SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Snook H) "

Sökning: WFRF:(Snook H)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aad, G, et al. (författare)
  • 2015
  • swepub:Mat__t
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Urban, Mark C., et al. (författare)
  • When and how can we predict adaptive responses to climate change?
  • 2024
  • Ingår i: Evolution Letters. - : Oxford University Press. - 2056-3744. ; 8:1, s. 172-187
  • Tidskriftsartikel (refereegranskat)abstract
    • Predicting if, when, and how populations can adapt to climate change constitutes one of the greatest challenges in science today. Here, we build from contributions to the special issue on evolutionary adaptation to climate change, a survey of its authors, and recent literature to explore the limits and opportunities for predicting adaptive responses to climate change. We outline what might be predictable now, in the future, and perhaps never even with our best efforts. More accurate predictions are expected for traits characterized by a well-understood mapping between genotypes and phenotypes and traits experiencing strong, direct selection due to climate change. A meta-analysis revealed an overall moderate trait heritability and evolvability in studies performed under future climate conditions but indicated no significant change between current and future climate conditions, suggesting neither more nor less genetic variation for adapting to future climates. Predicting population persistence and evolutionary rescue remains uncertain, especially for the many species without sufficient ecological data. Still, when polled, authors contributing to this special issue were relatively optimistic about our ability to predict future evolutionary responses to climate change. Predictions will improve as we expand efforts to understand diverse organisms, their ecology, and their adaptive potential. Advancements in functional genomic resources, especially their extension to non-model species and the union of evolutionary experiments and "omics," should also enhance predictions. Although predicting evolutionary responses to climate change remains challenging, even small advances will reduce the substantial uncertainties surrounding future evolutionary responses to climate change. Preventing biological impacts from climate change will require accurate predictions about which species and ecosystems are most at risk and how best to protect them. Despite some progress, most predictive efforts still omit the potential for evolution to mediate climate change impacts. Here, we evaluate what is predictable now, in the future, and likely never based on recent literature, a survey of authors, and authors' contributions to a special issue on climate change evolution. Evidence indicates a growing ability to predict at least some components underlying evolutionary dynamics. For instance, the direct effects of climate change often alter natural selection regimes that could elicit evolutionary responses assuming sufficient additive genetic variation. We found no evidence for an increase or decrease in evolvability under future climate conditions, but we did find an overall moderate level of evolvability. However, the specific genetics underlying potential adaptive changes are still a "black box" that remains difficult to predict. We not only discuss the opportunities afforded by new genomic techniques to elucidate these genetic black boxes but also caution that the costs and limitations of such techniques for many species might not warrant their general practicality. We highlight further progress and challenges in predicting gene flow and population persistence, both of which can facilitate evolutionary rescue. We finish by listing ten activities that are needed to accelerate future progress in predicting climate change evolution. Despite the many complexities, we are relatively optimistic that evolutionary responses to climate change are becoming more accurate through time, especially assuming a more focused effort to fill key knowledge gaps in the coming years.
  •  
6.
  • Garlovsky, Martin D., et al. (författare)
  • Within-population sperm competition intensity does not predict asymmetry in conpopulation sperm precedence
  • 2020
  • Ingår i: Philosophical Transactions of the Royal Society of London. Biological Sciences. - : The Royal Society. - 0962-8436 .- 1471-2970. ; 375:1813
  • Tidskriftsartikel (refereegranskat)abstract
    • Postcopulatory sexual selection can generate evolutionary arms races between the sexes resulting in the rapid coevolution of reproductive phenotypes. As traits affecting fertilization success diverge between populations, postmating prezygotic (PMPZ) barriers to gene flow may evolve. Conspecific sperm precedence is a form of PMPZ isolation thought to evolve early during speciation yet has mostly been studied between species. Here, we show conpopulation sperm precedence (CpSP) between Drosophila montana populations. Using Pool-seq genomic data we estimate divergence times and ask whether PMPZ isolation evolved in the face of gene flow. We find models incorporating gene flow fit the data best indicating populations experienced considerable gene flow during divergence. We find CpSP is asymmetric and mirrors asymmetry in non-competitive PMPZ isolation, suggesting these phenomena have a shared mechanism. However, we show asymmetry is unrelated to the strength of postcopulatory sexual selection acting within populations. We tested whether overlapping foreign and coevolved ejaculates within the female reproductive tract altered fertilization success but found no effect. Our results show that neither time since divergence nor sperm competitiveness predicts the strength of PMPZ isolation. We suggest that instead cryptic female choice or mutation-order divergence may drive divergence of postcopulatory phenotypes resulting in PMPZ isolation. This article is part of the theme issue 'Fifty years of sperm competition'.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy