SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andersson Roland E.) srt2:(2000-2004)"

Sökning: WFRF:(Andersson Roland E.) > (2000-2004)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Jansson, Roland, 1967-, et al. (författare)
  • Effects of river regulation on river-margin vegetation : A comparison of eight boreal rivers
  • 2000
  • Ingår i: Ecological Applications. - 1051-0761 .- 1939-5582. ; 10:1, s. 203-224
  • Tidskriftsartikel (refereegranskat)abstract
    • Regulation and fragmentation by dams belong to the most widespread deliberate impacts of humans on the world's rivers, especially in the Northern Hemisphere. We evaluated the effects of hydroelectric development by comparing the flora of vascular plants in 200-m-long reaches of river margin distributed along eight entire rivers in northern Sweden. Four of these rivers were free-flowing, and four were strongly regulated for hydroelectric purposes. First, we compared species diversity per site between entire free-flowing and regulated rivers. To reduce the effects of natural, between-river variation, we compared adjacent rivers. One regulated river had lower plant species richness and cover than two adjacent free-flowing ones, whereas two other parallel rivers, one regulated and another free-flowing, did not differ significantly. Second, river-margin vegetation responded differently to different types of regulated water-level regimes. Both along run-of-river impoundments, with small but daily water-level fluctuations, and along storage reservoirs, with large fluctuations between low water levels in spring and high levels in late summer and fall, the number of species and their cover per site were lower than along the free-flowing rivers. Regulated but unimpounded reaches were most similar to free-flowing rivers, having lower plant cover per site, but similar numbers of species. For reaches with reduced discharge, evidence was mixed; some variables were lower compared to free-flowing rivers whereas others were not. However, for the last two types of regulation, statistical power was low due to small sample sizes. Third, we classified all plant species according to their dispersal mechanisms and tested whether they respond differently to different types of regulated water-level regimes. Three out of four types of regulation had higher proportions of wind-dispersed species, and two out of four had lower proportions of species without specific mechanisms for dispersal, compared to free-flowing rivers, suggesting that dispersal ability is critical for persistence following regulation. Run-of-river impoundments had higher proportions of long-floating species and species with mechanisms for vegetative dispersal, suggesting that water dispersal may still be important despite fragmentation by dams. Fourth, plant species richness and cover varied with both local factors, such as water-level regime, and regional factors, such as length of the growing season. Presence of clay and silt in the river-margin soil, preregulation position of the contemporary river margin, non-reservoir sites, low altitudes, and long growing seasons were associated with high plant species richness and cover.
  •  
4.
  • Terao, Yasuo, et al. (författare)
  • Engagement of gaze in capturing targets for future sequential manual actions.
  • 2002
  • Ingår i: Journal of Neurophysiology. - 0022-3077 .- 1522-1598. ; 88:4, s. 1716-25
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated the role of saccadic gaze fixations in encoding target locations for planning a future manual task consisting of a sequence of discrete target-oriented actions. We hypothesized that fixations of the individual targets are necessary for accurate encoding of target locations and that there is a transfer of sequence information from visual encoding to manual recall. Subjects viewed four targets presented at random positions on a screen. After various delays following target extinction, the subjects marked the remembered target locations on the screen with the tip of a hand-held stick. When the targets were presented simultaneously among distracting elements, the overall accuracy of marking increased with presentation time and total number of targets fixated because the subjects had to serially fixate the individual targets to locate them. Without distractors, the marking accuracy was similarly high regardless of duration of target presentation (0.25-8 s) and number of targets fixated; it was comparable to that with distractors when all four targets had been fixated. This indicates parallel encoding of target locations largely based on peripheral vision. Location memory was stable in these tasks over the delay periods investigated (0.5-8 s). With parallel encoding there was a "shrinkage" in the visuomotor transformation, i.e., the distances between the markings were systematically smaller than the corresponding inter-target distances. When the targets were presented sequentially without distractors, marking accuracy improved with the total number of targets fixated and shrinkage in the visuomotor transformation occurred only with parallel encoding, i.e., when subjects did not fixate the targets. In all experimental conditions for trials in which targets were fixated during encoding, there was little correspondence between the marking sequence and the sequence in which the targets were fixated. We conclude that subjects benefit from fixating targets for subsequent target-oriented manual actions when the targets are presented among distractors and when presented sequentially; when distinct targets are presented simultaneously against a blank background, they are efficiently encoded in parallel largely by peripheral vision.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy