SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0963 0252 OR L773:1361 6595 srt2:(2020-2023)"

Sökning: L773:0963 0252 OR L773:1361 6595 > (2020-2023)

  • Resultat 1-10 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bao, Yupan, et al. (författare)
  • Single-shot 3D imaging of hydroxyl radicals in the vicinity of a gliding arc discharge
  • 2021
  • Ingår i: Plasma Sources Science and Technology. - : IOP Publishing. - 0963-0252 .- 1361-6595. ; 30:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemical processing by plasma is utilized in many applications. Plasma-related studies, however, are challenging to carry out due to plasmas' transient and unpredictable behavior, excessive luminosity emission, 3D complexity and aggressive chemistry and physiochemical interactions that are easily affected by external probing. Laser-induced fluorescence is a robust technique for non-intrusive investigations of plasma-produced species. The hydroxyl radical (OH) is an interesting molecule to target, as it is easily produced by plasmas in humid air. In this letter, we present 3D distributions of ground state OH radicals in the vicinity of a glow-type gliding arc plasma. Such radical distributions, with minimal plasma emission, are captured instantaneously in one single camera acquisition by combining structured laser illumination and a lock-in based imaging analysis method called FRAME. The orientation of the plasma discharge can be reconstructed from the 3D data matrix, which can then be used to calculate 2D distributions of ground state OH radicals in a plane perpendicular to the orientation of the plasma channel. Our results indicate that OH distributions around a gliding arc are strongly affected by gas dynamics. We believe that the ability to instantaneously capture 3D transient molecular distributions in a plasma discharge, with minimal plasma emission interference, will have a strong impact on the plasma community for in-situ investigations of plasma-induced chemistry and physics.
  •  
2.
  • Cont-Bernard, Davide Del, et al. (författare)
  • Femtosecond two-photon laser-induced fluorescence imaging of atomic hydrogen in a laminar methane-air flame assisted by nanosecond repetitively pulsed discharges
  • 2020
  • Ingår i: Plasma Sources Science and Technology. - : IOP Publishing. - 0963-0252 .- 1361-6595. ; 29:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Sustainable and low-emission combustion is in need of novel schemes to enhance combustion efficiency and control to meet up with new emission standards and comply with varying quality of renewable fuels. Plasma actuation is a promising candidate to achieve this goal but few detailed experiments have been carried out that target how specific combustion and plasma related species are affected by the coupling of plasma and combustion chemistry. Atomic hydrogen is such a species that here is imaged by using the two-photon absorption laser induced fluorescence (TALIF) technique as an atmospheric pressure methane-air flame is actuated by nanosecond repetitively pulsed (NRP) discharges. Atomic hydrogen is observed both in the flame and in the discharge channel and plasma actuation results in a wide modification of the flame shape. A local 50% increase of fluorescence occurs at the flame front where it is crossed by the discharge. Atomic hydrogen in the discharge channel in the fresh-gases is found to decay with a time constant of about 2.4 μs. These results provide new insights on the plasma flame interaction at atmospheric pressure that can be further used for cross-validation of numerical calculations.
  •  
3.
  • Brenning, Nils, et al. (författare)
  • HiPIMS optimization by using mixed high-power and low-power pulsing
  • 2021
  • Ingår i: Plasma sources science & technology. - : IOP Publishing. - 0963-0252 .- 1361-6595. ; 30:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The possibility to optimize a high-power impulse magnetron sputtering (HiPIMS) discharge through mixing two different power levels in the pulse pattern is investigated. Standard HiPIMS pulses are used to create the ions of the film-forming material. After each HiPIMS pulse an off-time follows, during which no voltage (or, optionally, a reversed voltage) is applied, letting the remaining ions in the magnetic trap escape towards the substrate. After these off-times, a long second pulse with lower amplitude, in the dc magnetron sputtering range, is applied. During this pulse, which is continued up to the following HiPIMS pulse, mainly neutrals of the film-forming material are produced. This pulse pattern makes it possible to achieve separate optimization of the ion production, and of the neutral atom production, that constitute the film-forming flux to the substrate. The optimization process is thereby separated into two sub-problems. The first sub-problem concerns minimizing the energy cost for ion production, and the second sub-problem deals with how to best split a given allowed discharge power between ion production and neutral production. The optimum power split is decided by the lowest ionized flux fraction that gives the desired film properties for a specific application. For the first sub-problem we describe a method where optimization is achieved by the selection of five process parameters: the HiPIMS pulse amplitude, the HiPIMS pulse length, the off-time, the working gas pressure, and the magnetic field strength. For the second sub-problem, the splitting of power between ion and neutral production, optimization is achieved by the selection of the values of two remaining process parameters, the HiPIMS pulse repetition frequency and the discharge voltage of the low-power pulse.
  •  
4.
  • Proto, A., et al. (författare)
  • Electron power absorption in radio frequency driven capacitively coupled chlorine discharge
  • 2021
  • Ingår i: Plasma sources science & technology. - : IOP Publishing. - 0963-0252 .- 1361-6595. ; 30:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Particle-in-cell Monte Carlo collision simulations and Boltzmann term analysis are applied to study the origination and properties of the electric field and the electron power absorption within the electronegative core of a capacitively coupled discharge in chlorine as the pressure is varied from 1 to 50 Pa. The capacitively coupled chlorine discharge exhibits high electronegativity and high electric field develops within the electronegative core. It is found that the electron power absorption increases and the ion power absorption decreases as the pressure is increased. At 1 Pa the electron power absorption is due to both the pressure and ohmic terms. At the higher pressures >10 Pa the ohmic term dominates and all the other contributions to the electron power absorption become negligible. Therefore, the discharge becomes increasingly ohmic with increased pressure and eventually behaves as a resistive load.
  •  
5.
  • Antunes, V. G., et al. (författare)
  • Influence of the magnetic field on the extension of the ionization region in high power impulse magnetron sputtering discharges
  • 2023
  • Ingår i: Plasma sources science & technology. - : IOP Publishing. - 0963-0252 .- 1361-6595. ; 32:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The high power impulse magnetron sputtering (HiPIMS) discharge brings about increased ionization of the sputtered atoms due to an increased electron density and efficient electron energization during the active period of the pulse. The ionization is effective mainly within the electron trapping zone, an ionization region (IR), defined by the magnet configuration. Here, the average extension and the volume of the IR are determined based on measuring the optical emission from an excited level of the argon working gas atoms. For particular HiPIMS conditions, argon species ionization and excitation processes are assumed to be proportional. Hence, the light emission from certain excited atoms is assumed to reflect the IR extension. The light emission was recorded above a 100 mm diameter titanium target through a 763 nm bandpass filter using a gated camera. The recorded images directly indicate the effect of the magnet configuration on the average IR size. It is observed that the shape of the IR matches the shape of the magnetic field lines rather well. The IR is found to expand from 10 and 17 mm from the target surface when the parallel magnetic field strength 11 mm above the racetrack is lowered from 24 to 12 mT at a constant peak discharge current.
  •  
6.
  • Babu, Swetha Suresh, et al. (författare)
  • High power impulse magnetron sputtering of tungsten : a comparison of experimental and modelling results
  • 2023
  • Ingår i: Plasma sources science & technology. - : IOP Publishing. - 0963-0252 .- 1361-6595. ; 32:3, s. 034003-
  • Tidskriftsartikel (refereegranskat)abstract
    • Here, we compare the ionization region model (IRM) against experimental measurements of particle densities and electron temperature in a high power impulse magnetron sputtering discharge with a tungsten target. The semi-empirical model provides volume-averaged temporal variations of the various species densities as well as the electron energy for a particular cathode target material, when given the measured discharge current and voltage waveforms. The model results are compared to the temporal evolution of the electron density and the electron temperature determined by Thomson scattering measurements and the temporal evolution of the relative neutral and ion densities determined by optical emission spectrometry. While the model underestimates the electron density and overestimates the electron temperature, the temporal trends of the species densities and the electron temperature are well captured by the IRM.
  •  
7.
  • Babu, Swetha Suresh, et al. (författare)
  • Modeling of high power impulse magnetron sputtering discharges with tungsten target
  • 2022
  • Ingår i: Plasma sources science & technology. - : IOP Publishing. - 0963-0252 .- 1361-6595. ; 31:6, s. 065009-
  • Tidskriftsartikel (refereegranskat)abstract
    • The ionization region model (IRM) is applied to model a high power impulse magnetron sputtering discharge with a tungsten target. The IRM gives the temporal variation of the various species and the average electron energy, as well as internal discharge parameters such as the ionization probability and the back-attraction probability of the sputtered species. It is shown that an initial peak in the discharge current is due to argon ions bombarding the cathode target. After the initial peak, the W+ ions become the dominating ions and remain as such to the end of the pulse. We demonstrate how the contribution of the W+ ions to the total discharge current at the target surface increases with increased discharge voltage for peak discharge current densities J (D,peak) in the range 0.33-0.73 A cm(-2). For the sputtered tungsten the ionization probability increases, while the back-attraction probability decreases with increasing discharge voltage. Furthermore, we discuss the findings in terms of the generalized recycling model and compare to experimentally determined deposition rates and find good agreement.
  •  
8.
  • Eliasson, H., et al. (författare)
  • Modeling of high power impulse magnetron sputtering discharges with graphite target
  • 2021
  • Ingår i: Plasma sources science & technology. - : IOP Publishing Ltd. - 0963-0252 .- 1361-6595. ; 30:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The ionization region model (IRM) is applied to model a high power impulse magnetron sputtering discharge in argon with a graphite target. Using the IRM, the temporal variation of the various species and the average electron energy, as well as internal parameters such as the ionization probability, back-attraction probability, and the ionized flux fraction of the sputtered species, is determined. It is found that thedischarge develops into working gas recycling and most of the discharge current at the cathode target surface is composed of Ar+ ions, which constitute over 90% of the discharge current, while the contribution of the C+ ions is always small (<5%), even for peak current densities close to 3 A cm(-2). For the target species, the time-averaged ionization probability is low, or 13-27%, the ion back-attraction probability during the pulse is high (>92%), and the ionized flux fraction is about 2%. It is concluded that in the operation range studied here it is a challenge to ionize carbon atoms, that are sputtered off of a graphite target in a magnetron sputtering discharge, when depositing amorphous carbon films.
  •  
9.
  • Fischer, Joel, et al. (författare)
  • Insights into the copper HiPIMS discharge : deposition rate and ionised flux fraction
  • 2023
  • Ingår i: Plasma sources science & technology. - : IOP Publishing. - 0963-0252 .- 1361-6595. ; 32:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The influence of pulse length, working gas pressure, and peak discharge current density on the deposition rate and ionised flux fraction in high power impulse magnetron sputtering discharges of copper is investigated experimentally using a charge-selective (electrically biasable) magnetically shielded quartz crystal microbalance (or ionmeter). The large explored parameter space covers both common process conditions and extreme cases. The measured ionised flux fraction for copper is found to be in the range from ≈10% to 80%, and to increase with increasing peak discharge current density up to a maximum at ≈ 1.25 A cm − 2 , before abruptly falling off at even higher current density values. Low working gas pressure is shown to be beneficial in terms of both ionised flux fraction and deposition rate fraction. For example, decreasing the working gas pressure from 1.0 Pa to 0.5 Pa leads on average to an increase of the ionised flux fraction by ≈ 14 percentage points (pp) and of the deposition rate fraction by ≈ 4 pp taking into account all the investigated pulse lengths.
  •  
10.
  • Gudmundsson, Jon Tomas, 1965-, et al. (författare)
  • Foundations of physical vapor deposition with plasma assistance
  • 2022
  • Ingår i: Plasma sources science & technology. - : IOP Publishing. - 0963-0252 .- 1361-6595. ; 31:8, s. 083001-
  • Forskningsöversikt (refereegranskat)abstract
    • Physical vapor deposition (PVD) refers to the removal of atoms from a solid or a liquid by physical means, followed by deposition of those atoms on a nearby surface to form a thin film or coating. Various approaches and techniques are applied to release the atoms including thermal evaporation, electron beam evaporation, ion-driven sputtering, laser ablation, and cathodic arc-based emission. Some of the approaches are based on a plasma discharge, while in other cases the atoms composing the vapor are ionized either due to the release of the film-forming species or they are ionized intentionally afterward. Here, a brief overview of the various PVD techniques is given, while the emphasis is on sputtering, which is dominated by magnetron sputtering, the most widely used technique for deposition of both metallic and compound thin films. The advantages and drawbacks of the various techniques are discussed and compared.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy