SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Aprahamian A) srt2:(2020-2024)"

Search: WFRF:(Aprahamian A) > (2020-2024)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Goubet, AG, et al. (author)
  • Prolonged SARS-CoV-2 RNA virus shedding and lymphopenia are hallmarks of COVID-19 in cancer patients with poor prognosis
  • 2021
  • In: Cell death and differentiation. - : Springer Science and Business Media LLC. - 1476-5403 .- 1350-9047. ; 28:12, s. 3297-3315
  • Journal article (peer-reviewed)abstract
    • Patients with cancer are at higher risk of severe coronavirus infectious disease 2019 (COVID-19), but the mechanisms underlying virus–host interactions during cancer therapies remain elusive. When comparing nasopharyngeal swabs from cancer and noncancer patients for RT-qPCR cycle thresholds measuring acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in 1063 patients (58% with cancer), we found that malignant disease favors the magnitude and duration of viral RNA shedding concomitant with prolonged serum elevations of type 1 IFN that anticorrelated with anti-RBD IgG antibodies. Cancer patients with a prolonged SARS-CoV-2 RNA detection exhibited the typical immunopathology of severe COVID-19 at the early phase of infection including circulation of immature neutrophils, depletion of nonconventional monocytes, and a general lymphopenia that, however, was accompanied by a rise in plasmablasts, activated follicular T-helper cells, and non-naive Granzyme B+FasL+, EomeshighTCF-1high, PD-1+CD8+ Tc1 cells. Virus-induced lymphopenia worsened cancer-associated lymphocyte loss, and low lymphocyte counts correlated with chronic SARS-CoV-2 RNA shedding, COVID-19 severity, and a higher risk of cancer-related death in the first and second surge of the pandemic. Lymphocyte loss correlated with significant changes in metabolites from the polyamine and biliary salt pathways as well as increased blood DNA from Enterobacteriaceae and Micrococcaceae gut family members in long-term viral carriers. We surmise that cancer therapies may exacerbate the paradoxical association between lymphopenia and COVID-19-related immunopathology, and that the prevention of COVID-19-induced lymphocyte loss may reduce cancer-associated death.
  •  
2.
  • Castoldi, F, et al. (author)
  • Autophagy-mediated metabolic effects of aspirin
  • 2020
  • In: Cell death discovery. - : Springer Science and Business Media LLC. - 2058-7716. ; 6:1, s. 129-
  • Journal article (peer-reviewed)abstract
    • Salicylate, the active derivative of aspirin (acetylsalicylate), recapitulates the mode of action of caloric restriction inasmuch as it stimulates autophagy through the inhibition of the acetyltransferase activity of EP300. Here, we directly compared the metabolic effects of aspirin medication with those elicited by 48 h fasting in mice, revealing convergent alterations in the plasma and the heart metabolome. Aspirin caused a transient reduction of general protein acetylation in blood leukocytes, accompanied by the induction of autophagy. However, these effects on global protein acetylation could not be attributed to the mere inhibition of EP300, as determined by epistatic experiments and exploration of the acetyl-proteome from salicylate-treated EP300-deficient cells. Aspirin reduced high-fat diet-induced obesity, diabetes, and hepatosteatosis. These aspirin effects were observed in autophagy-competent mice but not in two different models of genetic (Atg4b−/− or Bcln1+/−) autophagy-deficiency. Aspirin also improved tumor control by immunogenic chemotherapeutics, and this effect was lost in T cell-deficient mice, as well as upon knockdown of an essential autophagy gene (Atg5) in cancer cells. Hence, the health-improving effects of aspirin depend on autophagy.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Motiño, O, et al. (author)
  • ACBP/DBI protein neutralization confers autophagy-dependent organ protection through inhibition of cell loss, inflammation, and fibrosis
  • 2022
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 119:41, s. e2207344119-
  • Journal article (peer-reviewed)abstract
    • Acyl-coenzyme A (CoA)–binding protein (ACBP), also known as diazepam-binding inhibitor (DBI), is an extracellular feedback regulator of autophagy. Here, we report that injection of a monoclonal antibody neutralizing ACBP/DBI (α-DBI) protects the murine liver against ischemia/reperfusion damage, intoxication by acetaminophen and concanavalin A, and nonalcoholic steatohepatitis caused by methionine/choline-deficient diet as well as against liver fibrosis induced by bile duct ligation or carbon tetrachloride. α-DBI downregulated proinflammatory and profibrotic genes and upregulated antioxidant defenses and fatty acid oxidation in the liver. The hepatoprotective effects of α-DBI were mimicked by the induction of ACBP/DBI-specific autoantibodies, an inducibleAcbp/Dbiknockout or a constitutiveGabrg2F77Imutation that abolishes ACBP/DBI binding to the GABAAreceptor. Liver-protective α-DBI effects were lost when autophagy was pharmacologically blocked or genetically inhibited by knockout ofAtg4b. Of note, α-DBI also reduced myocardium infarction and lung fibrosis, supporting the contention that it mediates broad organ-protective effects against multiple insults.
  •  
7.
  • Motino, O, et al. (author)
  • ACBP/DBI protein neutralization confers autophagy-dependent organ protection through inhibition of cell loss, inflammation, and fibrosis
  • 2022
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 119:41, s. e2207344119-
  • Journal article (peer-reviewed)abstract
    • Acyl-coenzyme A (CoA)–binding protein (ACBP), also known as diazepam-binding inhibitor (DBI), is an extracellular feedback regulator of autophagy. Here, we report that injection of a monoclonal antibody neutralizing ACBP/DBI (α-DBI) protects the murine liver against ischemia/reperfusion damage, intoxication by acetaminophen and concanavalin A, and nonalcoholic steatohepatitis caused by methionine/choline-deficient diet as well as against liver fibrosis induced by bile duct ligation or carbon tetrachloride. α-DBI downregulated proinflammatory and profibrotic genes and upregulated antioxidant defenses and fatty acid oxidation in the liver. The hepatoprotective effects of α-DBI were mimicked by the induction of ACBP/DBI-specific autoantibodies, an inducibleAcbp/Dbiknockout or a constitutiveGabrg2F77Imutation that abolishes ACBP/DBI binding to the GABAAreceptor. Liver-protective α-DBI effects were lost when autophagy was pharmacologically blocked or genetically inhibited by knockout ofAtg4b. Of note, α-DBI also reduced myocardium infarction and lung fibrosis, supporting the contention that it mediates broad organ-protective effects against multiple insults.
  •  
8.
  • Muñoz-Fernandez, Shirley S., et al. (author)
  • Gut microbiota disturbances in hospitalized older adults with malnutrition and clinical outcomes
  • 2024
  • In: Nutrition (Burbank, Los Angeles County, Calif.). - : Elsevier. - 0899-9007 .- 1873-1244. ; 122
  • Journal article (peer-reviewed)abstract
    • ObjectiveMalnutrition is one of the most threatening conditions in geriatric populations. The gut microbiota has an important role in the host's metabolic and muscular health: however, its interplay with disease-related malnutrition is not well understood. We aimed to identify the association of malnutrition with the gut microbiota and predict clinical outcomes in hospitalized acutely ill older adults.MethodsWe performed a secondary longitudinal analysis in 108 geriatric patients from a prospective cohort evaluated at admission and 72 h of hospitalization. We collected clinical, demographic, nutritional, and 16S rRNA gene-sequenced gut microbiota data. Microbiota diversity, overall composition, and differential abundance were calculated and compared between patients with and without malnutrition. Microbiota features associated with malnutrition were used to predict clinical outcomes.ResultsPatients with malnutrition (51%) had a different microbiota composition compared to those who were well-nourished during hospitalization (ANOSIM R = 0.079, P = 0.003). Patients with severe malnutrition showed poorer α-diversity at admission (Shannon P = 0.012, Simpson P = 0.018) and follow-up (Shannon P = 0.023, Chao1 P = 0.008). Differential abundance of Lachnospiraceae NK4A136 group, Subdoligranulum, and Faecalibacterium prausnitzii were significantly lower and inversely associated with malnutrition, while Corynebacterium, Ruminococcaceae Incertae Sedis, and Fusobacterium were significantly increased and positively associated with malnutrition. Corynebacterium, Ruminococcaceae Incertae Sedis, and the overall composition were important predictors of critical care in patients with malnutrition during hospitalization.ConclusionOlder adults with malnutrition, especially in a severe stage, may be subject to substantial gut microbial disturbances during hospitalization. The gut microbiota profile of patients with malnutrition might help us to predict worse clinical outcomes.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view