SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yki Jarvinen H.) "

Sökning: WFRF:(Yki Jarvinen H.)

  • Resultat 1-37 av 37
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alligier, M, et al. (författare)
  • OBEDIS Core Variables Project: European Expert Guidelines on a Minimal Core Set of Variables to Include in Randomized, Controlled Clinical Trials of Obesity Interventions
  • 2020
  • Ingår i: Obesity facts. - : S. Karger AG. - 1662-4033 .- 1662-4025. ; 13:1, s. 1-28
  • Tidskriftsartikel (refereegranskat)abstract
    • Heterogeneity of interindividual and intraindividual responses to interventions is often observed in randomized, controlled trials for obesity. To address the global epidemic of obesity and move toward more personalized treatment regimens, the global research community must come together to identify factors that may drive these heterogeneous responses to interventions. This project, called OBEDIS (OBEsity Diverse Interventions Sharing – focusing on dietary and other interventions), provides a set of European guidelines for a minimal set of variables to include in future clinical trials on obesity, regardless of the specific endpoints. Broad adoption of these guidelines will enable researchers to harmonize and merge data from multiple intervention studies, allowing stratification of patients according to precise phenotyping criteria which are measured using standardized methods. In this way, studies across Europe may be pooled for better prediction of individuals’ responses to an intervention for obesity – ultimately leading to better patient care and improved obesity outcomes.
  •  
2.
  •  
3.
  • Sevastianova, K., et al. (författare)
  • Effect of short-term carbohydrate overfeeding and long-term weight loss on liver fat in overweight humans
  • 2012
  • Ingår i: American Journal of Clinical Nutrition. - : Elsevier BV. - 0002-9165. ; 96:4, s. 727-734
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Cross-sectional studies have identified a high intake of simple sugars as an important dietary factor predicting nonalcoholic fatty liver disease (NAFLD). Objective: We examined whether overfeeding overweight subjects with simple sugars increases liver fat and de novo lipogenesis (DNL) and whether this is reversible by weight loss. Design: Sixteen subjects [BMI (kg/m(2)): 30.6 +/- 1.2] were placed on a hypercaloric diet (>1000 kcal simple carbohydrates/d) for 3 wk and, thereafter, on a hypocaloric diet for 6 mo. The subjects were genotyped for rs739409 in the PNPLA3 gene. Before and after overfeeding and after hypocaloric diet, metabolic variables and liver fat (measured by proton magnetic resonance spectroscopy) were measured. The ratio of palmitate (16:0) to linoleate (18:2n-6) in serum and VLDL triglycerides was used as an index of DNL. Results: Carbohydrate overfeeding increased weight (+/- SEM) by 2% (1.8 +/- 0.3 kg; P < 0.0001) and liver fat by 27% from 9.2 +/- 1.9% to 11.7 +/- 1.9% (P = 0.005). DNL increased in proportion to the increase in liver fat and serum triglycerides in subjects with PNPLA3-148II but not PNPLA3-148MM. During the hypocaloric diet, the subjects lost 4% of their weight (3.2 +/- 0.6 kg; P < 0.0001) and 25% of their liver fat content (from 11.7 +/- 1.9% to 8.8 +/- 1.8%; P < 0.05). Conclusions: Carbohydrate overfeeding for 3 wk induced a >10-fold greater relative change in liver fat (27%) than in body weight (2%). The increase in liver fat was proportional to that in DNL. Weight loss restores liver fat to normal. These data indicate that the human fatty liver avidly accumulates fat during carbohydrate overfeeding and support a role for DNL in the pathogenesis of NAFLD. This trial was registered at www.hus.fi as 235780. Am J Clin Nutr 2012;96:727-34.
  •  
4.
  • Sutinen, J, et al. (författare)
  • Effects of rosiglitazone on gene expression in subcutaneous adipose tissue in highly active antiretroviral therapy-associated lipodystrophy
  • 2004
  • Ingår i: American journal of physiology. Endocrinology and metabolism. - : American Physiological Society. - 0193-1849 .- 1522-1555. ; 286:6, s. E941-E949
  • Tidskriftsartikel (refereegranskat)abstract
    • Highly active antiretroviral therapy (HAART) has improved the prognosis of human immunodeficiency virus (HIV)-infected patients but is associated with severe adverse events, such as lipodystrophy and insulin resistance. Rosiglitazone did not increase subcutaneous fat in patients with HAART-associated lipodystrophy (HAL) in a randomized, double-blind, placebo-controlled trial, although it attenuated insulin resistance and decreased liver fat content. The aim of this study was to examine effects of rosiglitazone on gene expression in subcutaneous adipose tissue in 30 patients with HAL. The mRNA concentrations in subcutaneous adipose tissue were measured using real-time PCR. Twenty-four-week treatment with rosiglitazone (8 mg/day) compared with placebo significantly increased the expression of adiponectin, peroxisome proliferator-activated receptor-γ (PPARγ), and PPARγ coactivator 1 and decreased IL-6 expression. Expression of other genes involved in lipogenesis, fatty acid metabolism, or glucose transport, such as acyl-CoA synthase, adipocyte lipid-binding protein, CD45, fatty acid transport protein-1 and -4, GLUT1, GLUT4, keratinocyte lipid-binding protein, lipoprotein lipase, PPARδ, and sterol regulatory element-binding protein-1c, remained unchanged. Rosiglitazone also significantly increased serum adiponectin concentration. The change in serum adiponectin concentration was inversely correlated with the change in fasting serum insulin concentration and liver fat content. In conclusion, rosiglitazone induced significant changes in gene expression in subcutaneous adipose tissue and ameliorated insulin resistance in patients with HAL. Increased expression of adiponectin might have mediated most of the favorable insulin-sensitizing effects of rosiglitazone in these patients.
  •  
5.
  • Adiels, Martin, 1976, et al. (författare)
  • Acute suppression of VLDL(1) secretion rate by insulin is associated with hepatic fat content and insulin resistance
  • 2007
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 50:11, s. 2356-2365
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: Overproduction of VLDL(1) seems to be the central pathophysiological feature of the dyslipidaemia associated with type 2 diabetes. We explored the relationship between liver fat and suppression of VLDL(1) production by insulin in participants with a broad range of liver fat content. METHODS: A multicompartmental model was used to determine the kinetic parameters of apolipoprotein B and TG in VLDL(1) and VLDL(2) after a bolus of [(2)H(3)]leucine and [(2)H(5)]glycerol during a hyperinsulinaemic-euglycaemic clamp in 20 male participants: eight with type 2 diabetes and 12 control volunteers. The participants were divided into two groups with low or high liver fat. All participants with diabetes were in the high liver-fat group. RESULTS: The results showed a rapid drop in VLDL(1)-apolipoprotein B and -triacylglycerol secretion in participants with low liver fat during the insulin infusion. In contrast, participants with high liver fat showed no significant change in VLDL(1) secretion. The VLDL(1) suppression following insulin infusion correlated with the suppression of NEFA, and the ability of insulin to suppress the plasma NEFA was impaired in participants with high liver fat. A novel finding was an inverse response between VLDL(1) and VLDL(2) secretion in participants with low liver fat: VLDL(1) secretion decreased acutely after insulin infusion whereas VLDL(2) secretion increased. CONCLUSIONS/INTERPRETATION: Insulin downregulates VLDL(1) secretion and increases VLDL(2) secretion in participants with low liver fat but fails to suppress VLDL(1) secretion in participants with high liver fat, resulting in overproduction of VLDL(1). Thus, liver fat is associated with lack of VLDL(1) suppression in response to insulin.
  •  
6.
  • Adiels, Martin, 1976, et al. (författare)
  • Overproduction of large VLDL particles is driven by increased liver fat content in man
  • 2006
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 49:4, s. 755-65
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: We determined whether hepatic fat content and plasma adiponectin concentration regulate VLDL(1) production. METHODS: A multicompartment model was used to simultaneously determine the kinetic parameters of triglycerides (TGs) and apolipoprotein B (ApoB) in VLDL(1) and VLDL(2) after a bolus of [(2)H(3)]leucine and [(2)H(5)]glycerol in ten men with type 2 diabetes and in 18 non-diabetic men. Liver fat content was determined by proton spectroscopy and intra-abdominal fat content by MRI. RESULTS: Univariate regression analysis showed that liver fat content, intra-abdominal fat volume, plasma glucose, insulin and HOMA-IR (homeostasis model assessment of insulin resistance) correlated with VLDL(1) TG and ApoB production. However, only liver fat and plasma glucose were significant in multiple regression models, emphasising the critical role of substrate fluxes and lipid availability in the liver as the driving force for overproduction of VLDL(1) in subjects with type 2 diabetes. Despite negative correlations with fasting TG levels, liver fat content, and VLDL(1) TG and ApoB pool sizes, adiponectin was not linked to VLDL(1) TG or ApoB production and thus was not a predictor of VLDL(1) production. However, adiponectin correlated negatively with the removal rates of VLDL(1) TG and ApoB. CONCLUSIONS/INTERPRETATION: We propose that the metabolic effect of insulin resistance, partly mediated by depressed plasma adiponectin levels, increases fatty acid flux from adipose tissue to the liver and induces the accumulation of fat in the liver. Elevated plasma glucose can further increase hepatic fat content through multiple pathways, resulting in overproduction of VLDL(1) particles and leading to the characteristic dyslipidaemia associated with type 2 diabetes.
  •  
7.
  • Andrew, R, et al. (författare)
  • The contribution of visceral adipose tissue to splanchnic cortisol production in healthy humans
  • 2005
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 54:5, s. 1364-1370
  • Tidskriftsartikel (refereegranskat)abstract
    • Cortisol is regenerated from cortisone by 11β-hydroxysteroid dehydrogenase type 1 (11HSD1), amplifying glucocorticoid action in adipose tissue and liver. 11HSD1 inhibitors are being developed for type 2 diabetes and may be most effective in obesity, where adipose 11HSD1 is increased. However, the magnitude of regeneration of cortisol in different tissues in humans is unknown, hindering understanding of the pathophysiological and therapeutic importance of 11HSD1. In eight healthy men, we infused 9,11,12,12-2H4-cortisol and measured tracer enrichment in the hepatic vein as an indicator of total splanchnic cortisol generation. Oral cortisone (25 mg) was then given to measure first-pass hepatic cortisol generation. In steady state, splanchnic cortisol production was 45 ± 11 nmol/min when arterialized plasma cortisone concentration was 92 ± 7 nmol/l. Extrapolation from hepatic cortisol generation after oral corti-sone suggested that, at steady state, the liver contributes 15.2 nmol/min and extrahepatic splanchnic tissue contributes 29.8 nmol/min to the total splanchnic cortisol production. We conclude that tissues draining into the portal vein, including visceral adipose tissue, contribute substantially to the regeneration of cortisol. Thus, in addition to free fatty acids and adipokines, the portal vein delivers cortisol to the liver, and inhibition of 11HSD1 in visceral adipose tissue may indeed be valuable in ameliorating insulin resistance in obesity.
  •  
8.
  • Bunck, M. C., et al. (författare)
  • Exenatide treatment did not affect bone mineral density despite body weight reduction in patients with type 2 diabetes
  • 2011
  • Ingår i: Diabetes, obesity & metabolism. - : Wiley. - 1463-1326 .- 1462-8902. ; 13:4, s. 374-377
  • Tidskriftsartikel (refereegranskat)abstract
    • Preclinical studies suggest that incretin-based therapies may be beneficial for the bone; however, clinical data are largely lacking. We assessed whether the differential effects of these therapies on body weight differed with respect to their effect on bone mineral density (BMD) and markers of calcium homeostasis in patients with type 2 diabetes (T2D). Sixty-nine metformin-treated patients with T2D were randomized to exenatide twice daily (n = 36) or insulin glargine once daily (n = 33). Total body BMD, measured by dual-energy X-ray absorptiometry, and serum markers of calcium homeostasis were assessed before and after 44-week treatment. Exenatide or insulin glargine treatment decreased body weight by 6%. Endpoint BMD was similar in both groups after 44-week therapy (LSmean +/- s.e.m. between-group difference -0.002 +/- 0.007 g/cm(2) ; p = 0.782). Fasting serum alkaline phosphatase, calcium and phosphate remained unaffected. Forty-four-week treatment with exenatide or insulin glargine had no adverse effects on bone density in patients with T2D, despite differential effects on body weight.
  •  
9.
  • Bunck, M. C., et al. (författare)
  • One-year treatment with exenatide improves beta-cell function, compared with insulin glargine, in metformin-treated type 2 diabetic patients: a randomized, controlled trial
  • 2009
  • Ingår i: Diabetes Care. - 1935-5548. ; 32:5, s. 762-8
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Traditional blood glucose-lowering agents do not sustain adequate glycemic control in most type 2 diabetic patients. Preclinical studies with exenatide have suggested sustained improvements in beta-cell function. We investigated the effects of 52 weeks of treatment with exenatide or insulin glargine followed by an off-drug period on hyperglycemic clamp-derived measures of beta-cell function, glycemic control, and body weight. RESEARCH DESIGN AND METHODS: Sixty-nine metformin-treated patients with type 2 diabetes were randomly assigned to exenatide (n = 36) or insulin glargine (n = 33). beta-Cell function was measured during an arginine-stimulated hyperglycemic clamp at week 0, at week 52, and after a 4-week off-drug period. Additional end points included effects on glycemic control, body weight, and safety. RESULTS: Treatment-induced change in combined glucose- and arginine-stimulated C-peptide secretion was 2.46-fold (95% CI 2.09-2.90, P < 0.0001) greater after a 52-week exenatide treatment compared with insulin glargine treatment. Both exenatide and insulin glargine reduced A1C similarly: -0.8 +/- 0.1 and -0.7 +/- 0.2%, respectively (P = 0.55). Exenatide reduced body weight compared with insulin glargine (difference -4.6 kg, P < 0.0001). beta-Cell function measures returned to pretreatment values in both groups after a 4-week off-drug period. A1C and body weight rose to pretreatment values 12 weeks after discontinuation of either exenatide or insulin glargine therapy. CONCLUSIONS: Exenatide significantly improves beta-cell function during 1 year of treatment compared with titrated insulin glargine. After cessation of both exenatide and insulin glargine therapy, beta-cell function and glycemic control returned to pretreatment values, suggesting that ongoing treatment is necessary to maintain the beneficial effects of either therapy.
  •  
10.
  • Frayn, KN, et al. (författare)
  • Fatty acid metabolism in adipose tissue, muscle and liver in health and disease
  • 2006
  • Ingår i: Essays in biochemistry. - : Portland Press Ltd.. - 0071-1365 .- 1744-1358. ; 42, s. 89-103
  • Tidskriftsartikel (refereegranskat)abstract
    • Fat is the largest energy reserve in mammals. Most tissues are involved in fatty acid metabolism, but three are quantitatively more important than others: adipose tissue, skeletal muscle and liver. Each of these tissues has a store of triacylglycerol that can be hydrolysed (mobilized) in a regulated way to release fatty acids. In the case of adipose tissue, these fatty acids may be released into the circulation for delivery to other tissues, whereas in muscle they are a substrate for oxidation and in liver they are a substrate for re-esterification within the endoplasmic reticulum to make triacylglycerol that will be secreted as very-low-density lipoprotein. These pathways are regulated, most clearly in the case of adipose tissue. Adipose tissue fat storage is stimulated, and fat mobilization suppressed, by insulin, leading to a drive to store energy in the fed state. Muscle fatty acid metabolism is more sensitive to physical activity, during which fatty acid utilization from extracellular and intracellular sources may increase enormously. The uptake of fat by the liver seems to depend mainly upon delivery in the plasma, but the secretion of very-low-density lipoprotein triacylglycerol is suppressed by insulin. There is clearly cooperation amongst the tissues, so that, for instance, adipose tissue fat mobilization increases to meet the demands of skeletal muscle during exercise. When triacylglycerol accumulates excessively in skeletal muscle and liver, sometimes called ectopic fat deposition, then the condition of insulin resistance arises. This may reflect a lack of exercise and an excess of fat intake.
  •  
11.
  •  
12.
  • Greco, D, et al. (författare)
  • Gene expression in human NAFLD
  • 2008
  • Ingår i: American journal of physiology. Gastrointestinal and liver physiology. - : American Physiological Society. - 0193-1857 .- 1522-1547. ; 294:5, s. G1281-G1287
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the high prevalence of nonalcoholic fatty liver disease (NAFLD), little is known of its pathogenesis based on study of human liver samples. By the use of Affymetrix GeneChips (17,601 genes), we investigated gene expression in the human liver of subjects with extreme steatosis due to NAFLD without histological signs of inflammation (liver fat 66.0 ± 6.8%) and in subjects with low liver fat content (6.4 ± 2.7%). The data were analyzed by using sequence-based reannotation of Affymetrix probes and a robust model-based normalization method. We identified genes involved in hepatic glucose and lipid metabolism, insulin signaling, inflammation, coagulation, and cell adhesion to be significantly associated with liver fat content. In addition, genes involved in ceramide signaling (MAP2K4) and metabolism (UGCG) were found to be positively associated with liver fat content. Genes involved in lipid metabolism (PLIN, ACADM), fatty acid transport (FABP4, CD36), amino acid catabolism (BCAT1), and inflammation (CCL2) were validated by real-time PCR and were found to be upregulated in subjects with high liver fat content. The data show that multiple changes in gene expression characterize simple steatosis.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  • Kotronen, A., et al. (författare)
  • A common variant in PNPLA3, which encodes adiponutrin, is associated with liver fat content in humans
  • 2009
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 52:6, s. 1056-1060
  • Tidskriftsartikel (refereegranskat)abstract
    • It has recently been suggested that the rs738409 G allele in PNPLA3, which encodes adiponutrin, is strongly associated with increased liver fat content in three different ethnic groups. The aims of the present study were as follows: (1) to try to replicate these findings in European individuals with quantitative measures of hepatic fat content; (2) to study whether the polymorphism influences hepatic and adipose tissue insulin sensitivity; and (3) to investigate whether PNPLA3 expression is altered in the human fatty liver. We genotyped 291 Finnish individuals in whom liver fat had been measured using proton magnetic resonance spectroscopy. Hepatic PNPLA3 expression was measured in 32 participants. Hepatic and adipose tissue insulin sensitivities were measured using a euglycaemic-hyperinsulinaemic (insulin infusion 0.3 mU kg(-1) min(-1)) clamp technique combined with infusion of [3-H-3]glucose in 109 participants. The rs738409 G allele in PNPLA3 was associated with increased quantitative measures of liver fat content (p = 0.011) and serum aspartate aminotransferase concentrations (p = 0.002) independently of age, sex and BMI. Fasting serum insulin and hepatic and adipose tissue insulin sensitivity were related to liver fat content independently of genotype status. PNPLA3 mRNA expression in the liver was positively related to obesity (r = 0.62, p < 0.0001) and to liver fat content (r = 0.58, p = 0.025) in participants who were not morbidly obese (BMI < 40 kg/m(2)). A common variant in PNPLA3 increases the risk of hepatic steatosis in humans.
  •  
19.
  • Kotronen, Anna, et al. (författare)
  • Genetic variation in the ADIPOR2 gene is associated with liver fat content and its surrogate markers in three independent cohorts
  • 2009
  • Ingår i: European Journal of Endocrinology. - 1479-683X. ; 160:4, s. 593-602
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: We investigated whether polymorph isms in candidate genes involved in lipid metabolism and type 2 diabetes are related to liver I, at content. Methods: Liver fat content was measured using proton magnetic resonance spectroscopy (H-1-MRS) in 302 Finns, in whom single nucleotide polymorphisms (SNPs) in acyl-CoA synthetase long-chain family member 4 (ACSL4). acliponectin receptors 1 and 2 (ADIPOR1 and ADIPOR2), and the three peroxisome proliferator-activated receptors (PPARA, PPARD, and PPARG) were analyzed. To validate our findings, SNPs significantly associated with liver fat content were Studied in two independent cohorts and related to surrogate markers of liver fat content. Results: In the Finnish subjects, polymorphisms in ACSL4 (rs7887981), ADIPOR2 (rs767870), and PPARG (rs3856806) were significantly associated with liver fat content measured with H-1-MRS after adjusting for age, gender, and BMI, Anthropometric and circulating parameters were comparable between genotypes. In the first validation cohort of similar to 600 Swedish men, ACSL4 rs7887981 was related to fasting insulin and triglyceride concentrations, and ADIPOR2 rs767870 to serum gamma glutamyltransfer concentrations after adjusting for BMI. The SNP in PPARG (rs3856806) was not significantly associated with any relevant metabolic parameter in this cohort. In the second validation cohort of similar to 3000 subjects from Western Finland, ADIPOR2 rs767870, but not ACSL4 rs7887981 was related to fasting triglyceride concentrations. Conclusions: Genetic variation, particularly in the ADIPOR2 gene, contributes to variation in hepatic fat accumulation in humans.
  •  
20.
  •  
21.
  • Lallukka, S., et al. (författare)
  • Adipose tissue is inflamed in NAFLD due to obesity but not in NAFLD due to genetic variation in PNPLA3
  • 2013
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 56:4, s. 886-892
  • Tidskriftsartikel (refereegranskat)abstract
    • The rs738409 C > G single-nucleotide polymorphism in PNPLA3 leads to a missense mutation (I148M) which increases liver fat but does not cause insulin resistance. We hypothesised that patients with non-alcoholic fatty liver disease (NAFLD) due to the PNPLA3 variant ('PNPLA3 NAFLD'aEuro parts per thousand= PNPLA3-148MM) do not have adipose tissue (AT) inflammation in contrast with those with NAFLD due to obesity ('obese NAFLD'). Biopsy specimens of AT were taken, and PNPLA3 genotype and liver fat (H-1-magnetic resonance spectroscopy) were determined in 82 volunteers, who were divided into groups based on either median BMI (obese 36.2 +/- 0.7 kg/m(2); non-obese 26.0 +/- 0.4 kg/m(2)) or PNPLA3 genotype. All groups were similar with respect to age and sex. The PNPLA3 subgroups were equally obese (PNPLA3-148MM, 31.1 +/- 1.3 kg/m(2); PNPLA3-148II, 31.2 +/- 0.8 kg/m(2)), while the obese and non-obese subgroups had similar PNPLA3 genotype distribution. Gene expression of proinflammatory (MCP-1, CD68) and anti-inflammatory (Twist1, ADIPOQ) markers was measured using quantitative real-time RT-PCR. Liver fat was similarly increased in obese NAFLD (9.5 +/- 1.3% vs 5.1 +/- 0.9%, obese vs non-obese, p = 0.007) and PNPLA3 NAFLD (11.4 +/- 1.7% vs 5.3 +/- 0.8%, PNPLA3-148MM vs PNPLA3-148II, p < 0.001). Fasting serum insulin was higher in the obese than the non-obese group (76 +/- 6 vs 47 +/- 6 pmol/l, p < 0.001), but similar in PNPLA3-148MM and PNPLA3-148II (60 +/- 8 vs 62 +/- 5 pmol/l, NS). In obese vs non-obese, MCP-1 and CD68 mRNAs were upregulated, whereas those of Twist1 and ADIPOQ were significantly downregulated. AT gene expression of MCP-1, CD68, Twist1 and ADIPOQ was similar in PNPLA3-148MM and PNPLA3-148II groups. PNPLA3 NAFLD is characterised by an increase in liver fat but no insulin resistance or AT inflammation, while obese NAFLD has all three of these features.
  •  
22.
  •  
23.
  •  
24.
  • Sevastianova, K, et al. (författare)
  • Adipose tissue inflammation and liver fat in patients with highly active antiretroviral therapy-associated lipodystrophy
  • 2008
  • Ingår i: American journal of physiology. Endocrinology and metabolism. - : American Physiological Society. - 0193-1849 .- 1522-1555. ; 295:1, s. E85-E91
  • Tidskriftsartikel (refereegranskat)abstract
    • In this cross-sectional study, we sought to determine whether gene expression of macrophage markers and inflammatory chemokines in lipoatrophic subcutaneous abdominal adipose tissue and liver fat content are increased and interrelated in human immunodeficiency virus (HIV)-1-positive, highly active antiretroviral therapy (HAART)-treated patients with lipodystrophy (HAART+LD+; n = 27) compared with those without (HAART+LD−; n = 13). The study groups were comparable with respect to age, gender, and body mass index. The HAART+LD+ group had twofold more intra-abdominal ( P = 0.01) and 1.5-fold less subcutaneous ( P = 0.091) fat than the HAART+LD− group. As we have reported previously, liver fat was 10-fold higher in the HAART+LD+ compared with the HAART+LD− group ( P = 0.00003). Inflammatory gene expression was increased in HAART-lipodystrophy: CD68 4.5-fold ( P = 0.000013), tumor necrosis factor (TNF)-α 2-fold ( P = 0.0094), chemokine (C-C motif) ligand (CCL) 2 2.5-fold ( P = 0.0024), CCL3 7-fold ( P = 0.0000017), integrin αM (ITGAM) 3-fold ( P = 0.00067), epidermal growth factor-like module containing, mucin-like, hormone receptor-like (EMR)1 2.5-fold ( P = 0.0038), and a disintegrin and metalloproteinase domain (ADAM)8 3.5-fold ( P = 0.00057) higher in the HAART+LD+ compared with the HAART+LD− group. mRNA concentration of CD68 ( r = 0.37, P = 0.019), ITGAM ( r = 0.35, P = 0.025), CCL2 ( r = 0.39, P = 0.012), and CCL3 ( r = 0.54, P = 0.0003) correlated with liver fat content. In conclusion, gene expression of markers of macrophage infiltration and adipose tissue inflammation is increased in lipoatrophic subcutaneous abdominal adipose tissue of patients with HAART-associated lipodystrophy compared with those without. CD68, ITGAM, CCL2, and CCL3 expression is significantly associated with accumulation of liver fat.
  •  
25.
  • Sevastianova, K, et al. (författare)
  • Comparison of Dorsocervical With Abdominal Subcutaneous Adipose Tissue in Patients With and Without Antiretroviral Therapy-Associated Lipodystrophy
  • 2011
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 60:7, s. 1894-1900
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Combination antiretroviral therapy (cART) is associated with lipodystrophy, i.e., loss of subcutaneous adipose tissue in the abdomen, limbs, and face and its accumulation intra-abdominally. No fat is lost dorsocervically and it can even accumulate in this region (buffalo hump). It is unknown how preserved dorsocervical fat differs from abdominal subcutaneous fat in HIV-1-infected cART-treated patients with (cART+LD+) and without (cART+LD-) lipodystrophy. RESEARCH DESIGN AND METHODS: We used histology, microarray, PCR, and magnetic resonance imaging to compare dorsocervical and abdominal subcutaneous adipose tissue in cART+LD+ (n=21) and cART+LD- (n=11). RESULTS: Albeit dorsocervical adipose tissue in cART+LD+ seems spared from lipoatrophy, its mitochondrial DNA (mtDNA; copies/cell) content was significantly lower (by 62%) than that of the corresponding tissue in cART+LD-. Expression of CD68 mRNA, a marker of macrophages, and numerous inflammatory genes in microarray were significantly lower in dorsocervical versus abdominal subcutaneous adipose tissue. Genes with the greatest difference in expression between the two depots were those involved in regulation of transcription and regionalization (homeobox genes), irrespective of lipodystrophy status. There was negligible mRNA expression of uncoupling protein 1, a gene characteristic of brown adipose tissue, in either depot. CONCLUSIONS: Because mtDNA is depleted even in the nonatrophic dorsocervical adipose tissue, it is unlikely that the cause of lipoatrophy is loss of mtDNA. Dorsocervical adipose tissue is less inflamed than lipoatrophic adipose tissue. It does not resemble brown adipose tissue. The greatest difference in gene expression between dorsocervical and abdominal subcutaneous adipose tissue is in expression of homeobox genes.
  •  
26.
  •  
27.
  •  
28.
  •  
29.
  •  
30.
  • Vehkavaara, S, et al. (författare)
  • Effects of oral and transdermal estrogen replacement therapy on markers of coagulation, fibrinolysis, inflammation and serum lipids and lipoproteins in postmenopausal women
  • 2001
  • Ingår i: Thrombosis and haemostasis. - : Georg Thieme Verlag KG. - 0340-6245 .- 2567-689X. ; 85:4, s. 619-625
  • Tidskriftsartikel (refereegranskat)abstract
    • We compared the effects of oral estradiol (2 mg), transdermal estradiol (50 g), and placebo on measures of coagulation, fibrinolysis, inflammation and serum lipids and lipoproteins in 27 postmenopausal women at baseline and after 2 and 12 weeks of treatment. Oral and transdermal estradiol induced similar increases in serum free estradiol concentrations. Oral therapy increased the plasma concentrations of factor VII antigen (FVIIag) and activated factor VII (FVIIa), and the plasma concentration of the prothrombin activation marker prothrombin fragment 1+2 (F1+2). Oral but not transdermal estradiol therapy significantly lowered plasma plasminogen activator inhibitor-1 (PAI-1) antigen and tissue-type plasminogen activator (tPA) antigen concentrations and PAI-1 activity, and increased D-dimer concentrations, suggesting increased fibrinolysis. The concentration of soluble Eselectin decreased and serum C-reactive protein (CRP) increased significantly in the oral but not in the transdermal or placebo groups. In the oral but not in the transdermal or placebo estradiol groups low-density-lipoprotein (LDL) cholesterol, apolipoprotein B and lipoprotein (a) concentrations decreased while high-density-lipoprotein (HDL) cholesterol, apolipoprotein AI and apolipoprotein AII concentrations increased significantly. LDL particle size remained unchanged. In summary, oral estradiol increased markers of fibrinolytic activity, decreased serum soluble E-selectin levels and induced potentially antiatherogenic changes in lipids and lipoproteins. In contrast to these beneficial effects, oral estradiol changed markers of coagulation towards hypercoagulability, and increased serum CRP concentrations. Transdermal estradiol or placebo had no effects on any of these parameters. These data demonstrate that oral estradiol does not have uniformly beneficial effects on cardiovascular risk markers and that the oral route of estradiol administration rather than the circulating free estradiol concentration is critical for any changes to be observed.
  •  
31.
  •  
32.
  •  
33.
  •  
34.
  • Westerbacka, J, et al. (författare)
  • Insulin regulation of MCP-1 in human adipose tissue of obese and lean women
  • 2008
  • Ingår i: American journal of physiology. Endocrinology and metabolism. - : American Physiological Society. - 0193-1849 .- 1522-1555. ; 294:5, s. E841-E845
  • Tidskriftsartikel (refereegranskat)abstract
    • CCL2 (MCP-1, monocyte chemoattractant protein 1) and CCL3 (MIP-1α, macrophage inflammatory protein 1α) are required for macrophage infiltration in adipose tissue. Insulin increases CCL2 expression in adipose tissue and in serum more in insulin-resistant obese than in insulin-sensitive lean mice, but whether this is true in humans is unknown. We compared basal expression and insulin regulation of CCL2 and CCL3 in adipose tissue and MCP-1 and MIP-1α in serum between insulin-resistant and insulin-sensitive human subjects. Subcutaneous adipose tissue biopsies and blood samples were obtained before and at the end of 6 h of in vivo euglycemic hyperinsulinemia (maintained by the insulin clamp technique) in 11 lean insulin-sensitive and 10 obese insulin-resistant women, and before and after a 6-h saline infusion in 8 women. Adipose tissue mRNA concentrations of monocyte/macrophage markers CD68, EMR1, ITGAM, ADAM8, chemokines CCL2 and CCL3, and housekeeping gene ribosomal protein large P0 (RPLP0) were measured by means of real-time PCR at baseline. In addition, mRNA concentrations of CCL2, CCL3, and RPLP0 were measured after insulin infusion. Levels of MCP-1 and MIP-1α were determined in serum, and protein concentration of MCP-1 was determined in adipose tissue at baseline and after insulin infusion. Basally, expression of the macrophage markers CD68 and EMR1 were increased in adipose tissue of insulin-resistant subjects. Insulin increased MCP-1 gene and protein expression significantly more in the insulin-resistant than in the insulin-sensitive subjects. Basally expression of CCL2 and CCL3 and expression of macrophage markers CD68 and ITGAM were significantly correlated. In serum, MCP-1 decreased significantly in insulin-sensitive but not insulin-resistant subjects. MIP-1α was undetectable in serum. Insulin regulation of CCL2 differs between insulin-sensitive and -resistant subjects in a direction that could exacerbate adipose tissue inflammation.
  •  
35.
  • Westerbacka, J, et al. (författare)
  • Women and men have similar amounts of liver and intra-abdominal fat, despite more subcutaneous fat in women: implications for sex differences in markers of cardiovascular risk
  • 2004
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 47:8, s. 1360-1369
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis. Fat accumulation in the liver has been shown to be closely correlated with hepatic insulin resistance and features of insulin resistance, also independently of body weight. It remains to be established how fat in the liver correlates with that in other depots, and whether any association differs between men and women. Methods. Liver fat (assessed using proton spectroscopy), intra-abdominal and subcutaneous fat (measured using magnetic resonance imaging) and markers of insulin resistance, including serum adiponectin, were determined in 132 non-diabetic subjects: 66 men (age 41+/-1 years) and 66 women (age 42+/-1 years). Results. Although the women had almost twice as much subcutaneous fat as the men (5045+/-207 vs 2610+/-144 cm(3), p<0.0001), amounts of intra-abdominal fat (1305+/-80 vs 1552+/-111 cm(3), NS) and liver fat (6.7+/-0.8 vs 8.9+/-1.2%, NS) were similar. In this study, no sex differences were observed with respect to serum insulin, adiponectin, triglyceride and HDL cholesterol concentrations. Of all measures of body composition, liver fat was best correlated with serum insulin (r=0.58, p<0.001), with no difference observed between men and women. Serum adiponectin was inversely correlated with liver fat content (r=-0.21, p<0.05). Multiple linear regression analysis revealed that intra-abdominal fat was significantly associated with liver fat, independently of serum adiponectin and subcutaneous fat. Liver fat, but not intra-abdominal fat, significantly explained the variation in serum insulin concentrations. Conclusions/interpretation. Intra-abdominal fat is independently associated with liver fat, whereas subcutaneous fat is not. Liver fat, but not intra-abdominal fat, is independently associated with serum insulin. Men and women with similar amounts of intra-abdominal and liver fat do not exhibit sex differences in markers of insulin resistance (serum insulin, triglycerides, HDL cholesterol and adiponectin).
  •  
36.
  •  
37.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-37 av 37

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy