SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bátori Veronika 1980 ) srt2:(2019)"

Sökning: WFRF:(Bátori Veronika 1980 ) > (2019)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bátori, Veronika, 1980-, et al. (författare)
  • The effect of glycerol, sugar and maleic anhydride on pectin-cellulose biofilms prepared from orange waste
  • 2019
  • Ingår i: Polymers. - : MDPI AG. - 2073-4360.
  • Tidskriftsartikel (refereegranskat)abstract
    • This study was conducted to improve the properties of thin films prepared from orange waste by the solution casting method. The main focus was the elimination of holes in the film structure by establishing better cohesion between the major cellulosic and pectin fractions. For this, a previously developed method was improved first by the addition of sugar to promote pectin gelling, then by the addition of maleic anhydride. Principally, maleic anhydride was introduced to the films to induce cross-linking within the film structure. The effects of concentrations of sugar and glycerol as plasticizers and maleic anhydride as a cross-linking agent on the film characteristics were studied. Maleic anhydride improved the structure, resulting in a uniform film, and morphology studies showed better adhesion between components. However, it did not act as a cross-linking agent, but rather as a compatibilizer. The middle level (0.78%) of maleic anhydride content resulted in the highest tensile strength (26.65 ± 3.20 MPa) at low (7%) glycerol and high (14%) sugar levels and the highest elongation (28.48% ± 4.34%) at high sugar and glycerol levels. To achieve a uniform film surface with no holes present, only the lowest (0.39%) level of maleic anhydride was necessary. 
  •  
2.
  • Gustafsson, Jesper, et al. (författare)
  • Development of Bio-Based Films and 3D Objects from Apple Pomace
  • 2019
  • Ingår i: Polymers. - : MDPI AG. - 2073-4360. ; 11:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Extensive quantities of apple pomace are generated annually but its disposal is still challenging. This study addresses this issue by introducing a new, environmentally-friendly approach for the production of sustainable biomaterials from apple pomace, containing 55.47% free sugars and a water insoluble fraction, containing 29.42 ± 0.44% hemicelluloses, 38.99 ± 0.42% cellulose, and 22.94 ± 0.12% lignin. Solution casting and compression molding were applied to form bio-based films and 3D objects (i.e., fiberboards), respectively. Using glycerol as plasticizer resulted in highly compact films with high tensile strength and low elongation (16.49 ± 2.54 MPa and 10.78 ± 3.19%, respectively). In contrast, naturally occurring sugars in the apple pomace showed stronger plasticizing effect in the films and resulted in a fluffier and connected structure with significantly higher elongation (37.39 ± 10.38% and 55.41 ± 5.38%, respectively). Benefiting from the self-binding capacity of polysaccharides, fiberboards were prepared by compression molding at 100 °C using glycerol or naturally occurring sugars, such as plasticizer. The obtained fiberboards exhibited tensile strength of 3.02–5.79 MPa and elongation of 0.93%–1.56%. Possible applications for apple pomace biomaterials are edible/disposable tableware or food packaging. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy