SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Abrams Paul) srt2:(2020-2023)"

Sökning: WFRF:(Abrams Paul) > (2020-2023)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chakrabarty, Basu, et al. (författare)
  • Nitric oxide signaling pathways in the normal and pathological bladder: Do they provide new pharmacological pathways?—ICI-RS 2023
  • 2023
  • Ingår i: Neurourology and Urodynamics. - 0733-2467 .- 1520-6777.
  • Forskningsöversikt (refereegranskat)abstract
    • Aims: The nitric oxide (NO•)/soluble guanylate cyclase/cyclic-GMP (cGMP) signaling pathway is ubiquitous and regulates several functions in physiological systems as diverse as the vascular, nervous, and renal systems. However, its roles in determining normal and abnormal lower urinary tract functions are unclear. The aim was to identify potential therapeutic targets associated with this pathway to manage lower urinary tract functional disorders. Methods: This review summarizes a workshop held under the auspices of ICI-RS with a view to address these questions. Results: Four areas were addressed: NO• signaling to regulate neurotransmitter release to detrusor smooth muscle; its potential dual roles in alleviating and exacerbating inflammatory pathways; its ability to act as an antifibrotic mediator; and the control by nitrergic nerves of lower urinary tract vascular dynamics and the contractile performance of muscular regions of the bladder wall. Central to much of the discussion was the role of the NO• receptor, soluble guanylate cyclase (sGC) in regulating the generation of the enzyme product, the second messenger cGMP. The redox state of sGC is crucial in determining its enzymic activity and the role of a class of novel agents, sGC activators, to optimize activity and to potentially alleviate the consequences of lower urinary tract disorders was highlighted. In addition, the consequences of a functional relationship between nitrergic and sympathetic nerves to regulate vascular dynamics was discussed. Conclusions: Several potential NO•-dependent drug targets in the lower urinary tract were identified that provide the basis for future research and translation to clinical trials.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Sandstrom, Malin, et al. (författare)
  • Recommendations for repositories and scientific gateways from a neuroscience perspective
  • 2022
  • Ingår i: Scientific Data. - : Springer Nature. - 2052-4463. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Digital services such as repositories and science gateways have become key resources for the neuroscience community, but users often have a hard time orienting themselves in the service landscape to find the best fit for their particular needs. INCF has developed a set of recommendations and associated criteria for choosing or setting up and running a repository or scientific gateway, intended for the neuroscience community, with a FAIR neuroscience perspective.
  •  
6.
  • Wyndaele, Michel, et al. (författare)
  • Beyond the urothelium: Interplay between autonomic nervous system and bladder inflammation in urinary tract infection, bladder pain syndrome with interstitial cystitis and neurogenic lower urinary tract dysfunction in spinal cord injury-ICI-RS 2023.
  • 2023
  • Ingår i: Neurourology and urodynamics. - 1520-6777.
  • Forskningsöversikt (refereegranskat)abstract
    • Inflammation and neuronal hypersensitivity are reactive protective mechanisms after urothelial injury. In lower urinary tract dysfunctions (LUTD), such as urinary tract infection (UTI), bladder pain syndrome with interstitial cystitis (BPS/IC) and neurogenic LUTD after spinal cord injury (SCI), chronic inflammation can develop. It is unclear how the protective reactionary inflammation escalates into chronic disease in some patients.During its 2023 meeting in Bristol, the International Consultation on Incontinence-Research Society (ICI-RS) reviewed the urothelial and inflammatory changes after UTI, BPS/IC and SCI. Potential factors contributing to the evolution into chronic disease were explored in a think-tank.Five topics were discussed. (1) Visceral fat metabolism participates in the systemic pro-inflammatory effect of noradrenalin in BPS/IC and SCI. Sympathetic nervous system-adipocyte-bladder crosstalk needs further investigation. (2) Sympathetic hyperactivity also potentiates immune depression in SCI and needs to be investigated in BPS/IC. Gabapentin and tumor necrosis factor-α are promising research targets. (3) The exact peripheral neurons involved in the integrative protective unit formed by nervous and immune systems need to be further identified. (4) Neurotransmitter changes in SCI and BPS/IC: Neurotransmitter crosstalk needs to be considered in identifying new therapeutic targets. (5) The change from eubiosis to dysbiosis in SCI can contribute to UTI susceptibility and needs to be unraveled.The think-tank discussed whether visceral fat metabolism, immune depression through sympathetic hyperactivity, peripheral nerves and neurotransmitter crosstalk, and the change in microbiome could provide explanations in the heterogenic development of chronic inflammation in LUTD. High-priority research questions were identified.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy