SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wheelock AM) "

Sökning: WFRF:(Wheelock AM)

  • Resultat 1-50 av 79
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Balgoma, D, et al. (författare)
  • Linoleic acid-derived lipid mediators increase in a female-dominated subphenotype of COPD
  • 2016
  • Ingår i: The European respiratory journal. - : European Respiratory Society (ERS). - 1399-3003 .- 0903-1936. ; 47:6, s. 1645-1656
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality; however, the role of inflammatory mediators in its pathobiology remains unclear. The aim of this study was to investigate the influence of gender in COPD on lipid mediator levels.Bronchoalveolar lavage fluid (BALF) and serum were obtained from healthy never-smokers, smokers and COPD patients (Global Initiative for Chronic Obstructive Lung Disease stage I–II/A–B) (n=114). 94 lipid mediators derived from the cytochrome-P450, lipoxygenase, and cyclooxygenase pathways were analysed by liquid chromatography-mass spectrometry.Multivariate modelling identified a 9-lipid panel in BALF that classified female smokers with COPD from healthy female smokers (p=6×10−6). No differences were observed for the corresponding male population (p=1.0). These findings were replicated in an independent cohort with 92% accuracy (p=0.005). The strongest drivers were the cytochrome P450-derived epoxide products of linoleic acid (leukotoxins) and their corresponding soluble epoxide hydrolase (sEH)-derived products (leukotoxin-diols). These species correlated with lung function (r=0.87; p=0.0009) and mRNA levels of enzymes putatively involved in their biosynthesis (r=0.96; p=0.003). Leukotoxin levels correlated with goblet cell abundance (r=0.72; p=0.028).These findings suggest a mechanism by which goblet cell-associated cytochrome-P450 and sEH activity produce elevated leukotoxin-diol levels, which play a putative role in the clinical manifestations of COPD in a female-dominated disease sub-phenotype.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  • Li, CX, et al. (författare)
  • Integration of multi-omics datasets enables molecular classification of COPD
  • 2018
  • Ingår i: The European respiratory journal. - : European Respiratory Society (ERS). - 1399-3003 .- 0903-1936. ; 51:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic obstructive pulmonary disease (COPD) is an umbrella diagnosis caused by a multitude of underlying mechanisms, and molecular sub-phenotyping is needed to develop molecular diagnostic/prognostic tools and efficacious treatments.The objective of these studies was to investigate whether multi-omics integration improves the accuracy of molecular classification of COPD in small cohorts.Nine omics data blocks (comprising mRNA, micro RNA, proteomes and metabolomes) collected from several anatomical locations from 52 female subjects were integrated by similarity network fusion (SNF). Multi-omics integration significantly improved the accuracy of group classification of COPD patients from healthy never-smokers and from smokers with normal spirometry, reducing required group sizes from n=30 to n=6 at 95% power. Seven different combinations of four to seven omics platforms achieved >95% accuracy.For the first time, a quantitative relationship between multi-omics data integration and accuracy of data-driven classification power has been demonstrated across nine omics data blocks. Integrating five to seven omics data blocks enabled 100% correct classification of COPD diagnosis with groups as small as n=6 individuals, despite strong confounding effects of current smoking. These results can serve as guidelines for the design of future systems-based multi-omics investigations, with indications that integrating five to six data blocks from several molecular levels and anatomical locations suffices to facilitate unsupervised molecular classification in small cohorts.
  •  
14.
  •  
15.
  • Lundstrom, SL, et al. (författare)
  • Lipid mediator profiling in pulmonary disease
  • 2011
  • Ingår i: Current pharmaceutical biotechnology. - : Bentham Science Publishers Ltd.. - 1873-4316 .- 1389-2010. ; 12:7, s. 1026-1052
  • Tidskriftsartikel (refereegranskat)
  •  
16.
  •  
17.
  •  
18.
  • Naz, S, et al. (författare)
  • Dysregulation of the Tryptophan Pathway Evidences Gender Differences in COPD
  • 2019
  • Ingår i: Metabolites. - : MDPI AG. - 2218-1989. ; 9:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased activity of indoleamine 2,3-dioxygenase (IDO) and tryptophan hydroxylase (TPH) have been reported in individuals with chronic obstructive pulmonary disease (COPD). We therefore investigated the effect of gender stratification upon the observed levels of tryptophan metabolites in COPD. Tryptophan, serotonin, kynurenine, and kynurenic acid were quantified in serum of never-smokers (n = 39), smokers (n = 40), COPD smokers (n = 27), and COPD ex-smokers (n = 11) by liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS). The individual metabolite associations with lung function, blood, and bronchoalveolar lavage (BAL) immune-cell composition, as well as chemokine and cytokine levels, were investigated. Stratification by gender and smoking status revealed that the observed alterations in kynurenine and kynurenic acid, and to a lesser extent serotonin, were prominent in males, irrespective of COPD status (kynurenine p = 0.005, kynurenic acid p = 0.009, and serotonin p = 0.02). Inferred serum IDO activity and kynurenine levels decreased in smokers relative to never-smokers (p = 0.005 and p = 0.004, respectively). In contrast, inferred tryptophan hydroxylase (TPH) activity and serotonin levels showed an increase with smoking that reached significance with COPD (p = 0.01 and p = 0.01, respectively). Serum IDO activity correlated with blood CXC chemokine ligand 9 (CXCL9, p = 0.0009, r = 0.93) and chemokine (C-C motif) ligand 4 (CCL4.(p = 0.04, r = 0.73) in female COPD smokers. Conversely, serum serotonin levels correlated with BAL CD4+ T-cells (%) (p = 0.001, r = 0.92) and CD8+ T-cells (%) (p = 0.002, r = −0.90) in female COPD smokers, but not in male COPD smokers (p = 0.1, r = 0.46 and p = 0.1, r = −0.50, respectively). IDO- and TPH-mediated tryptophan metabolites showed gender-based associations in COPD, which were primarily driven by smoking status.
  •  
19.
  • Naz, S, et al. (författare)
  • Metabolomics analysis identifies sex-associated metabotypes of oxidative stress and the autotaxin-lysoPA axis in COPD
  • 2017
  • Ingår i: The European respiratory journal. - : European Respiratory Society (ERS). - 1399-3003 .- 0903-1936. ; 49:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease and a leading cause of mortality and morbidity worldwide. The aim of this study was to investigate the sex dependency of circulating metabolic profiles in COPD.Serum from healthy never-smokers (healthy), smokers with normal lung function (smokers), and smokers with COPD (COPD; Global Initiative for Chronic Obstructive Lung Disease stages I–II/A–B) from the Karolinska COSMIC cohort (n=116) was analysed using our nontargeted liquid chromatography–high resolution mass spectrometry metabolomics platform.Pathway analyses revealed that several altered metabolites are involved in oxidative stress. Supervised multivariate modelling showed significant classification of smokers from COPD (p=2.8×10−7). Sex stratification indicated that the separation was driven by females (p=2.4×10−7) relative to males (p=4.0×10−4). Significantly altered metabolites were confirmed quantitatively using targeted metabolomics. Multivariate modelling of targeted metabolomics data confirmed enhanced metabolic dysregulation in females with COPD (p=3.0×10−3) relative to males (p=0.10). The autotaxin products lysoPA (16:0) and lysoPA (18:2) correlated with lung function (forced expiratory volume in 1 s) in males with COPD (r=0.86; p<0.0001), but not females (r=0.44; p=0.15), potentially related to observed dysregulation of the miR-29 family in the lung.These findings highlight the role of oxidative stress in COPD, and suggest that sex-enhanced dysregulation in oxidative stress, and potentially the autotaxin–lysoPA axis, are associated with disease mechanisms and/or prevalence.
  •  
20.
  •  
21.
  • Reinke, SN, et al. (författare)
  • Urinary metabotype of severe asthma evidences decreased carnitine metabolism independent of oral corticosteroid treatment in the U-BIOPRED study
  • 2022
  • Ingår i: The European respiratory journal. - : European Respiratory Society (ERS). - 1399-3003 .- 0903-1936. ; 59:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Asthma is a heterogeneous disease with poorly defined phenotypes. Patients with severe asthma often receive multiple treatments including oral corticosteroids (OCS). Treatment may modify the observed metabotype, rendering it challenging to investigate underlying disease mechanisms. Here, we aimed to identify dysregulated metabolic processes in relation to asthma severity and medication.MethodsBaseline urine was collected prospectively from healthy participants (n=100), patients with mild-to-moderate asthma (n=87) and patients with severe asthma (n=418) in the cross-sectional U-BIOPRED cohort; 12–18-month longitudinal samples were collected from patients with severe asthma (n=305). Metabolomics data were acquired using high-resolution mass spectrometry and analysed using univariate and multivariate methods.ResultsA total of 90 metabolites were identified, with 40 significantly altered (p<0.05, false discovery rate <0.05) in severe asthma and 23 by OCS use. Multivariate modelling showed that observed metabotypes in healthy participants and patients with mild-to-moderate asthma differed significantly from those in patients with severe asthma (p=2.6×10−20), OCS-treated asthmatic patients differed significantly from non-treated patients (p=9.5×10−4), and longitudinal metabotypes demonstrated temporal stability. Carnitine levels evidenced the strongest OCS-independent decrease in severe asthma. Reduced carnitine levels were associated with mitochondrial dysfunction via decreases in pathway enrichment scores of fatty acid metabolism and reduced expression of the carnitine transporter SLC22A5 in sputum and bronchial brushings.ConclusionsThis is the first large-scale study to delineate disease- and OCS-associated metabolic differences in asthma. The widespread associations with different therapies upon the observed metabotypes demonstrate the need to evaluate potential modulating effects on a treatment- and metabolite-specific basis. Altered carnitine metabolism is a potentially actionable therapeutic target that is independent of OCS treatment, highlighting the role of mitochondrial dysfunction in severe asthma.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  •  
27.
  •  
28.
  •  
29.
  •  
30.
  •  
31.
  •  
32.
  •  
33.
  •  
34.
  •  
35.
  •  
36.
  •  
37.
  •  
38.
  • Karimi, R, et al. (författare)
  • Differences in regional air trapping in current smokers with normal spirometry
  • 2017
  • Ingår i: The European respiratory journal. - : European Respiratory Society (ERS). - 1399-3003 .- 0903-1936. ; 49:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated regional air trapping on computed tomography in current smokers with normal spirometry. It was hypothesised that presence of regional air trapping may indicate a specific manifestation of smoking-related changes.40 current smokers, 40 patients with chronic obstructive pulmonary disease (COPD), and 40 healthy never- smokers underwent computed tomography scans. Regional air trapping was assessed on end-expiratory scans and emphysema, micronodules and bronchial wall thickening on inspiratory scans. The ratio of expiratory and inspiratory mean lung attenuation (E/I) was calculated as a measure of static (fixed) air trapping.Regional air trapping was present in 63% of current smokers, in 45% of never smokers and in 8% of COPD patients (p<0.001). Current smokers with and without regional air trapping had E/I ratio of 0.81 and 0.91, respectively (p<0.001). Forced expiratory volume in 1 s (FEV1) was significantly higher and emphysema less frequent in current smokers with regional air trapping.Current smokers with regional air trapping had higher FEV1 and less emphysema on computed tomography. In contrast, current smokers without regional air trapping resembled COPD. Our results highlight heterogeneity among smokers with normal spirometry and may contribute to early detection of smoking related structural changes in the lungs.
  •  
39.
  •  
40.
  •  
41.
  •  
42.
  •  
43.
  •  
44.
  •  
45.
  •  
46.
  •  
47.
  • Levänen, B, et al. (författare)
  • Troubleshooting image analysis in 2DE
  • 2009
  • Ingår i: Methods in molecular biology (Clifton, N.J.). - Totowa, NJ : Humana Press. - 1064-3745. ; 519, s. 113-29
  • Tidskriftsartikel (refereegranskat)
  •  
48.
  •  
49.
  • Li, CX, et al. (författare)
  • miRNA-mRNA-protein dysregulated network in COPD in women
  • 2022
  • Ingår i: Frontiers in genetics. - : Frontiers Media SA. - 1664-8021. ; 13, s. 1010048-
  • Tidskriftsartikel (refereegranskat)abstract
    • Rationale: Chronic obstructive pulmonary disease (COPD) is a complex disease caused by a multitude of underlying mechanisms, and molecular mechanistic modeling of COPD, especially at a multi-molecular level, is needed to facilitate the development of molecular diagnostic and prognostic tools and efficacious treatments.Objectives: To investigate the miRNA–mRNA–protein dysregulated network to facilitate prediction of biomarkers and disease subnetwork in COPD in women.Measurements and Results: Three omics data blocks (mRNA, miRNA, and protein) collected from BAL cells from female current-smoker COPD patients, smokers with normal lung function, and healthy never-smokers were integrated with miRNA–mRNA–protein regulatory networks to construct a COPD-specific dysregulated network. Furthermore, downstream network topology, literature annotation, and functional enrichment analysis identified both known and novel disease-related biomarkers and pathways. Both abnormal regulations in miRNA-induced mRNA transcription and protein translation repression play roles in COPD. Finally, the let-7-AIFM1-FKBP1A pathway is highlighted in COPD pathology.Conclusion: For the first time, a comprehensive miRNA–mRNA–protein dysregulated network of primary immune cells from the lung related to COPD in females was constructed to elucidate specific biomarkers and disease pathways. The multi-omics network provides a new molecular insight from a multi-molecular aspect and highlights dysregulated interactions. The highlighted let-7-AIFM1-FKBP1A pathway also indicates new hypotheses of COPD pathology.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 79

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy