SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1748 1708 srt2:(2020-2024)"

Sökning: L773:1748 1708 > (2020-2024)

  • Resultat 1-10 av 77
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Addinsall, Alex B., et al. (författare)
  • Ruxolitinib : A new hope for ventilator-induced diaphragm dysfunction
  • 2024
  • Ingår i: Acta Physiologica. - : John Wiley & Sons. - 1748-1708 .- 1748-1716. ; 240:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: Mechanical ventilation (MV) results in diminished diaphragm size and strength, termed ventilator-induced diaphragm dysfunction (VIDD). VID increases dependence, prolongs weaning, and increases discharge mortality rates. The Janus kinase (JAK)/Signal Transducer and Activator of Transcription (STAT) pathway is implicated in VIDD, upregulated following MV. JAK/STAT inhibition alleviates chronic muscle wasting conditions. This study aimed to explore the therapeutic potential of Ruxolitinib, an FDA approved JAK1/2 inhibitor (JI) for the treatment of VIDD. Methods: Rats were subjected to 5 days controlled MV (CMV) with and without daily Ruxolitinib gavage. Muscle fiber size and function were assessed. RNAseq, mitochondrial morphology, respirometry, and mass spectrometry were determined. Results: CMV significantly reduced diaphragm size and specific force by 45% (p < 0.01), associated with a two-fold P-STAT3 upregulation (p < 0.001). CMV disrupted mitochondrial content and reduced the oxygen consumption rate (p < 0.01). Expression of the motor protein myosin was unaffected, however CMV alters myosin function via post-translational modifications (PTMs). Daily administration of JI increased animal survival (40% vs. 87%; p < 0.05), restricted P-STAT3 (p < 0.001), and preserved diaphragm size and specific force. JI was associated with preserved mitochondrial content and respiratory function (p < 0.01), and the reversal or augmentation of myosin deamidation PTMs of the rod and head region. Conclusion: JI preserved diaphragm function, leading to increased survival in an experimental model of VIDD. Functional enhancement was associated with maintenance of mitochondrial content and respiration and the reversal of ventilator-induced PTMs of myosin. These results demonstrate the potential of repurposing Ruxolitinib for treatment of VIDD.
  •  
2.
  •  
3.
  • Burmakin, Mikhail, et al. (författare)
  • Pharmacological HIF-PHD inhibition reduces renovascular resistance and increases glomerular filtration by stimulating nitric oxide generation
  • 2021
  • Ingår i: Acta Physiologica. - : John Wiley & Sons. - 1748-1708 .- 1748-1716. ; 233:1
  • Tidskriftsartikel (refereegranskat)abstract
    • AIM: Hypoxia-inducible factors (HIFs) are O2 -sensitive transcription factors that regulate multiple biological processes which are essential for cellular adaptation to hypoxia. Small molecule inhibitors of HIF-prolyl hydroxylase domain (PHD) dioxygenases (HIF-PHIs) activate HIF-dependent transcriptional programs and have broad clinical potential. HIF-PHIs are currently in global late-stage clinical development for the treatment of anaemia associated with chronic kidney disease. Although the effects of hypoxia on renal haemodynamics and function have been studied in animal models and in humans living at high altitude, the effects of pharmacological HIF activation on renal haemodynamics, O2 metabolism and metabolic efficiency are not well understood.METHODS: Using a cross-sectional study design, we investigated renal haemodynamics, O2 metabolism, gene expression and NO production in healthy rats treated with different doses of HIF-PHIs roxadustat or molidustat compared to vehicle control.RESULTS: Systemic administration of roxadustat or molidustat resulted in a dose-dependent reduction in renovascular resistance (RVR). This was associated with increased glomerular filtration rate (GFR), urine flow and tubular sodium transport rate (TNa ). Although both total O2 delivery and TNa were increased, more O2 was extracted per transported sodium in rats treated with high-doses of HIF-PHIs, suggesting a reduction in metabolic efficiency. Changes in RVR and GFR were associated with increased nitric oxide (NO) generation and substantially suppressed by pharmacological inhibition of NO synthesis.CONCLUSIONS: Our data provide mechanistic insights into dose-dependent effects of short-term pharmacological HIF activation on renal haemodynamics, glomerular filtration and O2 metabolism and identify NO as a major mediator of these effects.
  •  
4.
  • Cacciani, Nicola, et al. (författare)
  • Chaperone co-inducer BGP-15 mitigates early contractile dysfunction of the soleus muscle in a rat ICU model
  • 2020
  • Ingår i: Acta Physiologica. - : Wiley. - 1748-1708 .- 1748-1716. ; 229:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim Critical illness myopathy (CIM) represents a common consequence of modern intensive care, negatively impacting patient health and significantly increasing health care costs; however, there is no treatment available apart from symptomatic and supportive interventions. The chaperone co-inducer BGP-15 has previously been shown to have a positive effect on the diaphragm in rats exposed to the intensive care unit (ICU) condition. In this study, we aim to explore the effects of BGP-15 on a limb muscle (soleus muscle) in response to the ICU condition. Methods Sprague-Dawley rats were subjected to the ICU condition for 5, 8 and 10 days and compared with untreated sham-operated controls. Results BGP-15 significantly improved soleus muscle fibre force after 5 days exposure to the ICU condition. This improvement was associated with the protection of myosin from post-translational myosin modifications, improved mitochondrial structure/biogenesis and reduced the expression of MuRF1 and Fbxo31 E3 ligases. At longer durations (8 and 10 days), BGP-15 had no protective effect when the hallmark of CIM had become manifest, that is, preferential loss of myosin. Unrelated to the effects on skeletal muscle, BGP-15 had a strong positive effect on survival compared with untreated animals. Conclusions BGP-15 treatment improved soleus muscle fibre and motor protein function after 5 days exposure to the ICU condition, but not at longer durations (8 and 10 days) when the preferential loss of myosin was manifest. Thus, long-term CIM interventions targeting limb muscle fibre/myosin force generation capacity need to consider both the post-translational modifications and the loss of myosin.
  •  
5.
  • Cataldo, Rodrigo, et al. (författare)
  • MAFA and MAFB regulate exocytosis-related genes in human β-cells
  • 2022
  • Ingår i: Acta Physiologica. - : Wiley. - 1748-1716 .- 1748-1708. ; 234:2
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS: Reduced expression of exocytotic genes is associated with functional defects in insulin exocytosis contributing to impaired insulin secretion and type 2 diabetes (T2D) development. MAFA and MAFB transcription factors regulate β-cell physiology, and their gene expression is reduced in T2D β cells. We investigate if loss of MAFA and MAFB in human β cells contributes to T2D progression by regulating genes required for insulin exocytosis.METHODS: Three approaches were performed: (1) RNAseq analysis with the focus on exocytosis-related genes in MafA-/- mouse islets, (2) correlational analysis between MAFA, MAFB and exocytosis-related genes in human islets and (3) MAFA and MAFB silencing in human islets and EndoC-βH1 cells followed by functional in vitro studies.RESULTS: The expression of 30 exocytosis-related genes was significantly downregulated in MafA-/- mouse islets. In human islets, the expression of 29 exocytosis-related genes correlated positively with MAFA and MAFB. Eight exocytosis-related genes were downregulated in MafA-/- mouse islets and positively correlated with MAFA and MAFB in human islets. From this analysis, the expression of RAB3A, STXBP1, UNC13A, VAMP2, NAPA, NSF, STX1A and SYT7 was quantified after acute MAFA or MAFB silencing in EndoC-βH1 cells and human islets. MAFA and MAFB silencing resulted in impaired insulin secretion and reduced STX1A, SYT7 and STXBP1 (EndoC-βH1) and STX1A (human islets) mRNA expression. STX1A and STXBP1 protein expression was also impaired in islets from T2D donors which lack MAFA expression.CONCLUSION: Our data indicate that STXBP1 and STX1A are important MAFA/B-regulated exocytosis genes which may contribute to insulin exocytosis defects observed in MAFA-deficient human T2D β cells.
  •  
6.
  •  
7.
  • dos Santos, Klinsmann Carolo, et al. (författare)
  • The impact of macronutrient composition on metabolic regulation : An Islet-Centric view
  • 2022
  • Ingår i: Acta Physiologica. - : Wiley. - 1748-1708 .- 1748-1716. ; 236:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: The influence of dietary carbohydrates and fats on weight gain is inconclusively understood. We studied the acute impact of these nutrients on the overall metabolic state utilizing the insulin:glucagon ratio (IGR). Methods: Following in vitro glucose and palmitate treatment, insulin and glucagon secretion from islets isolated from C57Bl/6J mice was measured. Our human in vivo study included 21 normoglycaemia (mean age 51.9 ± 16.5 years, BMI 23.9 ± 3.5 kg/m2, and HbA1c 36.9 ± 3.3 mmol/mol) and 20 type 2 diabetes (T2D) diagnosed individuals (duration 12 ± 7 years, mean age 63.6 ± 4.5 years, BMI 29.1 ± 2.4 kg/m2, and HbA1c 52.3 ± 9.5 mmol/mol). Individuals consumed a carbohydrate-rich or fat-rich meal (600 kcal) in a cross-over design. Plasma insulin and glucagon levels were measured at −30, −5, and 0 min, and every 30 min until 240 min after meal ingestion. Results: The IGR measured from mouse islets was determined solely by glucose levels. The palmitate-stimulated hormone secretion was largely glucose independent in the analysed mouse islets. The acute meal tolerance test demonstrated that insulin and glucagon secretion is dependent on glycaemic status and meal composition, whereas the IGR was dependent upon meal composition. The relative reduction in IGR elicited by the fat-rich meal was more pronounced in obese individuals. This effect was blunted in T2D individuals with elevated HbA1c levels. Conclusion: The metabolic state in normoglycaemic individuals and T2D-diagnosed individuals is regulated by glucose. We demonstrate that consumption of a low carbohydrate diet, eliciting a catabolic state, may be beneficial for weight loss, particularly in obese individuals.
  •  
8.
  •  
9.
  • Flockhart, Mikael, et al. (författare)
  • Reduced glucose tolerance and insulin sensitivity after prolonged exercise in endurance athletes.
  • 2023
  • Ingår i: Acta Physiologica. - : John Wiley & Sons. - 1748-1708 .- 1748-1716. ; 238:4
  • Tidskriftsartikel (refereegranskat)abstract
    • AIM: The purpose of this study was to 1. investigate if glucose tolerance is affected after one acute bout of different types of exercise; 2. assess if potential differences between two exercise paradigms are related to changes in mitochondrial function; and 3. determine if endurance athletes differ from nonendurance-trained controls in their metabolic responses to the exercise paradigms.METHODS: Nine endurance athletes (END) and eight healthy nonendurance-trained controls (CON) were studied. Oral glucose tolerance tests (OGTT) and mitochondrial function were assessed on three occasions: in the morning, 14 h after an overnight fast without prior exercise (RE), as well as after 3 h of prolonged continuous exercise at 65% of VO2 max (PE) or 5 × 4 min at ~95% of VO2 max (HIIT) on a cycle ergometer.RESULTS: Glucose tolerance was markedly reduced in END after PE compared with RE. END also exhibited elevated fasting serum FFA and ketones levels, reduced insulin sensitivity and glucose oxidation, and increased fat oxidation during the OGTT. CON showed insignificant changes in glucose tolerance and the aforementioned measurements compared with RE. HIIT did not alter glucose tolerance in either group. Neither PE nor HIIT affected mitochondrial function in either group. END also exhibited increased activity of 3-hydroxyacyl-CoA dehydrogenase activity in muscle extracts vs. CON.CONCLUSION: Prolonged exercise reduces glucose tolerance and increases insulin resistance in endurance athletes the following day. These findings are associated with an increased lipid load, a high capacity to oxidize lipids, and increased fat oxidation.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 77
Typ av publikation
tidskriftsartikel (47)
konferensbidrag (26)
forskningsöversikt (4)
Typ av innehåll
refereegranskat (38)
övrigt vetenskapligt/konstnärligt (37)
populärvet., debatt m.m. (2)
Författare/redaktör
von Walden, F (7)
Lanner, JT (5)
Henriksson, J (4)
Carlstrom, M (4)
Rundqvist, H (3)
Back, M (3)
visa fler...
Eliasson, Lena (3)
Pontén, E (3)
Hupin, D (3)
Gastaldello, S (3)
Jude, B (3)
Corell, L (3)
Delemotte, Lucie (2)
Larsson, Lars (2)
Kruse, A. (2)
Akkad, Hazem (2)
Nielsen, H (2)
Krook, A (2)
Zierath, JR (2)
Johansson, J (2)
Fex, Malin (2)
Bergquist, Jonas (2)
Cacciani, Nicola (2)
Katz, Abram (2)
Mikolka, P. (2)
Curstedt, T. (2)
Gustafsson, T. (2)
Carlström, Mattias (2)
Philip, S. (2)
Johnson, RS (2)
Norrbom, J (2)
Andersson, DC (2)
Apró, William, 1980- (2)
Hjalmarsson, E (2)
Velica, P (2)
Gojkovic, M (2)
Wen, Y. (2)
Palm, Fredrik, 1973- (2)
Blackwood, Sarah J (2)
Larsen, Filip J, 197 ... (2)
Hansell, Peter (2)
Fernandez-Gonzalo, R (2)
Urrutia, Andrés A. (2)
Calkovska, A (2)
Carrillo, BJP (2)
Thies, F (2)
Blana, D (2)
Gabriel, B (2)
McCarthy, J. (2)
Choudhury, Koushik (2)
visa färre...
Lärosäte
Karolinska Institutet (45)
Uppsala universitet (13)
Lunds universitet (8)
Göteborgs universitet (6)
Gymnastik- och idrottshögskolan (6)
Kungliga Tekniska Högskolan (3)
visa fler...
Karlstads universitet (2)
Umeå universitet (1)
Luleå tekniska universitet (1)
Högskolan i Halmstad (1)
Stockholms universitet (1)
Örebro universitet (1)
Linköpings universitet (1)
Mittuniversitetet (1)
Linnéuniversitetet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (77)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (37)
Naturvetenskap (7)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy