SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2190 4979 OR L773:2190 4987 srt2:(2020-2024)"

Sökning: L773:2190 4979 OR L773:2190 4987 > (2020-2024)

  • Resultat 1-10 av 34
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Annan, James D., et al. (författare)
  • What could we learn about climate sensitivity from variability in the surface temperature record?
  • 2020
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 11:3, s. 709-719
  • Tidskriftsartikel (refereegranskat)abstract
    • We examine what can be learnt about climate sensitivity from variability in the surface air temperature record over the instrumental period, from around 1880 to the present. While many previous studies have used trends in observational time series to constrain equilibrium climate sensitivity, it has also been argued that temporal variability may also be a powerful constraint. We explore this question in the context of a simple widely used energy balance model of the climate system. We consider two recently proposed summary measures of variability and also show how the full information content can be optimally used in this idealised scenario. We find that the constraint provided by variability is inherently skewed, and its power is inversely related to the sensitivity itself, discriminating most strongly between low sensitivity values and weakening substantially for higher values. It is only when the sensitivity is very low that the variability can provide a tight constraint. Our investigations take the form of perfect model experiments, in which we make the optimistic assumption that the model is structurally perfect and all uncertainties (including the true parameter values and nature of internal variability noise) are correctly characterised. Therefore the results might be interpreted as a best-case scenario for what we can learn from variability, rather than a realistic estimate of this. In these experiments, we find that for a moderate sensitivity of 2.5 degrees C, a 150-year time series of pure internal variability will typically support an estimate with a 5 %-95% range of around 5 degrees C (e.g. 1.9-6.8 degrees C). Total variability including that due to the forced response, as inferred from the detrended observational record, can provide a stronger constraint with an equivalent 5 %-95 % posterior range of around 4 degrees C (e.g. 1.8-6.0 degrees C) even when uncertainty in aerosol forcing is considered. Using a statistical summary of variability based on autocorrelation and the magnitude of residuals after detrending proves somewhat less powerful as a constraint than the full time series in both situations. Our results support the analysis of variability as a potentially useful tool in helping to constrain equilibrium climate sensitivity but suggest caution in the interpretation of precise results.
  •  
2.
  • Armstrong McKay, David I., et al. (författare)
  • Resolving ecological feedbacks on the ocean carbon sink in Earth system models
  • 2021
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 12:3, s. 797-818
  • Tidskriftsartikel (refereegranskat)abstract
    • The Earth's oceans are one of the largest sinks in the Earth system for anthropogenic CO2 emissions, acting as a negative feedback on climate change. Earth system models project that climate change will lead to a weakening ocean carbon uptake rate as warm water holds less dissolved CO2 and as biological productivity declines. However, most Earth system models do not incorporate the impact of warming on bacterial remineralisation and rely on simplified representations of plankton ecology that do not resolve the potential impact of climate change on ecosystem structure or elemental stoichiometry. Here, we use a recently developed extension of the cGEnIE (carbon-centric Grid Enabled Integrated Earth system model), ecoGEnIE, featuring a trait-based scheme for plankton ecology (ECOGEM), and also incorporate cGEnIE's temperature-dependent remineralisation (TDR) scheme. This enables evaluation of the impact of both ecological dynamics and temperature-dependent remineralisation on particulate organic carbon (POC) export in response to climate change. We find that including TDR increases cumulative POC export relative to default runs due to increased nutrient recycling (+ similar to 1.3 %), whereas ECOGEM decreases cumulative POC export by enabling a shift to smaller plankton classes (- similar to 0.9 %). However, interactions with carbonate chemistry cause opposite sign responses for the carbon sink in both cases: TDR leads to a smaller sink relative to default runs (- similar to 1.0 %), whereas ECOGEM leads to a larger sink (+ similar to 0.2 %). Combining TDR and ECOGEM results in a net strengthening of POC export (+ similar to 0.1 %) and a net reduction in carbon sink (- similar to 0.7 %) relative to default. These results illustrate the degree to which ecological dynamics and biodiversity modulate the strength of the biological pump, and demonstrate that Earth system models need to incorporate ecological complexity in order to resolve non-linear climate-biosphere feedbacks.
  •  
3.
  • Barcikowska, M. J., et al. (författare)
  • Chances in the future summer Mediterranean climate: contribution of teleconnections and local factors
  • 2020
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 11:1, s. 161-181
  • Tidskriftsartikel (refereegranskat)abstract
    • This study analyzes future climate for the Mediterranean region projected with the high-resolution coupled CM2.5 model, which incorporates a new and improved land model (LM3). The simulated climate changes suggest pronounced warming and drying over most of the region. However, the changes are distinctly smaller than those of the CMIP5 multi-model ensemble. In addition, the changes over much of southeast and central Europe indicate very modest warming compared to the CMIP5 projections and also a tendency toward wetter conditions. These differences indicate a possible role of factors such as land surface-atmospheric interactions in these regions. Our analysis also highlights the importance of correctly projecting the magnitude of changes in the summer North Atlantic Oscillation, which has the capacity to partly offset anthropogenic warming and drying over the western and central Mediterranean. Nevertheless, the projections suggest a decreasing influence of local atmospheric dynamics and teleconnections in maintaining the regional temperature and precipitation balance, in particular over arid regions like the eastern and southern Mediterranean, which show a local maximum of warming and drying. The intensification of the heat low in these regions rather suggests an increasing influence of warming land surface on the local surface atmospheric circulation and progressing desertification.
  •  
4.
  • De Luca, Paolo, et al. (författare)
  • Compound warm-dry arid cold-wet events over the Mediterranean
  • 2020
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 11:3, s. 793-805
  • Tidskriftsartikel (refereegranskat)abstract
    • The Mediterranean (MED) Basin is a climate change hotspot that has seen drying and a pronounced increase in heatwaves over the last century. At the same time, it is experiencing increased heavy precipitation during wintertime cold spells. Understanding and quantifying the risks from compound events over the MED is paramount for present and future disaster risk reduction measures. Here, we apply a novel method to study compound events based on dynamical systems theory and analyse compound temperature and precipitation events over the MED from 1979 to 2018. The dynamical systems analysis quantifies the strength of the coupling between different atmospheric variables over the MED. Further, we consider compound warm-dry anomalies in summer and cold-wet anomalies in winter. Our results show that these warm-dry and cold-wet compound days are associated with large values of the temperature-precipitation coupling parameter of the dynamical systems analysis. This indicates that there is a strong interaction between temperature and precipitation during compound events. In winter, we find no significant trend in the coupling between temperature and precipitation. However in summer, we find a significant upward trend which is likely driven by a stronger coupling during warm and dry days. Thermodynamic processes associated with long-term MED warming can best explain the trend, which intensifies compound warm-dry events.
  •  
5.
  • De Luca, Paolo, et al. (författare)
  • Concurrent wet and dry hydrological extremes at the global scale
  • 2020
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 11:1, s. 251-266
  • Tidskriftsartikel (refereegranskat)abstract
    • Multi-hazard events can be associated with larger socio-economic impacts than single-hazard events. Understanding the spatio-temporal interactions that characterize the former is therefore of relevance to disaster risk reduction measures. Here, we consider two high-impact hazards, namely wet and dry hydrological extremes, and quantify their global co-occurrence. We define these using the monthly self-calibrated Palmer Drought Severity Index based on the Penman-Monteith model (sc_PDSI_pm), covering the period 1950-2014, at 2.5 degrees horizontal resolution. We find that the land areas affected by extreme wet, dry, and wet-dry events (i.e. geographically remote yet temporally co-occurring wet or dry extremes) are all increasing with time, the trends of which in dry and wet-dry episodes are significant (p value << 0.01). The most geographically widespread wet-dry event was associated with the strong La Nina in 2010. This caused wet-dry anomalies across a land area of 21 million km(2) with documented high-impact flooding and drought episodes spanning diverse regions. To further elucidate the interplay of wet and dry extremes at a grid cell scale, we introduce two new metrics: the wet-dry (WD) ratio and the extreme transition (ET) time intervals. The WD ratio measures the relative occurrence of wet or dry extremes, whereas ET quantifies the average separation time of hydrological extremes with opposite signs. The WD ratio shows that the incidence of wet extremes dominates over dry extremes in the USA, northern and southern South America, northern Europe, north Africa, western China, and most of Australia. Conversely, dry extremes are more prominent in most of the remaining regions. The median ET for wet to dry is similar to 27 months, while the dry-to-wet median ET is 21 months. We also evaluate correlations between wet-dry hydrological extremes and leading modes of climate variability, namely the El Nina-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and Atlantic Multi-decadal Oscillation (AMO). We find that ENSO and PDO have a similar influence globally, with the former significantly impacting (p value < 0.05) a larger area (18.1 % of total sc_PDSI_pm area) compared to the latter (12.0 %), whereas the AMO shows an almost inverse pattern and significantly impacts the largest area overall (18.9 %). ENSO and PDO show the most significant correlations over northern South America, the central and western USA, the Middle East, eastern Russia, and eastern Australia. On the other hand, the AMO shows significant associations over Mexico, Brazil, central Africa, the Arabian Peninsula, China, and eastern Russia. Our analysis brings new insights on hydrological multi-hazards that are of relevance to governments and organizations with globally distributed interests. Specifically, the multi-hazard maps may be used to evaluate worst-case disaster scenarios considering the potential co-occurrence of wet and dry hydrological extremes.
  •  
6.
  • Donges, Jonathan F., et al. (författare)
  • Earth system modeling with endogenous and dynamic human societies : the copan
  • 2020
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 11:2, s. 395-413
  • Tidskriftsartikel (refereegranskat)abstract
    • Analysis of Earth system dynamics in the Anthropocene requires explicitly taking into account the increasing magnitude of processes operating in human societies, their cultures, economies and technosphere and their growing feedback entanglement with those in the physical, chemical and biological systems of the planet. However, current state-of-the-art Earth system models do not represent dynamic human societies and their feedback interactions with the biogeophysical Earth system and macroeconomic integrated assessment models typically do so only with limited scope. This paper (i) proposes design principles for constructing world-Earth models (WEMs) for Earth system analysis of the Anthropocene, i.e., models of social (world)-ecological (Earth) coevolution on up to planetary scales, and (ii) presents the copan:CORE open simulation modeling framework for developing, composing and analyzing such WEMs based on the proposed principles. The framework provides a modular structure to flexibly construct and study WEMs. These can contain biophysical (e.g., carbon cycle dynamics), socio-metabolic or economic (e.g., economic growth or energy system changes), and sociocultural processes (e.g., voting on climate policies or changing social norms) and their feedback interactions, and they are based on elementary entity types, e.g., grid cells and social systems. Thereby, copan:CORE enables the epistemic flexibility needed for contributions towards Earth system analysis of the Anthropocene given the large diversity of competing theories and methodologies used for describing socio-metabolic or economic and sociocultural processes in the Earth system by various fields and schools of thought. To illustrate the capabilities of the framework, we present an exemplary and highly stylized WEM implemented in copan:CORE that illustrates how endogenizing sociocultural processes and feedbacks such as voting on climate policies based on socially learned environmental awareness could fundamentally change macroscopic model outcomes.
  •  
7.
  • Donges, Jonathan, et al. (författare)
  • Taxonomies for structuring models for World-Earth systems analysis of the Anthropocene : subsystems, their interactions and social-ecological feedback loops
  • 2021
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 12:4, s. 1115-1137
  • Tidskriftsartikel (refereegranskat)abstract
    • In the Anthropocene, the social dynamics of human societies have become critical to understanding planetary-scale Earth system dynamics. The conceptual foundations of Earth system modelling have externalised social processes in ways that now hinder progress in understanding Earth resilience and informing governance of global environmental change. New approaches to global modelling of the human World are needed to address these challenges. The current modelling landscape is highly diverse and heterogeneous, ranging from purely biophysical Earth system models, to hybrid macro-economic integrated assessments models, to a plethora of models of socio-cultural dynamics. World-Earth models capable of simulating complex and entangled human-Earth system processes of the Anthropocene are currently not available. They will need to draw on and selectively integrate elements from the diverse range of fields and approaches; thus, future World-Earth modellers require a structured approach to identify, classify, select, combine and critique model components from multiple modelling traditions. Here, we develop taxonomies for ordering the multitude of societal and biophysical subsystems and their interactions. We suggest three taxa for modelled subsystems: (i) biophysical, where dynamics is usually represented by natural laws of physics, chemistry or ecology (i.e. the usual components of Earth system models); (ii) socio-cultural, dominated by processes of human behaviour, decision-making and collective social dynamics (e.g. politics, institutions, social networks and even science itself); and (iii) socio-metabolic, dealing with the material interactions of social and biophysical subsystems (e.g. human bodies, natural resources and agriculture). We show how higher-order taxonomies can be derived for classifying and describing the interactions between two or more subsystems. This then allows us to highlight the kinds of social-ecological feedback loops where new modelling efforts need to be directed. As an example, we apply the taxonomy to a stylised World-Earth system model that endogenises the socially transmitted choice of discount rates in a greenhouse gas emissions game to illustrate the effects of social-ecological feedback loops that are usually not considered in current modelling efforts. The proposed taxonomy can contribute to guiding the design and operational development of more comprehensive World-Earth models for understanding Earth resilience and charting sustainability transitions within planetary boundaries and other future trajectories in the Anthropocene.
  •  
8.
  • Drüke, Markus, et al. (författare)
  • The long-term impact of transgressing planetary boundaries on biophysical atmosphere–land interactions
  • 2024
  • Ingår i: Earth System Dynamics. - 2190-4979 .- 2190-4987. ; 15:2, s. 467-483
  • Tidskriftsartikel (refereegranskat)abstract
    • Human activities have had a significant impact on Earth's systems and processes, leading to a transition of Earth's state from the relatively stable Holocene epoch to the Anthropocene. The planetary boundary framework characterizes major risks of destabilization, particularly in the core dimensions of climate and biosphere change. Land system change, including deforestation and urbanization, alters ecosystems and impacts the water and energy cycle between the land surface and atmosphere, while climate change can disrupt the balance of ecosystems and impact vegetation composition and soil carbon pools. These drivers also interact with each other, further exacerbating their impacts. Earth system models have been used recently to illustrate the risks and interacting effects of transgressing selected planetary boundaries, but a detailed analysis is still missing. Here, we study the impacts of long-term transgressions of the climate and land system change boundaries on the Earth system using an Earth system model with an incorporated detailed dynamic vegetation model. In our centennial-scale simulation analysis, we find that transgressing the land system change boundary results in increases in global temperatures and aridity. Furthermore, this transgression is associated with a substantial loss of vegetation carbon, exceeding 200 Pg C, in contrast to conditions considered safe. Concurrently, the influence of climate change becomes evident as temperatures surge by 2.7–3.1 °C depending on the region. Notably, carbon dynamics are most profoundly affected within the large carbon reservoirs of the boreal permafrost areas, where carbon emissions peak at 150 Pg C. While a restoration scenario to reduce human pressure to meet the planetary boundaries of climate change and land system change proves beneficial for carbon pools and global mean temperature, a transgression of these boundaries could lead to profoundly negative effects on the Earth system and the terrestrial biosphere. Our results suggest that respecting both boundaries is essential for safeguarding Holocene-like planetary conditions that characterize a resilient Earth system and are in accordance with the goals of the Paris Climate Agreement.
  •  
9.
  • Gröger, Matthias, et al. (författare)
  • Coupled regional Earth system modeling in the Baltic Sea region
  • 2021
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 12:3, s. 939-973
  • Forskningsöversikt (refereegranskat)abstract
    • Nonlinear responses to externally forced climate change are known to dampen or amplify the local climate impact due to complex cross-compartmental feedback loops in the Earth system. These feedbacks are less well represented in the traditional stand-alone atmosphere and ocean models on which many of today's regional climate assessments rely (e.g., EURO-CORDEX, NOSCCA and BACC II). This has promoted the development of regional climate models for the Baltic Sea region by coupling different compartments of the Earth system into more comprehensive models. Coupled models more realistically represent feedback loops than the information imposed on the region by prescribed boundary conditions and, thus, permit more degrees of freedom. In the past, several coupled model systems have been developed for Europe and the Baltic Sea region. This article reviews recent progress on model systems that allow two-way communication between atmosphere and ocean models; models for the land surface, including the terrestrial biosphere; and wave models at the air-sea interface and hydrology models for water cycle closure. However, several processes that have mostly been realized by one-way coupling to date, such as marine biogeochemistry, nutrient cycling and atmospheric chemistry (e.g., aerosols), are not considered here. In contrast to uncoupled stand-alone models, coupled Earth system models can modify mean near-surface air temperatures locally by up to several degrees compared with their stand-alone atmospheric counterparts using prescribed surface boundary conditions. The representation of small-scale oceanic processes, such as vertical mixing and sea-ice dynamics, appears essential to accurately resolve the air-sea heat exchange over the Baltic Sea, and these parameters can only be provided by online coupled high-resolution ocean models. In addition, the coupling of wave models at the ocean-atmosphere interface allows for a more explicit formulation of small-scale to microphysical processes with local feedbacks to water temperature and large-scale processes such as oceanic upwelling. Over land, important climate feedbacks arise from dynamical terrestrial vegetation changes as well as the implementation of land-use scenarios and afforestation/deforestation that further alter surface albedo, roughness length and evapotranspiration. Furthermore, a good representation of surface temperatures and roughness length over open sea and land areas is critical for the representation of climatic extremes such as heavy precipitation, storms, or tropical nights (defined as nights where the daily minimum temperature does not fall below 20gC), and these parameters appear to be sensitive to coupling. For the present-day climate, many coupled atmosphere-ocean and atmosphere-land surface models have demonstrated the added value of single climate variables, in particular when low-quality boundary data were used in the respective stand-alone model. This makes coupled models a prospective tool for downscaling climate change scenarios from global climate models because these models often have large biases on the regional scale. However, the coupling of hydrology models to close the water cycle remains problematic, as the accuracy of precipitation provided by atmosphere models is, in most cases, insufficient to realistically simulate the runoff to the Baltic Sea without bias adjustments. Many regional stand-alone ocean and atmosphere models are tuned to suitably represent present-day climatologies rather than to accurately simulate climate change. Therefore, more research is required into how the regional climate sensitivity (e.g., the models' response to a given change in global mean temperature) is affected by coupling and how the spread is altered in multi-model and multi-scenario ensembles of coupled models compared with uncoupled ones.
  •  
10.
  • Hessen, Dag O., et al. (författare)
  • Lake ecosystem tipping points and climate feedbacks
  • 2024
  • Ingår i: Earth System Dynamics. - 2190-4979 .- 2190-4987. ; 15:3, s. 653-669
  • Forskningsöversikt (refereegranskat)abstract
    • Lakes and ponds experience anthropogenically forced changes that may be non-linear and sometimes initiate ecosystem feedbacks leading to tipping points beyond which impacts become hard to reverse. In many cases climate change is a key driver, sometimes in concert with other stressors. Lakes are also important players in the global climate by ventilating a large share of terrestrial carbon (C) back to the atmosphere as greenhouse gases and will likely provide substantial feedbacks to climate change. In this paper we address various major changes in lake ecosystems and discuss if tipping points can be identified, predicted, or prevented, as well as the drivers and feedbacks associated with climate change. We focus on potential large-scale effects with regional or widespread impacts, such as eutrophication-driven anoxia and internal phosphorus (P) loading, increased loading of organic matter from terrestrial to lake ecosystems (lake “browning”), lake formation or disappearance in response to cryosphere shifts or changes in precipitation to evaporation ratios, switching from nitrogen to phosphorus limitation, salinization, and the spread of invasive species where threshold-type shifts occur. We identify systems and drivers that could lead to self-sustaining feedbacks, abrupt changes, and some degree of resilience, as opposed to binary states not subject to self-propelling changes or resilience. Changes driven by warming, browning, and eutrophication can cause increased lake stratification, heterotrophy (browning), and phytoplankton or macrophyte mass (eutrophication), which separately or collectively drive benthic oxygen depletion and internal phosphorus loading and in turn increase greenhouse gas (GHG) emissions. Several of these processes can feature potential tipping point thresholds, which further warming will likely make easier to surpass. We argue that the full importance of the vulnerability of lakes to climate and other anthropogenic impacts, as well as their feedback to climate, is not yet fully acknowledged, so there is a need both for science and communication in this regard.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 34
Typ av publikation
tidskriftsartikel (26)
forskningsöversikt (8)
Typ av innehåll
refereegranskat (33)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Winkelmann, Ricarda (4)
Cornell, Sarah E. (3)
Meier, H. E. Markus (3)
Zorita, E. (2)
Omstedt, Anders, 194 ... (2)
May, Wilhelm (2)
visa fler...
Barfuss, Wolfram (2)
Donges, Jonathan (2)
Heitzig, Jobst (2)
Rutgersson, Anna, 19 ... (2)
Kjellström, Erik (2)
Bender, Frida A.-M. ... (1)
aut (1)
Barichivich, Jonatha ... (1)
Sobek, Anna (1)
Kosten, Sarian (1)
Armstrong McKay, Dav ... (1)
Sakschewski, Boris (1)
Loriani, Sina (1)
Kiessling, Anders (1)
Akhtar, N. (1)
Chen, Deliang, 1961 (1)
Achieng, Therezah (1)
Miralles, Diego G. (1)
Hessen, Dag O. (1)
Russo, S. (1)
Di Baldassarre, Giul ... (1)
Selomane, Odirilwe (1)
Jung, Martin (1)
Ahlström, Anders (1)
Smith, Benjamin (1)
Wu, Minchao (1)
Reichstein, Markus (1)
Wörman, Anders (1)
Mazzoleni, Maurizio (1)
Miller, Paul A. (1)
Andersen, Tom (1)
Humborg, Christoph (1)
Hall, Per, 1954 (1)
Jürgens, Klaus (1)
Smith, Ben (1)
Belusic, Danijel (1)
Pugh, Thomas A M (1)
Lade, Steven J. (1)
Rockström, Johan (1)
Carstensen, Jacob (1)
Madsen, K. (1)
Langner, Joakim (1)
Mauritsen, Thorsten (1)
visa färre...
Lärosäte
Stockholms universitet (25)
Uppsala universitet (11)
Lunds universitet (6)
Göteborgs universitet (5)
Kungliga Tekniska Högskolan (1)
Sveriges Lantbruksuniversitet (1)
Språk
Engelska (34)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (33)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy