SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Neumann S)) srt2:(2015-2019) srt2:(2018)"

Sökning: (WFRF:(Neumann S)) srt2:(2015-2019) > (2018)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Helbig, K. L., et al. (författare)
  • De Novo Pathogenic Variants in CACNA1E Cause Developmental and Epileptic Encephalopathy with Contractures, Macrocephaly, and Dyskinesias
  • 2018
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 103:5, s. 666-678
  • Tidskriftsartikel (refereegranskat)abstract
    • Developmental and epileptic encephalopathies (DEEs) are severe neurodevelopmental disorders often beginning in infancy or early childhood that are characterized by intractable seizures, abundant epileptiform activity on EEG, and developmental impairment or regression. CACNA1E is highly expressed in the central nervous system and encodes the alpha(1)-subunit of the voltage-gated Ca(V)2.3 channel, which conducts high voltage-activated R-type calcium currents that initiate synaptic transmission. Using next-generation sequencing techniques, we identified de novo CACNA1E variants in 30 individuals with DEE, characterized by refractory infantile-onset seizures, severe hypotonia, and profound developmental impairment, often with congenital contractures, macrocephaly, hyperkinetic movement disorders, and early death. Most of the 14, partially recurring, variants cluster within the cytoplasmic ends of all four S6 segments, which form the presumed Ca(V)2.3 channel activation gate. Functional analysis of several S6 variants revealed consistent gain-of-function effects comprising facilitated voltage-dependent activation and slowed inactivation. Another variant located in the domain II S4-S5 linker results in facilitated activation and increased current density. Five participants achieved seizure freedom on the anti-epileptic drug topiramate, which blocks R-type calcium channels. We establish pathogenic variants in CACNA1E as a cause of DEEs and suggest facilitated R-type calcium currents as a disease mechanism for human epilepsy and developmental disorders.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Roselli, Carolina, et al. (författare)
  • Multi-ethnic genome-wide association study for atrial fibrillation
  • 2018
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 50:9, s. 1225-1233
  • Tidskriftsartikel (refereegranskat)abstract
    • Atrial fibrillation (AF) affects more than 33 million individuals worldwide(1) and has a complex heritability(2). We conducted the largest meta-analysis of genome-wide association studies (GWAS) for AF to date, consisting of more than half a million individuals, including 65,446 with AF. In total, we identified 97 loci significantly associated with AF, including 67 that were novel in a combined-ancestry analysis, and 3 that were novel in a European-specific analysis. We sought to identify AF-associated genes at the GWAS loci by performing RNA-sequencing and expression quantitative trait locus analyses in 101 left atrial samples, the most relevant tissue for AF. We also performed transcriptome-wide analyses that identified 57 AF-associated genes, 42 of which overlap with GWAS loci. The identified loci implicate genes enriched within cardiac developmental, electrophysiological, contractile and structural pathways. These results extend our understanding of the biological pathways underlying AF and may facilitate the development of therapeutics for AF.
  •  
8.
  •  
9.
  •  
10.
  • Brate, Jon, et al. (författare)
  • Unicellular Origin of the Animal MicroRNA Machinery
  • 2018
  • Ingår i: Current Biology. - : Elsevier BV. - 0960-9822 .- 1879-0445. ; 28:20, s. 3288-
  • Tidskriftsartikel (refereegranskat)abstract
    • The emergence of multicellular animals was associated with an increase in phenotypic complexity and with the acquisition of spatial cell differentiation and embryonic development. Paradoxically, this phenotypic transition was not paralleled by major changes in the underlying developmental toolkit and regulatory networks. In fact, most of these systems are ancient, established already in the unicellular ancestors of animals [1-5]. In contrast, the Microprocessor protein machinery, which is essential for microRNA (miRNA) biogenesis in animals, as well as the miRNA genes themselves produced by this Microprocessor, have not been identified outside of the animal kingdom [6]. Hence, the Microprocessor, with the key proteins Pasha and Drosha, is regarded as an animal innovation [7-9]. Here, we challenge this evolutionary scenario by investigating unicellular sister lineages of animals through genomic and transcriptomic analyses. We identify in Ichthyosporea both Drosha and Pasha (DGCR8 in vertebrates), indicating that the Microprocessor complex evolved long before the last common ancestor of animals, consistent with a pre-metazoan origin of most of the animal developmental gene elements. Through small RNA sequencing, we also discovered expressed bona fide miRNA genes in several species of the ichthyosporeans harboring the Microprocessor. A deep, pre-metazoan origin of the Microprocessor and miRNAs comply with a view that the origin of multicellular animals was not directly linked to the innovation of these key regulatory components.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy