SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Simonato Michele) "

Sökning: WFRF:(Simonato Michele)

  • Resultat 1-11 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Basso, Margherita, et al. (författare)
  • Effect of food chemicals and temperature on mechanical reliability of bio-based glass fibers reinforced polyamide
  • 2019
  • Ingår i: Composites Part B. - : Elsevier. - 1359-8368 .- 1879-1069. ; 157, s. 140-149
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents an experimental study to assess the effects of food chemicals and temperature on the mechanical performance of glass fiber reinforced bio-based polyamide. The diffusion of food chemicals was mainly driven by thermal energy, following Arrhenius law in all tested environments. Degradation of mechanical properties and decrease in reliability were assessed, due to the plasticization of polymer matrix. Secondary but not negligible effect on flexural strength degradation is given by the different chemical interaction between polymeric chains and molecules of food chemicals. Colour change was measured and resulted to be positively correlated to diffusion.
  •  
2.
  • Basso, Margherita, et al. (författare)
  • Nonlinear creep behaviour of glass fiber reinforced polypropylene : Impact of aging on stiffness degradation
  • 2019
  • Ingår i: Composites Part B. - : Elsevier. - 1359-8368 .- 1879-1069. ; 163, s. 702-709
  • Tidskriftsartikel (refereegranskat)abstract
    • Nonlinear creep behavior of one commercial short glass fiber reinforced polypropylene was investigated using tensile creep tests and stiffness degradation measurements. The impact of thermal aging and following quenching was evaluated on the latter mechanical property. Experimental results were modeled applying nonlinear viscoelastic model used by Pupure et al. (2013) and developed by Lou and Schapery [1,2]. Results showed that this model can describe nonlinear behavior of short glass fiber reinforced polymer composites, where microdamage is given by debonding of fiber-matrix interfaces already at low strains, where cracks propagate and lead to tensile creep fracture.
  •  
3.
  •  
4.
  • Henshall, David C., et al. (författare)
  • Shaping the future of European epilepsy research : Final meeting report from EPICLUSTER
  • 2023
  • Ingår i: Epilepsy Research. - : Elsevier BV. - 0920-1211. ; 189
  • Tidskriftsartikel (refereegranskat)abstract
    • Collaboration is essential to the conduct of basic, applied and clinical research and its translation into the technologies and treatments urgently needed to improve the lives of people living with brain diseases and the health professionals who care for them. EPICLUSTER was formed in 2019 by the European Brain Research Area (EBRA) to support the coordination of epilepsy research in Europe. A key objective was to provide a platform to discuss shared research priorities by bringing together scientists and clinicians with multiple stakeholders including patient organisations and industry and the networks and infrastructures that provide healthcare and support research. Additional objectives were to facilitate access and sharing of data and biosamples, working together to ensure epilepsy is a priority for research funding, and embedding a culture of public and patient involvement (PPI) among epilepsy researchers. In this meeting report, we summarise the shared research priorities discussed by the leadership of EPICLUSTER at the recent final meeting. We also briefly review the discussion on patient and industry priorities, guidance on starting PPI for epilepsy researchers, and the sustainability of funding and infrastructures needed to ensure a comprehensive stakeholder-embedded community for epilepsy research.
  •  
5.
  • Lapinlampi, Niina, et al. (författare)
  • Common data elements and data management : Remedy to cure underpowered preclinical studies
  • 2017
  • Ingår i: Epilepsy Research. - : Elsevier BV. - 0920-1211. ; 129, s. 87-90
  • Tidskriftsartikel (refereegranskat)abstract
    • Lack of translation of data obtained in preclinical trials to clinic has kindled researchers to develop new methodologies to increase the power and reproducibility of preclinical studies. One approach relates to harmonization of data collection and analysis, and has been used for a long time in clinical studies testing anti-seizure drugs. EPITARGET is a European Union FP7-funded research consortium composed of 18 partners from 9 countries. Its main research objective is to identify biomarkers and develop treatments for epileptogenesis. As the first step of harmonization of procedures between laboratories, EPITARGET established working groups for designing project-tailored common data elements (CDEs) and case report forms (CRFs) to be used in data collection and analysis. Eight major modules of CRFs were developed, presenting >1000 data points for each animal. EPITARGET presents the first single-project effort for harmonization of preclinical data collection and analysis in epilepsy research. EPITARGET is also anticipating the future challenges and requirements in a larger-scale preclinical harmonization of epilepsy studies, including training, data management expertise, cost, location, data safety and continuity of data repositories during and after funding period, and incentives motivating for the use of CDEs.
  •  
6.
  • Nanobashvili, Avtandil, et al. (författare)
  • Unilateral ex vivo gene therapy by GDNF in epileptic rats
  • 2019
  • Ingår i: Gene Therapy. - : Springer Science and Business Media LLC. - 0969-7128 .- 1476-5462. ; 26:3-4, s. 65-74
  • Tidskriftsartikel (refereegranskat)abstract
    • Temporal lobe epilepsy (TLE) is the most common type of epilepsy in adults. This neurological disorder is characterized by focal seizures originating in the temporal lobe, often with secondary generalization. A variety of pharmacological treatments exist for patients suffering from focal seizures, but systemically administered drugs offer only symptomatic relief and frequently cause unwanted side effects. Moreover, available drugs are ineffective in one third of the epilepsy patients. Thus, developing more targeted and effective treatment strategies for focal seizures, originating from, e.g., the temporal lobe, is highly warranted. In order to deliver potential anti-epileptic agents directly into the seizure focus we used encapsulated cell biodelivery (ECB), a specific type of ex vivo gene therapy. Specifically, we asked whether unilateral delivery of glial cell line-derived neurotrophic factor (GDNF), exclusively into the epileptic focus, would suppress already established spontaneous recurrent seizures (SRS) in rats. Our results show that GDNF delivered by ECB devices unilaterally into the seizure focus in the hippocampus effectively decreases the number of SRS in epileptic rats. Thus, our study demonstrates that focal unilateral delivery of neurotrophic factors, such as GDNF, using ex vivo gene therapy based on ECB devices could be an effective anti-epileptic strategy providing a bases for the development of a novel, alternative, treatment for focal epilepsies.
  •  
7.
  • Paolone, Giovanna, et al. (författare)
  • Long-Term, Targeted Delivery of GDNF from Encapsulated Cells Is Neuroprotective and Reduces Seizures in the Pilocarpine Model of Epilepsy
  • 2019
  • Ingår i: The Journal of Neuroscience : the official journal of the Society for Neuroscience. - 1529-2401. ; 39:11, s. 2144-2156
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurotrophic factors are candidates for treating epilepsy, but their development has been hampered by difficulties in achieving stable and targeted delivery of efficacious concentrations within the desired brain region. We have developed an encapsulated cell technology that overcomes these obstacles by providing a targeted, continuous, de novo synthesized source of high levels of neurotrophic molecules from human clonal ARPE-19 cells encapsulated into hollow fiber membranes. Here we illustrate the potential of this approach for delivering glial cell line-derived neurotrophic factor (GDNF) directly to the hippocampus of epileptic rats. In vivo studies demonstrated that bilateral intrahippocampal implants continued to secrete GDNF that produced high hippocampal GDNF tissue levels in a long-term manner. Identical implants robustly reduced seizure frequency in the pilocarpine model. Seizures were reduced rapidly, and this effect increased in magnitude over 3 months, ultimately leading to a reduction of seizures by 93%. This effect persisted even after device removal, suggesting potential disease-modifying benefits. Importantly, seizure reduction was associated with normalized changes in anxiety and improved cognitive performance. Immunohistochemical analyses revealed that the neurological benefits of GDNF were associated with the normalization of anatomical alterations accompanying chronic epilepsy, including hippocampal atrophy, cell degeneration, loss of parvalbumin-positive interneurons, and abnormal neurogenesis. These effects were associated with the activation of GDNF receptors. All in all, these results support the concept that the implantation of encapsulated GDNF-secreting cells can deliver GDNF in a sustained, targeted, and efficacious manner, paving the way for continuing preclinical evaluation and eventual clinical translation of this approach for epilepsy.SIGNIFICANCE STATEMENT Epilepsy is one of the most common neurological conditions, affecting millions of individuals of all ages. These patients experience debilitating seizures that frequently increase over time and can associate with significant cognitive decline and psychiatric disorders that are generally poorly controlled by pharmacotherapy. We have developed a clinically validated, implantable cell encapsulation system that delivers high and consistent levels of GDNF directly to the brain. In epileptic animals, this system produced a progressive and permanent reduction (>90%) in seizure frequency. These benefits were accompanied by improvements in cognitive and anxiolytic behavior and the normalization of changes in CNS anatomy that underlie chronic epilepsy. Together, these data suggest a novel means of tackling the frequently intractable neurological consequences of this devastating disorder.
  •  
8.
  • Pitkänen, Asla, et al. (författare)
  • Advances in the development of biomarkers for epilepsy
  • 2016
  • Ingår i: Lancet Neurology. - 1474-4422. ; 15:8, s. 843-856
  • Forskningsöversikt (refereegranskat)abstract
    • Over 50 million people worldwide have epilepsy. In nearly 30% of these cases, epilepsy remains unsatisfactorily controlled despite the availability of over 20 antiepileptic drugs. Moreover, no treatments exist to prevent the development of epilepsy in those at risk, despite an increasing understanding of the underlying molecular and cellular pathways. One of the major factors that have impeded rapid progress in these areas is the complex and multifactorial nature of epilepsy, and its heterogeneity. Therefore, the vision of developing targeted treatments for epilepsy relies upon the development of biomarkers that allow individually tailored treatment. Biomarkers for epilepsy typically fall into two broad categories: diagnostic biomarkers, which provide information on the clinical status of, and potentially the sensitivity to, specific treatments, and prognostic biomarkers, which allow prediction of future clinical features, such as the speed of progression, severity of epilepsy, development of comorbidities, or prediction of remission or cure. Prognostic biomarkers are of particular importance because they could be used to identify which patients will develop epilepsy and which might benefit from preventive treatments. Biomarker research faces several challenges; however, biomarkers could substantially improve the management of people with epilepsy and could lead to prevention in the right person at the right time, rather than just symptomatic treatment.
  •  
9.
  • Pitkänen, Asla, et al. (författare)
  • Advancing research toward faster diagnosis, better treatment, and end of stigma in epilepsy
  • 2019
  • Ingår i: Epilepsia. - : Wiley. - 0013-9580 .- 1528-1167.
  • Tidskriftsartikel (refereegranskat)abstract
    • Seven large European Union (EU)–funded epilepsy-related research projects joined forces in May 2018 in Brussels, Belgium, in a unique community building event—the epiXchange conference. During this conference, 170 investigators from the projects DESIRE, EpimiRNA, EPISTOP, EpiTarget, EpiXchange, and EpiPGX as well as the European Reference Network EpiCARE, met up with key stakeholders including representatives of the European Commission, patient organizations, commercial partners, and other European and International groups. The epiXchange conference focused on sharing and reviewing the advances made by each project in the previous 5 years; describing the infrastructures generated; and discussing the innovations and commercial applications across five thematic areas: biomarkers, genetics, therapeutics, comorbidities, and biobanks and resources. These projects have, in fact, generated major breakthroughs including the discovery of biofluid-based molecules for diagnosis, elucidating new genetic causes of epilepsy, creating advanced new models of epilepsy, and the pre-clinical development of novel compounds. Workshop-style discussions focused on how to overcome scientific and clinical challenges for accelerating translation of research outcomes and how to increase synergies between the projects and stakeholders at a European level. The resulting advances would lead toward a measurable impact of epilepsy research through better diagnostics, treatments, and quality-of-life for persons with epilepsy. In addition, epiXchange provided a unique forum for examining how the different projects could build momentum for future novel groundbreaking epilepsy research in Europe and beyond. This report includes the main recommendations that resulted from these discussions.
  •  
10.
  • Simonato, Michele, et al. (författare)
  • Angels and demons: neurotrophic factors and epilepsy
  • 2006
  • Ingår i: Trends in Pharmacological Sciences. - : Elsevier BV. - 0165-6147. ; 27:12, s. 631-638
  • Forskningsöversikt (refereegranskat)abstract
    • Several lines of evidence indicate that neurotrophic factors (NTFs) could be key causal mediators in the development of acquired epileptic syndromes. Yet the trophic properties of NTFs indicate that they might be used to treat epilepsy-associated damage. Accordingly, different NTFs, or even the same NTF, could produce functionally contrasting effects in the context of epilepsy. Recent experimental evidence begins to shed light on the mechanisms underlying these contrasting effects. Understanding these mechanisms will be instrumental for the development of effective therapies, which must be based on a careful consideration of the biological properties of NTFs. Here, we critically evaluate new information emerging in this area and discuss its implications for clinical treatment.
  •  
11.
  • Solmi, Marco, et al. (författare)
  • Balancing risks and benefits of cannabis use: umbrella review of meta-analyses of randomised controlled trials and observational studies
  • 2023
  • Ingår i: BMJ. British Medical Journal. - : BMJ PUBLISHING GROUP. - 0959-8146 .- 0959-535X. ; 382
  • Forskningsöversikt (refereegranskat)abstract
    • OBJECTIVE To systematically assess credibility and certainty of associations between cannabis, cannabinoids, and cannabis based medicines and human health, from observational studies and randomised controlled trials (RCTs). DESIGN Umbrella review. DATA SOURCES PubMed, PsychInfo, Embase, up to 9 February 2022. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Systematic reviews with meta-analyses of observational studies and RCTs that have reported on the efficacy and safety of cannabis, cannabinoids, or cannabis based medicines were included. Credibility was graded according to convincing, highly suggestive, suggestive, weak, or not significant (observational evidence), and by GRADE (Grading of Recommendations, Assessment, Development and Evaluations) (RCTs). Quality was assessed with AMSTAR 2 (A Measurement Tool to Assess Systematic Reviews 2). Sensitivity analyses were conducted. RESULTS 101 meta-analyses were included (observational=50, RCTs=51) (AMSTAR 2 high 33, moderate 31, low 32, or critically low 5). From RCTs supported by high to moderate certainty, cannabis based medicines increased adverse events related to the central nervous system (equivalent odds ratio 2.84 (95% confidence interval 2.16 to 3.73)), psychological effects (3.07 (1.79 to 5.26)), and vision (3.00 (1.79 5.03)) in people with mixed conditions (GRADE=high), improved nausea/vomit, pain, spasticity, but increased psychiatric, gastrointestinal adverse event, and somnolence among others (GRADE=moderate). Cannabidiol improved 50% reduction of seizures (0.59 (0.38 to 0.92)) and seizure events (0.59 (0.36 to 0.96)) (GRADE=high), but increased pneumonia, gastrointestinal adverse events, and somnolence (GRADE=moderate). For chronic pain, cannabis based medicines or cannabinoids reduced pain by 30% (0.59 (0.37 to 0.93), GRADE=high), across different conditions (n=7), but increased psychological distress. For epilepsy, cannabidiol increased risk of diarrhoea (2.25 (1.33 to 3.81)), had no effect on sleep disruption (GRADE=high), reduced seizures across different populations and measures (n=7), improved global impression (n=2), quality of life, and increased risk of somnolence (GRADE=moderate). In the general population, cannabis worsened positive psychotic symptoms (5.21 (3.36 to 8.01)) and total psychiatric symptoms (7.49 (5.31 to 10.42)) (GRADE=high), negative psychotic symptoms, and cognition (n=11) (GRADE=moderate). In healthy people, cannabinoids improved pain threshold (0.74 (0.59 to 0.91)), unpleasantness (0.60 (0.41 to 0.88)) (GRADE=high). For inflammatory bowel disease, cannabinoids improved quality of life (0.34 (0.22 to 0.53) (GRADE=high). For multiple sclerosis, cannabinoids improved spasticity, pain, but increased risk of dizziness, dry mouth, nausea, somnolence (GRADE=moderate). For cancer, cannabinoids improved sleep disruption, but had gastrointestinal adverse events (n=2) (GRADE=moderate). Cannabis based medicines, cannabis, and cannabinoids resulted in poor tolerability across various conditions (GRADE=moderate). Evidence was convincing from observational studies (main and sensitivity analyses); in pregnant women, small for gestational age (1.61 (1.41 to 1.83)), low birth weight (1.43 (1.27 to 1.62)); in drivers, car crash (1.27 (1.21 to 1.34)); and in the general population, psychosis (1.71 (1.47 to 2.00)). Harmful effects were noted for additional neonatal outcomes, outcomes related to car crash, outcomes in the general population including psychotic symptoms, suicide attempt, depression, and mania, and impaired cognition in healthy cannabis users (all suggestive to highly suggestive). CONCLUSIONS Convincing or converging evidence supports avoidance of cannabis during adolescence and early adulthood, in people prone to or with mental health disorders, in pregnancy and before and while driving. Cannabidiol is effective in people with epilepsy. Cannabis based medicines are effective in people with multiple sclerosis, chronic pain, inflammatory bowel disease, and in palliative medicine, but not without adverse events.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-11 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy