SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ban Yifang) srt2:(2010-2014)"

Sökning: WFRF:(Ban Yifang) > (2010-2014)

  • Resultat 1-10 av 95
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Ban, Yifang, et al. (författare)
  • Fusion of Quickbird MS and RADARSAT SAR data for urban land-cover mapping : object-based and knowledge-based approach
  • 2010
  • Ingår i: International Journal of Remote Sensing. - : Taylor & Francis. - 0143-1161 .- 1366-5901. ; 31:6, s. 1391-1410
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of this research is to evaluate Quickbird multi-spectral (MS) data, multi-temporal RADARSAT Fine-Beam C-HH synthetic aperture radar (SAR) data and fusion of Quickbird MS and RADARSAT SAR for urban land-use/land-cover mapping. One scene of Quickbird multi-spectral imagery was acquired on 18 July 2002 and five-date RADARSAT fine-beam SAR images were acquired during May to August 2002. Quickbird MS images and RADARSAT SAR data were classified using an object-based and rule-based approach. The results demonstrated that the object-based and knowledge-based approach was effective in extracting urban land-cover classes. For identifying 16 land-cover classes, object-based and rule-based classification of Quickbird MS data yielded an overall classification accuracy of 87.9% (kappa: 0.868). For identifying 11 land-cover classes, object-based and rule-based classification of RADARSAT SAR data yielded an overall accuracy: 86.6% (kappa: 0.852). Decision level fusion of Quickbird classification and RADARSAT SAR classification was able to take advantage of the best classifications of both optical and SAR data, thus significantly improving the classification accuracies of several land-cover classes (25% for pasture, 19% for soybeans, 17% for rapeseeds) even though the overall classification accuracy of 16 land-cover classes increased only slightly to 89.5% (kappa: 0.885).
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Ban, Yifang, et al. (författare)
  • Multitemporal Spaceborne SAR Data for Urban Change Detection in China
  • 2012
  • Ingår i: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. - 1939-1404 .- 2151-1535. ; 5:4, s. 1087-1094
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of this research is to examine effective methods for urban change detection using multitemporal spaceborne SAR data in two rapid expanding cities in China. One scene of ERS-2 SAR C-VV image was acquired in Beijing in 1998 and in shanghai in 1999 respectively and one scene of ENVISAT ASAR C-VV image was acquired in near-anniversary dates in 2008 in Beijing and Shanghai. To compare the SAR images from different dates, a modified ratio operator that takes into account both positive and negative changes was developed to derive a change image. A generalized version of Kittler-Illingworth minimum-error thresholding algorithm was then tested to automatically classify the change image into two classes, change and no change. Various probability density functions such as Log normal, Generalized Gaussian, Nakagami ratio, and Weibull ratio were investigated to model the distribution of the change and no change classes. The results showed that Kittler-Illingworth algorithm applied to the modified ratio image is very effective in detecting temporal changes in urban areas using SAR images. Log normal and Nakagami density models achieved the best results. The Kappa coefficients of these methods were of 0.82 and 0.71 for Beijing and Shanghai respectively while the false alarm rates were 2.7% and 4.75%. The findings indicated that the change accuracies obtained using Kittler-Illingworth algorithm vary depending on how the assumed conditional class density function fits the histograms of change and no change classes.
  •  
8.
  • Ban, Yifang, et al. (författare)
  • Multitemporal Spaceborne SAR data for urbanization monitoring in China : Preliminary Result
  • 2010
  • Ingår i: Proceedings, ESA/MOST Dragon 2 Program Midterm Symposium. - 9789292212483
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The objective of this research is to investigate multitemporal spaceborne SAR data for urbanization monitoring in China. A generalized version of Kittler- Illingworth minimum-error thresholding algorithm, that takes into account the non-Gaussian distribution of SAR images, was tested to automatically classify the change variable derived from SAR multitemporal images into two classes, change and no change. A modified ratio operator was examined for identifying both positive and negative changes by comparing the multitemporal SAR images on a pixel-by-pixel basis. Various probability density functions such as Log normal, Generalized Gaussian, Nakagami ratio, and Weibull ratio models were tested to model the distribution of the change and no change classes. The preliminary results showed that this unsupervised change detection algorithm is very effective in detecting temporal changes in urban areas using multitemporal SAR images. The initial findings indicated that change detection accuracy varies depending on how the assumed conditional class density function fits the histograms of change and no change classes.
  •  
9.
  • Ban, Yifang, et al. (författare)
  • Object-Based Fusion of Multitemporal Multiangle ENVISAT ASAR and HJ-1B Multispectral Data for Urban Land-Cover Mapping
  • 2013
  • Ingår i: IEEE Transactions on Geoscience and Remote Sensing. - 0196-2892 .- 1558-0644. ; 51:4, s. 1998-2006
  • Tidskriftsartikel (refereegranskat)abstract
    • The objectives of this research are to develop robust methods for segmentation of multitemporal synthetic aperture radar (SAR) and optical data and to investigate the fusion of multitemporal ENVISAT advanced synthetic aperture radar (ASAR) and Chinese HJ-1B multispectral data for detailed urban land-cover mapping. Eight-date multiangle ENVISAT ASAR images and one-date HJ-1B charge-coupled device image acquired over Beijing in 2009 are selected for this research. The edge-aware region growing and merging (EARGM) algorithm is developed for segmentation of SAR and optical data. Edge detection using a Sobel filter is applied on SAR and optical data individually, and a majority voting approach is used to integrate all edge images. The edges are then used in a segmentation process to ensure that segments do not grow over edges. The segmentation is influenced by minimum and maximum segment sizes as well as the two homogeneity criteria, namely, a measure of color and a measure of texture. The classification is performed using support vector machines. The results show that our EARGM algorithm produces better segmentation than eCognition, particularly for built-up classes and linear features. The best classification result (80%) is achieved using the fusion of eight-date ENVISAT ASAR and HJ-1B data. This represents 5%, 11%, and 14% improvements over eCognition, HJ-1B, and ASAR classifications, respectively. The second best classification is achieved using fusion of four-date ENVISAT ASAR and HJ-1B data (78%). The result indicates that fewer multitemporal SAR images can achieve similar classification accuracy if multitemporal multiangle dual-look-direction SAR data are carefully selected.
  •  
10.
  • Ban, Yifang, et al. (författare)
  • RADARSAT-2 Polarimetric SAR Data for Urban Land Cover Classification : A Multitemporal Dual-Orbit Approach
  • 2011
  • Konferensbidrag (refereegranskat)abstract
    • This research investigates multitemporal dual-orbit RADARSAT-2 polarimetric SAR data for urban land cover classification using an object-based support vector machine (SVM). Six-date RADARSAT-2 high-resolution SAR data in both ascending and descending orbits were acquired in the rural-urban fringe of the Greater Toronto Area during the summer of 2008. The major landuse/land-cover classes include high-density residential area, low-density residential area, industrial and commercial area, construction site, park, golf course, forest, pasture, water and two types of agricultural crops. The results show that multitemporal SAR data improve urban land cover classification and the best classification result is achieved using data from all six-dates. However, similar accuracies could be achieved using only three-date data from both ascending and descending orbits with relatively longer temporal span. Combinations of SAR data with relatively short temporal span are observed to yield lower classification accuracy. Similarly, combinations of SAR data from either ascending or descending orbit alone yield lower accuracy than the combinations of ascending and descending data. The results indicate that the combination of both the ascending and descending spaceborne SAR data with appropriate temporal span are suitable for urban land cover mapping.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 95

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy