SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stanciu Lia A.) "

Sökning: WFRF:(Stanciu Lia A.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dehestani, Mahdi, et al. (författare)
  • Improving bioactivity of inert bioceramics by a novel Mg-incorporated solution treatment
  • 2017
  • Ingår i: Applied Surface Science. - : Elsevier B.V.. - 0169-4332 .- 1873-5584. ; 425, s. 564-575
  • Tidskriftsartikel (refereegranskat)abstract
    • Zirconia/alumina ceramics possess outstanding mechanical properties for dental and orthopedic applications, but due to their poor surface bioactivities they exhibit a weak bone-bonding ability. This work proposes an effective 30-min solution treatment which could successfully induce formation of bone-like apatite on the surface of 3Y-TZP and a ternary composite composed of yttria-stabilized zirconia, ceria-stabilized zirconia, and alumina (35 vol% 3Y-TZP + 35 vol% 12Ce-TZP + 30 vol% Al2O3) after 3 weeks immersion in simulated body fluid (SBF). XRD was used for phase identification in the ceramic materials. The influence of solution treatment on the surface chemistry and its role on apatite formation were investigated via SEM, EDS and XPS. In vitro apatite-forming ability for the solution-treated and untreated samples of the composite and individual substrates of 3Y-TZP, 12Ce-TZP, and Al2O3 was evaluated by immersion in SBF. Apatite crystals were formed only on 3Y-TZP and composite substrates, implying that it is mainly the 3Y-TZP constituent that contributes to the bioactivity of the composite. Further, it was found from the XPS analysis that the zirconia material with higher phase stability (12Ce-TZP) produced less Zr–OH functional groups on its surface after solution treatment which accounts for its weaker bioactivity compared to 3Y-TZP. 
  •  
2.
  • Dehestani, Mahdi, et al. (författare)
  • Mechanical properties and corrosion behavior of powder metallurgy iron-hydroxyapatite composites for biodegradable implant applications
  • 2016
  • Ingår i: Materials and Design. - : Elsevier BV. - 0264-1275 .- 1873-4197. ; 109, s. 556-569
  • Tidskriftsartikel (refereegranskat)abstract
    • Nine Fe–HA composites were fabricated via powder metallurgy method by varying the amount (2.5, 5, 10 wt%) and particle size (< 1 Όm, 1–10 Όm, 100–200 Όm) of hydroxyapatite (HA) as a bioactive phase in the iron (Fe) matrix. X-ray diffraction did not detect any phase changes in HA after the sintering process. Uniaxial tensile tests measured the strengths of the composites. Polarization and immersion tests estimated the corrosion rates (CR). Yield strength, tensile strength, and ductility of the composites decreased with increasing HA content and decreasing HA particle size, whereas their corrosion rates increased. The strongest composite was Fe–2.5 wt% HA (100–200 Όm) with σy = 81.7 MPa, σu = 130.1 MPa, fracture strain of 4.87%, and CR = 0.23 mmpy. The weakest composite was Fe–10 wt% HA (< 1 Όm) which did not exhibit plastic deformation, fractured at σu = 16.1 MPa with 0.11% strain, and showed the highest CR of 1.07 mmpy. This study demonstrates how the relative particle size between Fe and HA determines the mechanical and corrosion properties of Fe–HA composites, thereby aiding in enhancing future resorbable implant designs. The model can also be used when designing other bioactive composites (i.e. Ti–HA, Mg–HA) via powder metallurgy.
  •  
3.
  • Landeck, Natalie, et al. (författare)
  • Two C-terminal sequence variations determine differential neurotoxicity between human and mouse α-synuclein
  • 2020
  • Ingår i: Molecular Neurodegeneration. - : Springer Science and Business Media LLC. - 1750-1326. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: α-Synuclein (aSyn) aggregation is thought to play a central role in neurodegenerative disorders termed synucleinopathies, including Parkinson's disease (PD). Mouse aSyn contains a threonine residue at position 53 that mimics the human familial PD substitution A53T, yet in contrast to A53T patients, mice show no evidence of aSyn neuropathology even after aging. Here, we studied the neurotoxicity of human A53T, mouse aSyn, and various human-mouse chimeras in cellular and in vivo models, as well as their biochemical properties relevant to aSyn pathobiology. Methods: Primary midbrain cultures transduced with aSyn-encoding adenoviruses were analyzed immunocytochemically to determine relative dopaminergic neuron viability. Brain sections prepared from rats injected intranigrally with aSyn-encoding adeno-associated viruses were analyzed immunohistochemically to determine nigral dopaminergic neuron viability and striatal dopaminergic terminal density. Recombinant aSyn variants were characterized in terms of fibrillization rates by measuring thioflavin T fluorescence, fibril morphologies via electron microscopy and atomic force microscopy, and protein-lipid interactions by monitoring membrane-induced aSyn aggregation and aSyn-mediated vesicle disruption. Statistical tests consisted of ANOVA followed by Tukey's multiple comparisons post hoc test and the Kruskal-Wallis test followed by a Dunn's multiple comparisons test or a two-tailed Mann-Whitney test. Results: Mouse aSyn was less neurotoxic than human aSyn A53T in cell culture and in rat midbrain, and data obtained for the chimeric variants indicated that the human-to-mouse substitutions D121G and N122S were at least partially responsible for this decrease in neurotoxicity. Human aSyn A53T and a chimeric variant with the human residues D and N at positions 121 and 122 (respectively) showed a greater propensity to undergo membrane-induced aggregation and to elicit vesicle disruption. Differences in neurotoxicity among the human, mouse, and chimeric aSyn variants correlated weakly with differences in fibrillization rate or fibril morphology. Conclusions: Mouse aSyn is less neurotoxic than the human A53T variant as a result of inhibitory effects of two C-terminal amino acid substitutions on membrane-induced aSyn aggregation and aSyn-mediated vesicle permeabilization. Our findings highlight the importance of membrane-induced self-assembly in aSyn neurotoxicity and suggest that inhibiting this process by targeting the C-terminal domain could slow neurodegeneration in PD and other synucleinopathy disorders.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy