SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Adhikari Deepak) srt2:(2008-2009)"

Sökning: WFRF:(Adhikari Deepak) > (2008-2009)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adhikari, Deepak, et al. (författare)
  • Disruption of Tsc2 in oocytes leads to overactivation of the entire pool of primordial follicles
  • 2009
  • Ingår i: Molecular human reproduction. - : Oxford University Press. - 1360-9947 .- 1460-2407. ; 15:12, s. 765-770
  • Tidskriftsartikel (refereegranskat)abstract
    • To maintain the length of reproductive life in a woman, it is essential that most of her ovarian primordial follicles are maintained in a quiescent state to provide a continuous supply of oocytes. However, our understanding of the molecular mechanisms that control the quiescence and activation of primordial follicles is still in its infancy. In this study, we provide some genetic evidence to show that the tumor suppressor tuberous sclerosis complex 2 (Tsc2), which negatively regulates mammalian target of rapamycin complex 1 (mTORC1), functions in oocytes to maintain the dormancy of primordial follicles. In mutant mice lacking the Tsc2 gene in oocytes, the pool of primordial follicles is activated prematurely due to elevated mTORC1 activity in oocytes. This results in depletion of follicles in early adulthood, causing premature ovarian failure (POF). Our results suggest that the Tsc1-Tsc2 complex mediated suppression of mTORC1 activity is indispensable for maintenance of the dormancy of primordial follicles, thus preserving the follicular pool, and that mTORC1 activity in oocytes promotes follicular activation. Our results also indicate that deregulation of Tsc/mTOR signaling in oocytes may cause pathological conditions of the ovary such as infertility and POF.
  •  
2.
  • Adhikari, Deepak, et al. (författare)
  • Molecular mechanisms underlying the activation of mammalian primordial follicles
  • 2009
  • Ingår i: Endocrine reviews. - : The Endocrine Society. - 0163-769X .- 1945-7189. ; 30:5, s. 438-464
  • Tidskriftsartikel (refereegranskat)abstract
    • In humans and other mammalian species, the pool of resting primordial follicles serves as the source of developing follicles and fertilizable ova for the entire length of female reproductive life. One question that has intrigued biologists is: what are the mechanisms controlling the activation of dormant primordial follicles. Studies from previous decades have laid a solid, but yet incomplete, foundation. In recent years, molecular mechanisms underlying follicular activation have become more evident, mainly through the use of genetically modified mouse models. As hypothesized in the 1990s, the pool of primordial follicles is now known to be maintained in a dormant state by various forms of inhibitory machinery, which are provided by several inhibitory signals and molecules. Several recently reported mutant mouse models have shown that a synergistic and coordinated suppression of follicular activation provided by multiple inhibitory molecules is necessary to preserve the dormant follicular pool. Loss of function of any of the inhibitory molecules for follicular activation, including PTEN (phosphatase and tensin homolog deleted on chromosome 10), Foxo3a, p27, and Foxl2, leads to premature and irreversible activation of the primordial follicle pool. Such global activation of the primordial follicle pool leads to the exhaustion of the resting follicle reserve, resulting in premature ovarian failure in mice. In this review, we summarize both historical and recent results on mammalian primordial follicular activation and focus on the up-to-date knowledge of molecular networks controlling this important physiological event. We believe that information obtained from mutant mouse models may also reflect the molecular machinery responsible for follicular activation in humans. These advances may provide a better understanding of human ovarian physiology and pathophysiology for future clinical applications.
  •  
3.
  • Dubbaka Venu, Pradeep Reddy, 1982-, et al. (författare)
  • Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool
  • 2008
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 319:5863, s. 611-613
  • Tidskriftsartikel (refereegranskat)abstract
    • In the mammalian ovary, progressive activation of primordial follicles from the dormant pool serves as the source of fertilizable ova. Menopause, or the end of female reproductive life, occurs when the primordial follicle pool is exhausted. However, the molecular mechanisms underlying follicle activation are poorly understood. We provide genetic evidence that in mice lacking PTEN (phosphatase and tensin homolog deleted on chromosome 10) in oocytes, a major negative regulator of phosphatidylinositol 3-kinase (PI3K), the entire primordial follicle pool becomes activated. Subsequently, all primordial follicles become depleted in early adulthood, causing premature ovarian failure (POF). Our results show that the mammalian oocyte serves as the headquarters of programming of follicle activation and that the oocyte PTEN-PI3K pathway governs follicle activation through control of initiation of oocyte growth.
  •  
4.
  • Dubbaka Venu, Pradeep Reddy, 1982-, et al. (författare)
  • PDK1 signaling in oocytes controls reproductive aging and lifespan by manipulating the survival of primordial follicles
  • 2009
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 18:15, s. 2813-2824
  • Tidskriftsartikel (refereegranskat)abstract
    • The molecular mechanisms that control reproductive aging and menopausal age in females are poorly understood. Here, we provide genetic evidence that 3-phosphoinositide-dependent protein kinase-1 (PDK1) signaling in oocytes preserves reproductive lifespan by maintaining the survival of ovarian primordial follicles. In mice lacking the PDK1-encoding gene Pdk1 in oocytes, the majority of primordial follicles are depleted around the onset of sexual maturity, causing premature ovarian failure (POF) during early adulthood. We further showed that suppressed PDK1-Akt-p70 S6 kinase 1 (S6K1)-ribosomal protein S6 (rpS6) signaling in oocytes appears to be responsible for the loss of primordial follicles, and mice lacking the Rps6 gene in oocytes show POF similar to that in Pdk1-deficient mice. In combination with our earlier finding that phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in oocytes suppresses follicular activation, we have now pinpointed the molecular network involving phosphatidylinositol 3 kinase (PI3K)/PTEN-PDK1 signaling in oocytes that controls the survival, loss and activation of primordial follicles, which together determine reproductive aging and the length of reproductive life in females. Underactivation or overactivation of this signaling pathway in oocytes is shown to cause pathological conditions in the ovary, including POF and infertility.
  •  
5.
  • Jagarlamudi, Krishna, 1980-, et al. (författare)
  • Oocyte-specific deletion of Pten in mice reveals a stage-specific function of PTEN/PI3K signaling in oocytes in controlling follicular activation
  • 2009
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 4:7, s. e6186-
  • Tidskriftsartikel (refereegranskat)abstract
    • Immature ovarian primordial follicles are essential for maintenance of the reproductive lifespan of female mammals. Recently, it was found that overactivation of the phosphatidylinositol 3-kinase (PI3K) signaling in oocytes of primordial follicles by an oocyte-specific deletion of Pten (phosphatase and tensin homolog deleted on chromosome ten), the gene encoding PI3K negative regulator PTEN, results in premature activation of the entire pool of primordial follicles, indicating that activation of the PI3K pathway in oocytes is important for control of follicular activation. To investigate whether PI3K signaling in oocytes of primary and further developed follicles also plays a role at later stages in follicular development and ovulation, we conditionally deleted the Pten gene from oocytes of primary and further developed follicles by using transgenic mice expressing zona pellucida 3 (Zp3) promoter-mediated Cre recombinase. Our results show that Pten was efficiently deleted from oocytes of primary and further developed follicles, as indicated by the elevated phosphorylation of the major PI3K downstream component Akt. However, follicular development was not altered and oocyte maturation was also normal, which led to normal fertility with unaltered litter size in the mutant mice. Our data indicate that properly controlled PTEN/PI3K-Akt signaling in oocytes is essential for control of the development of primordial follicles whereas overactivation of PI3K signaling in oocytes does not appear to affect the development of growing follicles. This suggests that there is a stage-specific function of PTEN/PI3K signaling in mouse oocytes that controls follicular activation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy