmark Sample of M Dwarfs from the APOGEE Survey
  • 2022
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 927:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Individual chemical abundances for 14 elements (C, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, and Ni) are derived for a sample of M dwarfs using high-resolution, near-infrared H-band spectra from the Sloan Digital Sky Survey-IV/Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. The quantitative analysis included synthetic spectra computed with 1D LTE plane-parallel MARCS models using the APOGEE Data Release 17 line list to determine chemical abundances. The sample consists of 11 M dwarfs in binary systems with warmer FGK dwarf primaries and 10 measured interferometric angular diameters. To minimize atomic diffusion effects, [X/Fe] ratios are used to compare M dwarfs in binary systems and literature results for their warmer primary stars, indicating good agreement (<0.08 dex) for all studied elements. The mean abundance difference in primaries minus this work's M dwarfs is -0.05 +/- 0.03 dex. It indicates that M dwarfs in binary systems are a reliable way to calibrate empirical relationships. A comparison with abundance, effective temperature, and surface gravity results from the APOGEE Stellar Parameter and Chemical Abundances Pipeline (ASPCAP) Data Release 16 finds a systematic offset of [M/H], T (eff), log g = +0.21 dex, -50 K, and 0.30 dex, respectively, although ASPCAP [X/Fe] ratios are generally consistent with this study. The metallicities of the M dwarfs cover the range of [Fe/H] = -0.9 to +0.4 and are used to investigate Galactic chemical evolution via trends of [X/Fe] as a function of [Fe/H]. The behavior of the various elemental abundances [X/Fe] versus [Fe/H] agrees well with the corresponding trends derived from warmer FGK dwarfs, demonstrating that the APOGEE spectra can be used to examine Galactic chemical evolution using large samples of selected M dwarfs.
  •  
21.
  • Souto, Diogo, et al. (författare)
  • Stellar Characterization of M Dwarfs from the APOGEE Survey : A Calibrator Sample for M-dwarf Metallicities
  • 2020
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 890:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present spectroscopic determinations of the effective temperatures, surface gravities, and metallicities for 21 M dwarfs observed at high resolution (R similar to 22,500) in the H band as part of the Sloan Digital Sky Survey (SDSS)-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. The atmospheric parameters and metallicities are derived from spectral syntheses with 1D LTE plane-parallel MARCS models and the APOGEE atomic/molecular line list, together with up-to-date H2O and FeH molecular line lists. Our sample range in T-eff from similar to 3200 to 3800 K, where 11 stars are in binary systems with a warmer (FGK) primary, while the other 10 M dwarfs have interferometric radii in the literature. We define an M-KS-radius calibration based on our M-dwarf radii derived from the detailed analysis of APOGEE spectra and Gaia DR2 distances, as well as a mass-radius relation using the spectroscopically derived surface gravities. A comparison of the derived radii with interferometric values from the literature finds that the spectroscopic radii are slightly offset toward smaller values, with Delta= -0.01 +/- 0.02 R star/R-circle dot. In addition, the derived M-dwarf masses based upon the radii and surface gravities tend to be slightly smaller (by similar to 5%-10%) than masses derived for M-dwarf members of eclipsing binary systems for a given stellar radius. The metallicities derived for the 11 M dwarfs in binary systems, compared to metallicities obtained for their hotter FGK main-sequence primary stars from the literature, show excellent agreement, with a mean difference of [Fe/H](M dwarf - FGK primary) = +0.04 +/- 0.18 dex, confirming the APOGEE metallicity scale derived here for M dwarfs.
  •  
22.
  • Weinberg, David H., et al. (författare)
  • Chemical Cartography with APOGEE : Mapping Disk Populations with a 2-process Model and Residual Abundances
  • 2022
  • Ingår i: Astrophysical Journal Supplement Series. - : IOP Publishing Ltd. - 0067-0049 .- 1538-4365. ; 260:2, s. 1-46
  • Tidskriftsartikel (refereegranskat)abstract
    • We apply a novel statistical analysis to measurements of 16 elemental abundances in 34,410 Milky Way disk stars from the final data release (DR17) of APOGEE-2. Building on recent work, we fit median abundance ratio trends [X/Mg] versus [Mg/H] with a 2-process model, which decomposes abundance patterns into a "prompt" component tracing core-collapse supernovae and a "delayed" component tracing Type Ia supernovae. For each sample star, we fit the amplitudes of these two components, then compute the residuals Delta[X/H] from this two-parameter fit. The rms residuals range from similar to 0.01-0.03 dex for the most precisely measured APOGEE abundances to similar to 0.1 dex for Na, V, and Ce. The correlations of residuals reveal a complex underlying structure, including a correlated element group comprised of Ca, Na, Al, K, Cr, and Ce and a separate group comprised of Ni, V, Mn, and Co. Selecting stars poorly fit by the 2-process model reveals a rich variety of physical outliers and sometimes subtle measurement errors. Residual abundances allow for the comparison of populations controlled for differences in metallicity and [alpha/Fe]. Relative to the main disk (R = 3-13 kpc), we find nearly identical abundance patterns in the outer disk (R = 15-17 kpc), 0.05-0.2 dex depressions of multiple elements in LMC and Gaia Sausage/Enceladus stars, and wild deviations (0.4-1 dex) of multiple elements in omega Cen. The residual abundance analysis opens new opportunities for discovering chemically distinctive stars and stellar populations, for empirically constraining nucleosynthetic yields, and for testing chemical evolution models that include stochasticity in the production and redistribution of elements.
  •  
23.
  • Weinberg, David H., et al. (författare)
  • Chemical Cartography with APOGEE : Multi-element Abundance Ratios
  • 2019
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 874:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We map the trends of elemental abundance ratios across the Galactic disk, spanning R = 3-15 kpc and midplane distance vertical bar Z vertical bar = 0-2 kpc, for 15 elements in a sample of 20,485 stars measured by the SDSS/APOGEE survey (O, Na, Mg, Al, Si, P, S, K, Ca, V, Cr, Mn, Fe, Co, Ni). Adopting Mg rather than Fe as our reference element, and separating stars into two populations based on [Fe/Mg], we find that the median trends of [X/Mg] versus [Mg/H] in each population are nearly independent of location in the Galaxy. The full multi-element cartography can be summarized by combining these nearly universal median sequences with our measured metallicity distribution functions and the relative proportions of the low-[Fe/Mg] (high-alpha) and high-[Fe/Mg] (low-alpha) populations, which depend strongly on R and vertical bar Z vertical bar. We interpret the median sequences with a semi-empirical "two-process" model that describes both the ratio of core collapse and Type Ia supernova (SN Ia) contributions to each element and the metallicity dependence of the supernova yields. These observationally inferred trends can provide strong tests of supernova nucleosynthesis calculations. Our results lead to a relatively simple picture of abundance ratio variations in the Milky Way, in which the trends at any location can be described as the sum of two components with relative contributions that change systematically and smoothly across the Galaxy. Deviations from this picture and future extensions to other elements can provide further insights into the physics of stellar nucleosynthesis and unusual events in the Galaxy's history.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-23 av 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy