SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Alitalo Kari) srt2:(2015-2019)"

Sökning: WFRF:(Alitalo Kari) > (2015-2019)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Vaahtomeri, Kari, et al. (författare)
  • Lymphangiogenesis guidance by paracrine and pericellular factors
  • 2017
  • Ingår i: Genes & Development. - : Cold Spring Harbor Laboratory. - 0890-9369 .- 1549-5477. ; 31:16, s. 1615-1634
  • Forskningsöversikt (refereegranskat)abstract
    • Lymphatic vessels are important for tissue fluid homeostasis, lipid absorption, and immune cell trafficking and are involved in the pathogenesis of several human diseases. The mechanisms by which the lymphatic vasculature network is formed, remodeled, and adapted to physiological and pathological challenges are controlled by an intricate balance of growth factor and biomechanical cues. These transduce signals for the readjustment of gene expression and lymphatic endothelial migration, proliferation, and differentiation. In this review, we describe several of these cues and how they are integrated for the generation of functional lymphatic vessel networks.
  •  
2.
  • Aspelund, Aleksanteri, et al. (författare)
  • Lymphatic System in Cardiovascular Medicine
  • 2016
  • Ingår i: Circulation Research. - 0009-7330 .- 1524-4571. ; 118:3, s. 515-530
  • Forskningsöversikt (refereegranskat)abstract
    • The mammalian circulatory system comprises both the cardiovascular system and the lymphatic system. In contrast to the blood vascular circulation, the lymphatic system forms a unidirectional transit pathway from the extracellular space to the venous system. It actively regulates tissue fluid homeostasis, absorption of gastrointestinal lipids, and trafficking of antigen-presenting cells and lymphocytes to lymphoid organs and on to the systemic circulation. The cardinal manifestation of lymphatic malfunction is lymphedema. Recent research has implicated the lymphatic system in the pathogenesis of cardiovascular diseases including obesity and metabolic disease, dyslipidemia, inflammation, atherosclerosis, hypertension, and myocardial infarction. Here, we review the most recent advances in the field of lymphatic vascular biology, with a focus on cardiovascular disease.
  •  
3.
  •  
4.
  • Gramolelli, Silvia, et al. (författare)
  • PROX1 is a transcriptional regulator of MMP14
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The transcription factor PROX1 is essential for development and cell fate specification. Its function in cancer is context-dependent since PROX1 has been shown to play both oncogenic and tumour suppressive roles. Here, we show that PROX1 suppresses the transcription of MMP14, a metalloprotease involved in angiogenesis and cancer invasion, by binding and suppressing the activity of MMP14 promoter. Prox1 deletion in murine dermal lymphatic vessels in vivo and in human LECs increased MMP14 expression. In a hepatocellular carcinoma cell line expressing high endogenous levels of PROX1, its silencing increased both MMP14 expression and MMP14-dependent invasion in 3D. Moreover, PROX1 ectopic expression reduced the MMP14-dependent 3D invasiveness of breast cancer cells and angiogenic sprouting of blood endothelial cells in conjunction with MMP14 suppression. Our study uncovers a new transcriptional regulatory mechanism of cancer cell invasion and endothelial cell specification.
  •  
5.
  • Hytonen, Jarkko P., et al. (författare)
  • Local adventitial anti-angiogenic gene therapy reduces growth of vasa-vasorum and in-stent restenosis in WHHL rabbits
  • 2018
  • Ingår i: Journal of Molecular and Cellular Cardiology. - : ELSEVIER SCI LTD. - 0022-2828 .- 1095-8584. ; 121, s. 145-154
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Antiproliferative drugs in drug eluting stents (DES) are associated with complications due to impaired re-endothelialization. Additionally, adventitial neovascularization has been suggested to contribute to in-stent restenosis (ISR). Since Vascular Endothelial Growth Factors (VEGFs) are the key mediators of angiogenesis, we investigated feasibility and efficacy of local gene therapy for ISR utilizing soluble decoy VEGF receptors to reduce biological activity of adventitial VEGFs.Method: Sixty-nine adult WHHL rabbit aortas were subjected to endothelial denudation. Six weeks later catheter-mediated local intramural infusion of 1.5x10e10 pfu adenoviruses encoding soluble VEGF Receptor-1 (sVEGFR1), sVEGFR2, sVEGFR3 or control LacZ and bare metal stent implantation were performed in the same aortic segment. Marker protein expression was assessed at 6d in LacZ cohort. Immunohistochemistry, morphometrical analyses and angiography were performed at d14, d42 and d90.Results: Transgene expression was localized to adventitia. All decoy receptors reduced the size of vasa-vasorum at 14d, AdsVEGFR2 animals also had reduced density of adventitial vasa-vasorum, whereas AdsVEGFR3 increased the density of vasa-vasorum. At d42, AdsVEGFR1 and AdsVEGFR2 reduced ISR (15.7 +/- 6.9% stenosis, P < 0.01 and 16.5 +/- 2.7%, P < 0.05, respectively) vs. controls (28.3 +/- 7.6%). Moreover, AdsVEGFR-3 treatment led to a non-significant trend in the reduction of adventitial lymphatics at all time points and these animals had significantly more advanced neointimal atherosclerosis at 14d and 42d vs. control animals.Conclusions: Targeting adventitial neovascularization using sVEGFR1 and sVEGFR2 is a novel strategy to reduce ISR. The therapeutic effects dissipate at late follow up following short expression profile of adenoviral vectors. However, inhibition of VEGFR3 signaling accelerates neoatherosclerosis.
  •  
6.
  • Martinez-Corral, Ines, et al. (författare)
  • Nonvenous Origin of Dermal Lymphatic Vasculature
  • 2015
  • Ingår i: Circulation Research. - 0009-7330 .- 1524-4571. ; 116:10, s. 1649-1654
  • Tidskriftsartikel (refereegranskat)abstract
    • Rationale: The formation of the blood vasculature is achieved via 2 fundamentally different mechanisms, de novo formation of vessels from endothelial progenitors (vasculogenesis) and sprouting of vessels from pre-existing ones (angiogenesis). In contrast, mammalian lymphatic vasculature is thought to form exclusively by sprouting from embryonic veins (lymphangiogenesis). Alternative nonvenous sources of lymphatic endothelial cells have been suggested in chicken and Xenopus, but it is unclear whether they exist in mammals. Objective: We aimed to clarify the origin of the murine dermal lymphatic vasculature. Methods and Results: We performed lineage tracing experiments and analyzed mutants lacking the Prox1 transcription factor, a master regulator of lymphatic endothelial cell identity, in Tie2 lineage venous-derived lymphatic endothelial cells. We show that, contrary to current dogma, a significant part of the dermal lymphatic vasculature forms independently of sprouting from veins. Although lymphatic vessels of cervical and thoracic skin develop via sprouting from venous-derived lymph sacs, vessels of lumbar and dorsal midline skin form via assembly of non-Tie2-lineage cells into clusters and vessels through a process defined as lymphvasculogenesis. Conclusions: Our results demonstrate a significant contribution of nonvenous-derived cells to the dermal lymphatic vasculature. Demonstration of a previously unknown lymphatic endothelial cell progenitor population will now allow further characterization of their origin, identity, and functions during normal lymphatic development and in pathology, as well as their potential therapeutic use for lymphatic regeneration.
  •  
7.
  • Nowak-Sliwinska, Patrycja, et al. (författare)
  • Consensus guidelines for the use and interpretation of angiogenesis assays
  • 2018
  • Ingår i: Angiogenesis. - : Springer. - 0969-6970 .- 1573-7209. ; 21:3, s. 425-532
  • Forskningsöversikt (refereegranskat)abstract
    • The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference.
  •  
8.
  • Stanczuk, Lukas, et al. (författare)
  • cKit Lineage Hemogenic Endothelium-Derived Cells Contribute to Mesenteric Lymphatic Vessels
  • 2015
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 10:10, s. 1708-1721
  • Tidskriftsartikel (refereegranskat)abstract
    • Pathological lymphatic diseases mostly affect vessels in specific tissues, yet little is known about organ-specific regulation of the lymphatic vasculature. Here, we show that the vascular endothelial growth factor receptor 3 (VEGFR-3)/p110 alpha PI3-kinase signaling pathway is selectively required for the formation of mesenteric lymphatic vasculature. Using genetic lineage tracing, we demonstrate that part of the mesenteric lymphatic vasculature develops from cKit lineage cells of hemogenic endothelial origin through a process we define as lymphvasculogenesis. This is contrary to the current dogma that all mammalian lymphatic vessels form by sprouting from veins. Our results reveal vascular-bed-specific differences in the origin and mechanisms of vessel formation, which may critically underlie organ-specific manifestation of lymphatic dysfunction in disease. The progenitor cells identified in this study may be exploited to restore lymphatic function following cancer surgery, lymphedema, or tissue trauma.
  •  
9.
  • Suh, Sang Heon, et al. (författare)
  • Gut microbiota regulates lacteal integrity by inducing VEGF-C in intestinal villus macrophages
  • 2019
  • Ingår i: EMBO Reports. - : WILEY. - 1469-221X .- 1469-3178. ; 20:4
  • Tidskriftsartikel (refereegranskat)abstract
    • A lacteal is a blunt-ended, long, tube-like lymphatic vessel located in the center of each intestinal villus that provides a unique route for drainage of absorbed lipids from the small intestine. However, key regulators for maintaining lacteal integrity are poorly understood. Here, we explore whether and how the gut microbiota regulates lacteal integrity. Germ depletion by antibiotic treatment triggers lacteal regression during adulthood and delays lacteal maturation during the postnatal period. In accordance with compromised lipid absorption, the button-like junction between lymphatic endothelial cells, which is ultrastructurally open to permit free entry of dietary lipids into lacteals, is significantly reduced in lacteals of germ-depleted mice. Lacteal defects are also found in germ-free mice, but conventionalization of germ-free mice leads to normalization of lacteals. Mechanistically, VEGF-C secreted from villus macrophages upon MyD88-dependent recognition of microbes and their products is a main factor in lacteal integrity. Collectively, we conclude that the gut microbiota is a crucial regulator for lacteal integrity by endowing its unique microenvironment and regulating villus macrophages in small intestine.
  •  
10.
  • Zarkada, Georgia, et al. (författare)
  • VEGFR3 does not sustain retinal angiogenesis without VEGFR2
  • 2015
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 112:3, s. 761-766
  • Tidskriftsartikel (refereegranskat)abstract
    • Angiogenesis, the formation of new blood vessels, is regulated by vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs). VEGFR2 is abundant in the tip cells of angiogenic sprouts, where VEGF/VEGFR2 functions upstream of the delta-like ligand 4 (DLL4)/Notch signal transduction pathway. VEGFR3 is expressed in all endothelia and is indispensable for angiogenesis during early embryonic development. In adults, VEGFR3 is expressed in angiogenic blood vessels and some fenestrated endothelia. VEGFR3 is abundant in endothelial tip cells, where it activates Notch signaling, facilitating the conversion of tip cells to stalk cells during the stabilization of vascular branches. Subsequently, Notch activation suppresses VEGFR3 expression in a negative feedback loop. Here we used conditional deletions and a Notch pathway inhibitor to investigate the cross-talk between VEGFR2, VEGFR3, and Notch in vivo. We show that postnatal angiogenesis requires VEGFR2 signaling also in the absence of Notch or VEGFR3, and that even small amounts of VEGFR2 are able to sustain angiogenesis to some extent. We found that VEGFR2 is required independently of VEGFR3 for endothelial DLL4 up-regulation and angiogenic sprouting, and for VEGFR3 functions in angiogenesis. In contrast, VEGFR2 deletion had no effect, whereas VEGFR3 was essential for postnatal lymphangiogenesis, and even for lymphatic vessel maintenance in adult skin. Knowledge of these interactions and the signaling functions of VEGFRs in blood vessels and lymphatic vessels is essential for the therapeutic manipulation of the vascular system, especially when considering multitargeted antiangiogenic treatments.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy