SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0270 7306 OR L773:1098 5549 srt2:(1995-1999)"

Sökning: L773:0270 7306 OR L773:1098 5549 > (1995-1999)

  • Resultat 1-10 av 29
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dever, Thomas E, et al. (författare)
  • Modulation of tRNA(iMet), eIF-2, and eIF-2B expression shows that GCN4 translation is inversely coupled to the level of eIF-2.GTP.Met-tRNA(iMet) ternary complexes
  • 1995
  • Ingår i: Molecular and Cellular Biology. - : American Society for Microbiology. - 0270-7306 .- 1098-5549. ; 15:11, s. 6351-6363
  • Tidskriftsartikel (refereegranskat)abstract
    • To understand how phosphorylation of eukaryotic translation initiation factor (eIF)-2 alpha in Saccharomyces cerevisiae stimulates GCN4 mRNA translation while at the same time inhibiting general translation initiation, we examined the effects of altering the gene dosage of initiator tRNA(Met), eIF-2, and the guanine nucleotide exchange factor for eIF-2, eIF-2B. Overexpression of all three subunits of eIF-2 or all five subunits of eIF-2B suppressed the effects of eIF-2 alpha hyperphosphorylation on both GCN4-specific and general translation initiation. Consistent with eIF-2 functioning in translation as part of a ternary complex composed of eIF-2, GTP, and Met-tRNA(iMet), reduced gene dosage of initiator tRNA(Met) mimicked phosphorylation of eIF-2 alpha and stimulated GCN4 translation. In addition, overexpression of a combination of eIF-2 and tRNA(iMet) suppressed the growth-inhibitory effects of eIF-2 hyperphosphorylation more effectively than an increase in the level of either component of the ternary complex alone. These results provide in vivo evidence that phosphorylation of eIF-2 alpha reduces the activities of both eIF-2 and eIF-2B and that the eIF-2.GTP. Met-tRNA(iMet) ternary complex is the principal component limiting translation in cells when eIF-2 alpha is phosphorylated on serine 51. Analysis of eIF-2 alpha phosphorylation in the eIF-2-overexpressing strain also provides in vivo evidence that phosphorylated eIF-2 acts as a competitive inhibitor of eIF-2B rather than forming an excessively stable inactive complex. Finally, our results demonstrate that the concentration of eIF-2-GTP. Met-tRNA(iMet) ternary complexes is the cardinal parameter determining the site of reinitiation on GCN4 mRNA and support the idea that reinitiation at GCN4 is inversely related to the concentration of ternary complexes in the cell.
  •  
2.
  • DiRenzo, J, et al. (författare)
  • Peroxisome proliferator-activated receptors and retinoic acid receptors differentially control the interactions of retinoid X receptor heterodimers with ligands, coactivators, and corepressors
  • 1997
  • Ingår i: Molecular and Cellular Biology. - : American Society for Microbiology. - 0270-7306 .- 1098-5549. ; 17:4, s. 2166-2176
  • Tidskriftsartikel (refereegranskat)abstract
    • As the obligate member of most nuclear receptor heterodimers, retinoid X receptors (RXRs) can potentially perform two functions: cooperative binding to hormone response elements and coordinate regulation of target genes by RXR ligands. In this paper we describe allosteric interactions between RXR and two heterodimeric partners, retinoic acid receptors (RARs) and peroxisome proliferator-activated receptors (PPARs); RARs and PPARs prevent and permit activation by RXR-specific ligands, respectively. By competing for dimerization with RXR on response elements consisting of direct-repeat half-sites spaced by 1 bp (DR1 elements), the relative abundance of RAR and PPAR determines whether the RXR signaling pathway will be functional. In contrast to RAR, which prevents the binding of RXR ligands and recruits the nuclear receptor corepressor N-CoR, PPAR permits the binding of SRC-1 in response to both RXR and PPAR ligands. Overexpression of SRC-1 markedly potentiates ligand-dependent transcription by PPARgamma, suggesting that SRC-1 serves as a coactivator in vivo. Remarkably, the ability of RAR to both block the binding of ligands to RXR and interact with corepressors requires the CoR box, a structural motif residing in the N-terminal region of the RAR ligand binding domain. Mutations in the CoR box convert RAR from a nonpermissive to a permissive partner of RXR signaling on DR1 elements. We suggest that the differential recruitment of coactivators and corepressors by RAR-RXR and PPAR-RXR heterodimers provides the basis for a transcriptional switch that may be important in controlling complex programs of gene expression, such as adipocyte differentiation.
  •  
3.
  • Friant, S, et al. (författare)
  • Interactions between Ty1 retrotransposon RNA and the T and D regions of the tRNA(iMet) primer are required for initiation of reverse transcription in vivo
  • 1998
  • Ingår i: Molecular and Cellular Biology. - 0270-7306 .- 1098-5549. ; 18:2, s. 799-806
  • Tidskriftsartikel (refereegranskat)abstract
    • Reverse transcription of the Saccharomyces cerevisiae Ty1 retrotransposon is primed by tRNA(iMet) base paired to the primer binding site (PBS) near the 5' end of Ty1 genomic RNA. The 10-nucleotide PBS is complementary to the last 10 nucleotides of the acceptor stem of tRNA(iMet). A structural probing study of the interactions between the Ty1 RNA template and the tRNA(iMet) primer showed that besides interactions between the PBS and the 3' end of tRNA(iMet), three short regions of Ty1 RNA, named boxes 0, 1, and 2.1, interact with the T and D stems and loops of tRNA(iMet). To determine if these sequences are important for the reverse transcription pathway of the Ty1 retrotransposon, mutant Ty1 elements and tRNA(iMet) were tested for the ability to support transposition. We show that the Ty1 boxes and the complementary sequences in the T and D stems and loops of tRNA(iMet) contain bases that are critical for Ty1 retrotransposition. Disruption of 1 or 2 bp between tRNA(iMet) and box 0, 1, or 2.1 dramatically decreases the level of transposition. Compensatory mutations which restore base pairing between the primer and the template restore transposition. Analysis of the reverse transcription intermediates generated inside Ty1 virus-like particles indicates that initiation of minus-strand strong-stop DNA synthesis is affected by mutations disrupting complementarity between Ty1 RNA and primer tRNA(iMet).
  •  
4.
  • Keeney, Jill B, et al. (författare)
  • Multiple molecular determinants for retrotransposition in a primer tRNA
  • 1995
  • Ingår i: Molecular and Cellular Biology. - : American Society for Microbiology. - 0270-7306 .- 1098-5549. ; 15:1, s. 217-226
  • Tidskriftsartikel (refereegranskat)abstract
    • Retroviruses and long terminal repeat-containing retroelements use host-encoded tRNAs as primers for the synthesis of minus strong-stop DNA, the first intermediate in reverse transcription of the retroelement RNA. Usually, one or more specific tRNAs, including the primer, are selected and packaged within the virion. The reverse transcriptase (RT) interacts with the primer tRNA and initiates DNA synthesis. The structural and sequence features of primer tRNAs important for these specific interactions are poorly understood. We have developed a genetic assay in which mutants of tRNA(iMet), the primer for the Ty1 retrotransposon of Saccharomyces cerevisiae, can be tested for the ability to serve as primers in the reverse transcription process. This system allows any tRNA mutant to be tested, regardless of its ability to function in the initiation of protein synthesis. We find that mutations in the T psi C loop and the acceptor stem regions of the tRNA(iMet) affect transposition most severely. Conversely, mutations in the anticodon region have only minimal effects on transposition. Further study of the acceptor stem and other mutants demonstrates that complementarity to the element primer binding site is a necessary but not sufficient requirement for effective tRNA priming. Finally, we have used interspecies hybrid initiator tRNA molecules to implicate nucleotides in the D arm as additional recognition determinants. Ty3 and Ty1, two very distantly related retrotransposons, require similar molecular determinants in this primer tRNA for transposition.
  •  
5.
  • Vittorioso, Paola, et al. (författare)
  • Mutation in the Arabidopsis PASTICCINO1 gene, which encodes a new FK506-binding protein-like protein, has a dramatic effect on plant development
  • 1998
  • Ingår i: Molecular and Cellular Biology. - : American Society for Microbiology. - 0270-7306 .- 1098-5549. ; 18:5, s. 3034-3043
  • Tidskriftsartikel (refereegranskat)abstract
    • The pasticcino (pas) mutants of Arabidopsis thaliana are a new class of plant developmental mutants; members of this class show ectopic cell proliferation in cotyledons, extra layers of cells in the hypocotyl, and an abnormal apical meristem. This phenotype is correlated with both cell division and cell elongation defects. There are three complementation groups of pas mutants (pas1, pas2, and pas3, with, respectively 2, 1, and 4 alleles), Here we describe in more detail the pas1-1 allele, which was obtained by insertional mutagenesis. The PAS1 gene has been cloned and characterized; it encodes an immunophilin-like protein similar to the p59 FK506-binding protein (FKBP52). PAS1 is characterized by an FKBP-like domain and three tetratricopeptide repeat units. Although the presence of immunophilins in plants has already been demonstrated, the pas1-1 mutant represents the first inactivation of an FKBP-like gene in plants. PAS1 expression is altered in pas1 mutants and in the pas2 and pas3 mutants. The expression of the PAS1 gene is increased in the presence of cytokinins, a class of phytohormones originally discovered because of their ability to stimulate cell division. These results are of particular relevance as they show for the first time that an FKBP-like protein plays an important role in the control of plant development.
  •  
6.
  • Wallberg, A. E., et al. (författare)
  • Histone acetyltransferase complexes can mediate transcriptional activation by the major glucocorticoid receptor activation domain
  • 1999
  • Ingår i: Molecular and Cellular Biology. - : American Society for Microbiology. - 0270-7306 .- 1098-5549. ; 19:9, s. 5952-5959
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous studies have shown that the Ada adapter proteins are important for glucocorticoid receptor (GR)-mediated gene activation in yeast. The N- terminal transactivation domain of GR, τ1, is dependent upon Ada2, Ada3, and Gcn5 for transactivation in vitro and in vivo. Using in vitro techniques, we demonstrate that the GR-τ1 interacts directly with the native Ada containing histone acetyltransferase (HAT) complex SAGA but not the related Ada complex. Mutations in τ1 that reduce τ1 transactivation activity in vivo lead to a reduced binding of τ1 to the SAGA complex and conversely, mutations increasing the transactivation activity of τ1 lead to an increased binding of τ1 to SAGA. In addition, the Ada-independent NuA4 HAT complex also interacts with τ1. GAIA-τ1-driven transcription from chromatin templates is stimulated by SAGA and NuA4 in an acetyl coenzyme A-dependent manner. Low- activity τ1 mutants reduce SAGA- and NuA4-stimulated transcription while high-activity τ1 mutants increase transcriptional activation, specifically from chromatin templates. Our results demonstrate that the targeting of native HAT complexes by the GR-τ1 activation domain mediates transcriptional stimulation from chromatin templates.
  •  
7.
  • Wang, Nancy, et al. (författare)
  • SDF-2 induction of terminal differentiation in Dictyostelium discoideum is mediated by the membrane-spanning sensor kinase DhkA.
  • 1999
  • Ingår i: Molecular and Cellular Biology. - 0270-7306 .- 1098-5549. ; 19:7, s. 4750-4756
  • Tidskriftsartikel (refereegranskat)abstract
    • SDF-2 is a peptide released by prestalk cells during culmination that stimulates prespore cells to encapsulate. Genetic evidence indicates that the response is dependent on the dhkA gene. This gene encodes a member of the histidine kinase family of genes that functions in two-component signal transduction pathways. The sequence of the N-terminal half of DhkA predicts two hydrophobic domains separated by a 310-amino-acid loop that could bind a ligand. By inserting MYC6 epitopes into DhkA, we were able to show that the loop is extracellular while the catalytic domain is cytoplasmic. Cells expressing the MYC epitope in the extracellular domain of DhkA were found to respond only if induced with 100-fold-higher levels of SDF-2 than required to induce dhkA+ cells; however, they could be induced to sporulate by addition of antibodies specific to the MYC epitope. To examine the enzymatic activity of DhkA, we purified the catalytic domain following expression in bacteria and observed incorporation of labelled phosphate from ATP consistent with histidine autophosphorylation. Site-directed mutagenesis of histidine1395 to glutamine in the catalytic domain blocked autophosphorylation. Furthermore, genetic analyses showed that histidine1395 and the relay aspartate2075 of DhkA are both critical to its function but that another histidine kinase, DhkB, can partially compensate for the lack of DhkA activity. Sporulation is drastically reduced in double mutants lacking both DhkA and DhkB. Suppressor studies indicate that the cyclic AMP (cAMP) phosphodiesterase RegA and the cAMP-dependent protein kinase PKA act downstream of DhkA.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 29

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy