SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Barman J.) srt2:(2015-2019)"

Search: WFRF:(Barman J.) > (2015-2019)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Johansson, Mattias, et al. (author)
  • The influence of obesity-related factors in the etiology of renal cell carcinoma—A mendelian randomization study
  • 2019
  • In: PLoS Medicine. - : Public Library of Science (PLoS). - 1549-1277 .- 1549-1676. ; 16:1
  • Journal article (peer-reviewed)abstract
    • Background: Several obesity-related factors have been associated with renal cell carcinoma (RCC), but it is unclear which individual factors directly influence risk. We addressed this question using genetic markers as proxies for putative risk factors and evaluated their relation to RCC risk in a mendelian randomization (MR) framework. This methodology limits bias due to confounding and is not affected by reverse causation.Methods and findings: Genetic markers associated with obesity measures, blood pressure, lipids, type 2 diabetes, insulin, and glucose were initially identified as instrumental variables, and their association with RCC risk was subsequently evaluated in a genome-wide association study (GWAS) of 10,784 RCC patients and 20,406 control participants in a 2-sample MR framework. The effect on RCC risk was estimated by calculating odds ratios (ORSD) for a standard deviation (SD) increment in each risk factor. The MR analysis indicated that higher body mass index increases the risk of RCC (ORSD: 1.56, 95% confidence interval [CI] 1.44–1.70), with comparable results for waist-to-hip ratio (ORSD: 1.63, 95% CI 1.40–1.90) and body fat percentage (ORSD: 1.66, 95% CI 1.44–1.90). This analysis further indicated that higher fasting insulin (ORSD: 1.82, 95% CI 1.30–2.55) and diastolic blood pressure (DBP; ORSD: 1.28, 95% CI 1.11–1.47), but not systolic blood pressure (ORSD: 0.98, 95% CI 0.84–1.14), increase the risk for RCC. No association with RCC risk was seen for lipids, overall type 2 diabetes, or fasting glucose.Conclusions: This study provides novel evidence for an etiological role of insulin in RCC, as well as confirmatory evidence that obesity and DBP influence RCC risk.
  •  
2.
  • Scelo, Ghislaine, et al. (author)
  • Genome-wide association study identifies multiple risk loci for renal cell carcinoma.
  • 2017
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Journal article (peer-reviewed)abstract
    • Previous genome-wide association studies (GWAS) have identified six risk loci for renal cell carcinoma (RCC). We conducted a meta-analysis of two new scans of 5,198 cases and 7,331 controls together with four existing scans, totalling 10,784 cases and 20,406 controls of European ancestry. Twenty-four loci were tested in an additional 3,182 cases and 6,301 controls. We confirm the six known RCC risk loci and identify seven new loci at 1p32.3 (rs4381241, P=3.1 × 10-10), 3p22.1 (rs67311347, P=2.5 × 10-8), 3q26.2 (rs10936602, P=8.8 × 10-9), 8p21.3 (rs2241261, P=5.8 × 10-9), 10q24.33-q25.1 (rs11813268, P=3.9 × 10-8), 11q22.3 (rs74911261, P=2.1 × 10-10) and 14q24.2 (rs4903064, P=2.2 × 10-24). Expression quantitative trait analyses suggest plausible candidate genes at these regions that may contribute to RCC susceptibility.
  •  
3.
  •  
4.
  • Ballatore, M. G., et al. (author)
  • Increasing gender diversity in STEM : A tool for raising awareness of the engineering profession
  • 2019
  • In: ACM International Conference Proceeding Series. - New York, NY, USA : Association for Computing Machinery (ACM). - 9781450371919 ; , s. 216-222
  • Conference paper (peer-reviewed)abstract
    • The ANNA tool developed in the scope of the project "Increasing Gender Diversity in STEM" is an online tool that allows high school students to match their own personality, views, and expectations to those of engineering students and professional engineers. Not only does it provide easy access to role models, but it also increases awareness of what it means to be an engineer and picks up on some stereotypes associated with studying technology at the university. This EU funded Erasmus+ project helped the partners to study the gender difference in self-perception about the engineering degree. In the meantime, the data collection gives the opportunity to take a look at how students perceive their university and their degree.
  •  
5.
  • Gardner, Tyler, et al. (author)
  • Precision Orbit of delta Delphini and Prospects for Astrometric Detection of Exoplanets
  • 2018
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 855:1, s. 1-18
  • Journal article (peer-reviewed)abstract
    • Combining visual and spectroscopic orbits of binary stars leads to a determination of the full 3D orbit, individual masses, and distance to the system. We present a full analysis of the evolved binary system delta Delphini using astrometric data from the MIRC and PAVO instruments on the CHARA long-baseline interferometer, 97 new spectra from the Fairborn Observatory, and 87 unpublished spectra from the Lick Observatory. We determine the full set of orbital elements for delta Del, along with masses of 1.78 +/- 0.07 M-circle dot and 1.62 +/- 0.07 M-circle dot for each component, and a distance of 63.61 +/- 0.89 pc. These results are important in two contexts: for testing stellar evolution models and for defining the detection capabilities for future planet searches. We find that the evolutionary state of this system is puzzling, as our measured flux ratios, radii, and masses imply a similar to 200 Myr age difference between the components, using standard stellar evolution models. Possible explanations for this age discrepancy include mass transfer scenarios with a now-ejected tertiary companion. For individual measurements taken over a span of two years, we achieve <10 mu as precision on the differential position with 10 minute observations. The high precision of our astrometric orbit suggests that exoplanet detection capabilities are within reach of MIRC at CHARA. We compute exoplanet detection limits around delta Del and conclude that, if this precision is extended to wider systems, we should be able to detect most exoplanets >2M(J) on orbits >0.75 au around individual components of hot binary stars via differential astrometry.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view