SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Eisfeldt J) "

Search: WFRF:(Eisfeldt J)

  • Result 11-20 of 63
Sort/group result
   
EnumerationReferenceCoverFind
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  • Nilsson, D., et al. (author)
  • From cytogenetics to cytogenomics : whole genome sequencing as a comprehensive genetic test in rare disease diagnostics
  • 2019
  • In: European Journal of Human Genetics. - : Springer Nature. - 1018-4813 .- 1476-5438. ; 27, s. 1666-1667
  • Journal article (other academic/artistic)abstract
    • Rare genetic diseases are caused by different types of genetic variants, from single nucleotide variants (SNVs) to large chromosomal rearrangements. Recent data indicates that whole genome sequencing (WGS) may be used as a comprehensive test to identify multiple types of pathologic genetic aberrations in a single analysis.We present FindSV, a bioinformatic pipeline for detection of balanced (inversions and translocations) and unbalanced (deletions and duplications) structural variants (SVs). First, FindSV was tested on 106 validated deletions and duplications with a median size of 850 kb (min: 511 bp, max: 155 Mb). All variants were detected. Second, we demonstrated the clinical utility in 138 monogenic WGS panels. SV analysis yielded 11 diagnostic findings (8%). Remarkably, a complex structural rearrangement involving two clustered deletions disrupting SCN1A, SCN2A, and SCN3A was identified in a three months old girl with epileptic encephalopathy. Finally, 100 consecutive samples referred for clinical microarray were also analyzed by WGS. The WGS data was screened for large (>2 kbp) SVs genome wide, processed for visualization in our clinical routine arrayCGH workflow with the newly developed tool vcf2cytosure, and for exonic SVs and SNVs in a panel of 700 genes linked to intellectual disability. We also applied short tandem repeat (STR) expansion detection and discovered one pathologic expansion in ATXN7. The diagnostic rate (29%) was doubled compared to clinical microarray (12%).In conclusion, using WGS we have detected a wide range of structural variation with high accuracy, confirming it a powerful comprehensive genetic test in a clinical diagnostic laboratory setting.
  •  
19.
  • Nystedt, B., et al. (author)
  • Sarek : A portable workflow for whole-genome sequencing analysis of germline and somatic variants
  • 2020
  • In: F1000 Research. - : F1000 Research Ltd. - 2046-1402. ; 9
  • Journal article (peer-reviewed)abstract
    • Whole-genome sequencing (WGS) is a fundamental technology for research to advance precision medicine, but the limited availability of portable and user-friendly workflows for WGS analyses poses a major challenge for many research groups and hampers scientific progress. Here we present Sarek, an open-source workflow to detect germline variants and somatic mutations based on sequencing data from WGS, whole-exome sequencing (WES), or gene panels. Sarek features (i) easy installation, (ii) robust portability across different computer environments, (iii) comprehensive documentation, (iv) transparent and easy-to-read code, and (v) extensive quality metrics reporting. Sarek is implemented in the Nextflow workflow language and supports both Docker and Singularity containers as well as Conda environments, making it ideal for easy deployment on any POSIX-compatible computers and cloud compute environments. Sarek follows the GATK best-practice recommendations for read alignment and pre-processing, and includes a wide range of software for the identification and annotation of germline and somatic single-nucleotide variants, insertion and deletion variants, structural variants, tumour sample purity, and variations in ploidy and copy number. Sarek offers easy, efficient, and reproducible WGS analyses, and can readily be used both as a production workflow at sequencing facilities and as a powerful stand-alone tool for individual research groups. The Sarek source code, documentation and installation instructions are freely available at https://github.com/nf-core/sarek and at https://nf-co.re/sarek/. 
  •  
20.
  • Peña-Pérez, L., et al. (author)
  • Linked-read whole-genome sequencing resolves common and private structural variants in multiple myeloma
  • 2022
  • In: Blood Advances. - : American Society of Hematology. - 2473-9529 .- 2473-9537. ; 6:17, s. 5009-5023
  • Journal article (peer-reviewed)abstract
    • Multiple myeloma (MM) is an incurable and aggressive plasma cell malignancy characterized by a complex karyotype with multiple structural variants (SVs) and copy-number variations (CNVs). Linked-read whole-genome sequencing (lrWGS) allows for refined detection and reconstruction of SVs by providing long-range genetic information from standard short-read sequencing. This makes lrWGS an attractive solution for capturing the full genomic complexity of MM. Here we show that high-quality lrWGS data can be generated from low numbers of cells subjected to fluorescence-activated cell sorting (FACS) without DNA purification. Using this protocol, we analyzed MM cells after FACS from 37 patients with MM using lrWGS. We found high concordance between lrWGS and fluorescence in situ hybridization (FISH) for the detection of recurrent translocations and CNVs. Outside of the regions investigated by FISH, we identified .150 additional SVs and CNVs across the cohort. Analysis of the lrWGS data allowed for resolution of the structure of diverse SVs affecting the MYC and t(11;14) loci, causing the duplication of genes and gene regulatory elements. In addition, we identified private SVs causing the dysregulation of genes recurrently involved in translocations with the IGH locus and show that these can alter the molecular classification of MM. Overall, we conclude that lrWGS allows for the detection of aberrations critical for MM prognostics and provides a feasible route for providing comprehensive genetics. Implementing lrWGS could provide more accurate clinical prognostics, facilitate genomic medicine initiatives, and greatly improve the stratification of patients included in clinical trials.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 11-20 of 63

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view